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The Sandia Z Accelerator

Target Chamber

11.5 MJ stored energy
~20 MA peak current
~200-300 ns rise time
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Ramp compression on Z enables access
to large region of equation of state surface
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Sandia Z accelerator

Target Cha

11.5 MJ stored energy

~22 MA peak current
~200 ns rise time
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Magnetic drive on the Z accelerator can
produce smooth ramp loading to very high pressures

shorting cap cathode » pulse of electric current through
rectangular coaxial electrodes (shorted
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Techniques have been developed on Z for
accurate EOS studies—both major advances
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Isentropic Compression Experiments (ICE)*

Magnetically produced Isentropic Compression
Experiments (ICE) to provide measurement
of continuous compression curves to ~3 Mbar
- previously unavailable at Mbar pressures

* Developed with LLNL

Magnetically launched flyer plates

Magnetically driven flyer plates for shock
Hugoniot experiments at velocities to ~ 34 km/s
- exceeds gas gun velocities by ~ 4X and
pressures by ~ 7-8X with comparable accuracy
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Outline

¢ Motivation for developing this platform

¢ Isentropic Compression Experiments (ICE)
— Isentropic compression of materials
— Phase transition measurements
— A-B material comparisons

¢ Hyper-velocity flyer plate experiments
— Symmetric impact
— Relative impact
— Impedance match

¢ Conclusions
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Wave analysis applied to an arbitrary wave
results in differential form of jump conditions

Shock Loading

Shockless Loading
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P-p response can be obtained
by measuring the evolution of the ramp wave
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* requires a single, simple right-going wave

« compression is usually quasi-isentropic due to
dissipative phenomena (plastic work, viscosity,
thermal conduction, efc.)
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Simple example - Isentropic

compression experiment in single crystal Sapphire
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Pulse shaping and MHD modeling has
enabled loading of aluminum to ~250 GPa at > 1.8 mm
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ICE technique has been used to

infer the isentrope of aluminum to ~250 GPa
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~4.7% in stress and
~1.7% in density

—/ Data

—— Z uncertainty
—=Sesame 3700
—Sesame 3719

Density (g/cc)

5.5

Sandia
National
Laboratories



1.6 -

Velocity (km/s)
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Phase transition data have been
obtained on various impure samples of Zr
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Preliminary data on pre-heated solids
show clear temperature effect on phase transition
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Transmission measurements in
compressed water showing rapid solidification
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Recent experiments on Z indicate
extremely rapid solidification possible in water
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ICE has been used to examine
radiation damage in irradiated stainless steel

800 um Irradiated Stainless Steel
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« Technique clearly shows where voids collapse
« Demonstrates utility of ICE for investigation of subtle material

D.B Reisman, et al., J. Appl. Phys. 93, 8952 (2003)
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Outline

¢ Motivation for developing this platform

¢ Isentropic Compression Experiments (ICE)
— Isentropic compression of materials
— Phase transition measurements
— A-B material comparisons

¢ Hyper-velocity flyer plate experiments
— Symmetric impact
— Relative impact
— Impedance match

¢ Conclusions
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Flyer plate velocity between ~5 to 34 km/s
achievable with 1 to 4 flyer plates per experiment

Peak velocity
controlled by geometry
and charge voltage

Velocity (km/s)

All originally 850 um
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Pressure (GPa)

Common methods of obtaining Hugoniot
measurements in plate impact experiments

Symmetric Impact
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Recent data have improved our

Symmetric impact

understanding of the high pressure EOS of aluminum
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Recent data have improved our

Symmetric impact

understanding of the high pressure EOS of aluminum
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Hugoniot data for silica illustrates
the accuracy and precision achievable on Z

Relative impact

Silica

Dissociation
of dense
fluid

11.8 Mbar

¢ Z Data

—Z Fit (>5Mbar)

A Trunin Data
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O Omega Data
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High pressure
response of
Silica is of
fundamental
importance to
geophysics

Quartz is
becoming the
standard of
choice for high
pressure laser
Hugoniot
measurements
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Impedance match

Data to 1.8 Mbar obtained on liquid D, to
help resolve discrepancy in high-pressure response
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Conclusions

¢ Isentropic compression experiments

have been performed to ~300 GPa

— P-V response

— Phase transformation
— Material strength

— Constitutive properties

¢ Flyer plate experiments have been
performed to ~34 km/s

— Ultra-high pressure Hugoniot
— Shock and release
— Shock melting

Material Internal Energy

o
—

¢ Enabling exciting new experiments in

material dynamics

Shock and Sh°°!‘
Release Hugoniot
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Material Com;)ression (p/Py)
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