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11.5 MJ stored energy

~20 MA peak current

~200-300 ns rise time

Target Chamber

The Sandia Z Accelerator



principal isentrope 
(dS = 0)

principal Hugoniot 
impact technique

STP

room-temperature isotherm:
diamond anvil cell (DAC) technique

• Dynamic response at 
temperatures close to static

•Entire loading curve from one 
experiment

Shock and 
release

Ramp compression on Z enables access
to large region of equation of state surface 
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• pulse of electric current through 
rectangular coaxial electrodes (shorted 
at one end) induces magnetic field

• JB  magnetic force transferred to 
electrode material

shorting cap cathode
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Magnetic drive on the Z accelerator can
produce smooth ramp loading to very high pressures
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Isentropic Compression Experiments (ICE)*

Magnetically launched flyer plates

Techniques have been developed on Z for
accurate EOS studies—both major advances

Magnetically produced Isentropic Compression
Experiments (ICE) to provide measurement

of continuous compression curves to ~3 Mbar
- previously unavailable at Mbar pressures

Magnetically driven flyer plates for shock
Hugoniot experiments at velocities to ~ 34 km/s

- exceeds gas gun velocities by ~ 4X and
pressures by ~ 7-8X with comparable accuracy

* Developed with LLNL



 Motivation for developing this platform

 Isentropic Compression Experiments (ICE)

– Isentropic compression of materials

– Phase transition measurements

– A-B material comparisons

 Hyper-velocity flyer plate experiments

– Symmetric impact

– Relative impact

– Impedance match

 Conclusions

Outline
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results in differential form of jump conditions

Conservation of 
mass, momentum, 

and energy
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• requires a single, simple right-going wave

• compression is usually quasi-isentropic due to 
dissipative phenomena (plastic work, viscosity, 
thermal conduction, etc.)
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P- response can be obtained
by measuring the evolution of the ramp wave
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Pulse shaping and MHD modeling has
enabled loading of aluminum to ~250 GPa at > 1.8 mm
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Free surface aluminum 
data to ~250 GPa
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infer the isentrope of aluminum to ~250 GPa 

Maximum uncertainty 
~4.7% in stress and 

~1.7% in density
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Phase transition data have been
obtained on various impure samples of Zr

Significant differences in 

the - phase transition 
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Preliminary data on pre-heated solids
show clear temperature effect on phase transition
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2.7 GPa

2.7 GPa

H2O Phase Diagram

Transmission measurements in
compressed water showing rapid solidification

Framing 
camera 
images

Integrated 
optical 

transmission

WSU



Recent experiments on Z indicate
extremely rapid solidification possible in water
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• Technique clearly shows where voids collapse

• Demonstrates utility of ICE for investigation of subtle material 
differences

ICE has been used to examine
radiation damage in irradiated stainless steel

From David Reisman, LLNLD.B Reisman, et al., J. Appl. Phys. 93, 8952 (2003)



 Motivation for developing this platform

 Isentropic Compression Experiments (ICE)

– Isentropic compression of materials

– Phase transition measurements

– A-B material comparisons

 Hyper-velocity flyer plate experiments

– Symmetric impact

– Relative impact

– Impedance match

 Conclusions
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All originally 850 m 
thick aluminum flyer 

plates

Peak velocity 
controlled by geometry 

and charge voltage

Flyer plate velocity between ~5 to 34 km/s
achievable with 1 to 4 flyer plates per experiment
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Recent data have improved our
understanding of the  high pressure EOS of aluminum
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Hugoniot data for silica illustrates
the accuracy and precision achievable on Z 
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M.D. Knudson, et al., Phys. Rev. Lett. 87, 225501 (2001); Phys. Rev. B 69, 144209 (2004)
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Conclusions

 Isentropic compression experiments 
have been performed to ~300 GPa

– P-V response

– Phase transformation

– Material strength

– Constitutive properties

 Flyer plate experiments have been 
performed to ~34 km/s

– Ultra-high pressure Hugoniot

– Shock and release

– Shock melting

 Enabling exciting new experiments in 
material dynamics


