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Background

• Buildings contaminated by 
chem/bio events need to have 
capability restored, quickly

• Notable Examples:
– Hart Senate Bldg., Postal 

Facilities, AMI Bldg. 
• Major Questions

– Where did the contaminant 
originate and where is it now?

– After decontamination, how do we 
have confidence that it is safe to 
reoccupy the building 



Motivation

• Characterization Goals:
– Define magnitude and extent of contamination

• Clearance Sampling Goals:
– Provide confidence that building has been restored 

for safe use
• Constraint:

– Do it quickly
• Here, examine data-driven approach to 

mapping 
– Contrary to physics-based numerical modeling 

approach



Spatial Analysis in BROOM*
• Maps (2-D & 3-D) provide 

estimates of contaminant 
levels at unsampled locations 
and provide useful patterns for 
forensic analysis.

• Variance maps show level of 
confidence of contaminant 
estimates and provide basis for 
adaptive sampling plans based 
on variance reduction.

• Wide dynamic range: log and 
indicator transformation of 
sample sets.

• Integrated mass calculations 
give estimate of quantity of 
material released.

• Ability to incorporate effects of 
walls and doors into mapping 
without use of a CFD model

*BROOM = Building Restoration Operation Optimization Model



Geostatistics: Estimation

• Basis of estimation is the simple kriging
(SK) system
– Minimum variance
– Unbiased estimates
– Linear combination of surrounding data
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Geostatistics: Spatial Correlation

• Typically measure increase in variability as a 
function of sample separation (variogram)
– The complement of spatial covariance under 

assumption of 2nd order stationarity
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Variogram Models
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Ordinary Kriging

DC ⋅= −1λ
Solve for weight vector

Unique solution to SK 
system requires that 
covariance matrix be 
positive definite
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Coronado Club Testing

• Two different visiolite tracer tests: 
“yellow” and “pink”
– Focus here on yellow results



Coronado Club Sampling Design
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Jacknife Analysis

Random split of data into two 
sets with 65 samples each.  
Each set is used for estimation 
and results are compared 
against measured values in 
other set 

Exponential variogram
models fit to each data 
set with ranges of 4.5 
and 5.5 meters 

Set 1 Set 2

Set 1 Set 2



Coronado Club Estimation
Kriging estimates of basement concentration (color scale in 
log10 space)

All Data Data Set 1 Data Set 2



Coronado Club Cross-Validation
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Cross validation results of 
estimation with log10 data.  
Largest errors in both sets 
are near room boundaries 
(walls).  Relatively 
unbiased estimates for 
both sets (mean and 
median near zero)



Improved Mapping Approach

• Variogram/covariance is built using 
differences between sample values separated 
by a straight line distance

• Building architecture often precludes straight-
line paths between samples

• Can non-Euclidean distances improve the 
mapping process?



Calculating Non-Euclidean Distances

• Grid-based approach to distance calculation

• Dikstra’s algorithm

• Also examining other approaches to distance 
calculation



Positive Definite: Geostats Spin

• Solution of linear SK system must exist (non-
singular) and be unique

• Positive definite definition:

• For the SK system:
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Positive Definite: Linear Algebra Spin

• A symmetric matrix is always positive definite if all 
eigenvalues are positive

• The determinant of a positive definite matrix is 
always positive (i.e., always non-singular)
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Positive Definite Test

• When do non-Euclidean distance measures 
produce a positive definite covariance matrix?

Classic test: City-Block distances 
around a square for different 
λ/side values.

This distance measure fails the 
positive definite test for some 
covariance functions (see Curriero
working paper, 2005)

There is no analytical approach to a priori determine whether or not a 
given non-Euclidean distance measure will produce a positive definite 
covariance matrix



Positive Definite Test

• Results for city-block distance test with 3 different 
covariance functions
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Simulation Approach
• Identify geometries encountered within 

building and simulate to identify when kriging
can be applied
– Vary height & width of passage between two rooms

How to account for all possible building and data configurations?
Simulation test must be run on the full building architecture
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Simulation Results
• Effect of covariance function is stronger than that 

of geometry
– Plots show average determinant over 50 realizations for 

each range and doorway geometry

Only Gaussian function results have negative determinants
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Positive Definite Criteria Comparison

• Both criteria show that for all combinations 
tested, only the Gaussian covariance 
function produces results that fail
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Hypothetical Example

• Hypothetical contaminant release in test 
building (ground truth)

100m

50m



Example Sample Data

• 270 samples split into two groups of 200 
(o’s) and 70 (x’s)

#

#
#

#

#

#

#
#

#
#

#

#

#

#

#

#

#

#

#

#

#

#
#

#

#

#

#
#

#

#

#
#

#

#

#

#

#

#

#

#

#

#
#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#
#

#

#

#
#

#

#

#

#
#

##

#

#

#
#

#

#

#

#
#

##

#

##

#

#

#

#

#

#
#

#
#

#

#

#

#

#

#

#

#

#

#
#

#

#

#

#
#

#

#

#

#
#

#

#

#

#

#

##

#
#

#

#

#
#

#

#

#
#

#

#
#

#

#

#

#
#

#

#

#

#

#

#

#

#

#

##

#

#

#

#

#

#

#

#

#

#

#

#
#

#

#

#

#
#

#

#

#

#
#

#

#
#

#

#

#
#

#

#

#

#
#

#

#

#
#
#

#
#

#

#

#

#
#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

!

!
!

!

!

!

!
!

!
!

!

!

!

!

!

!

!

!

!

!

!

!
!

!

!

!

!
!

!

!

!
!

!

!

!

!

!

!

!

!

!

!
!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!
!

!

!

!
!

!

!

!

!
!

!!

!

!

!
!

!

!

!

!
!

!!

!

!!

!

!

!

!

!

!
!

!
!

!

!

!

!

!

!

!

!

!

!
!

!

!

!

!
!

!

!

!

!
!

!

!

!

!

!

!!

!
!

!

!

!
!

!

!

!
!

!

!
!

!

!

!

!
!

!

!

!

!

!

!

!

!

!

!!

!

!

!

!

!

!

!

!

!

!

!

!
!

!

!

!

!
!

!

!

!

!
!

!

!
!

!

!

!
!

!

!

!

!
!

!

!

!
!
!

!
!

!

!

!

!
!

!

!

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q



Spatial Variation

• 70 Sample Data

Effect of rooms lengthens distances so that maximum variance occurs 
from 60-100 meters vs 55-75 meters for Euclidean case, initial sill 
occurs at 20 meters in both cases –characteristic room size, but is 
more pronounced for non-Euclidean due to better separation of 
disparate values



Variogram Models

• Variograms fit to 70 sample data, 
Exponential models



Kriging Estimates

• Built with 70 samples

Ground Truth

Euclidean Distances Shortest-Path  Distances



Estimation Comparison

• Comparison is done on raw concentration 
data, (error = estimate – true value)

Euclidean Distances Shortest-Path  Distances

Error Statistics:

Mean: -25.0

Std. Dev.: 134.3

Median: 0.98

Error Statistics:

Mean: -19.9

Std. Dev.: 128.8

Median: 0.53



Summary

• Spatial statistics tools provide efficient 
and accurate means of mapping 
magnitude and extent of contamination

• Accurate representation of building 
geometry requires distance modification
– Issue of what distance measures create 

positive definite kriging solutions is difficult
• Future work on stronger ties between 

data-driven models and physics-based 
models


