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Abstract—The next generation of capability-class massively parallel pro-
cessing (MPP) systems is expected to have tens-to-hundreds of thousands of
processors, with individual applications consuming large fractions of the
system. In such an environment, it is critical to have fault-tolerance mecha-
nisms that allow continuous computing with minimal performance impact
on the application. Unfortunately, the current “in-practice” approaches to
fault tolerance do neither. This paper analyzes the performance impact of
exiting approaches on next-generation systems and describes a new project
at Sandia National Laboratories to investigate the use of “lightweight” stor-
age architectures and overlay networks for fault tolerance. The combined
use of these technologies has the potential to significantly reduce the I/O
impact of checkpoint operations on application performance and allow ap-
plications to recover from component failures without a complete restart
and with minimal use of compute node resources.

I. INTRODUCTION

Today’s high-end MPP machines have tens of thousands of
nodes. For example, “Red Storm”, the Cray XT3 machine at
Sandia National Laboratories [2] has over ten thousand nodes,
and the IBM BlueGene/L [17] installed at Lawrence Liver-
more National Laboratory, has over sixty-four thousand com-
pute nodes. Both machines are expected to be used for large
scale applications. For example, 80% of the node-hours of Red
Storm are allocated to applications that use a minimum of 40%
of the nodes.

The massive scale of current and next-generation MPP ma-
chines and their supported applications presents significant chal-
lenges related to fault tolerance. The primary problem is that the
current “in-practice” approaches do not match well with the ex-
pected demands or usage models for these sytems. For example,
the most commonly used method to defend against application
failure is a “checkpoint to disk”. In this approach, the appli-
cation (or system) periodically outputs enough data to restart
the application after a failure. As applications increase in size,
the checkpoint-to-disk approach becomes increasingly expen-
sive for several reasons. First, scientific applications (Sandia
applications in particular) often use a large fraction of the avail-
able memory on a compute node. Thus, the amount of data
for a checkpoint increases linearly with the number of compute
nodes. Second, although the checkpoint data increases with the
number of nodes, the rate at which the data can be output re-
mains fixed. A burst of I/O for a checkpoint can overwhelm
the I/O system causing substantial delays. Finally, most appli-
cations cannot survive a node failure, so the probability of fail-
ure increases with the number of nodes, causing the application
to increase the frequency of checkpoints. Even on today’s sys-
tems, the I/O generated from checkpoints consumes nearly 80%
of the total I/O usage [10]. The combination of the expense of
checkpoint-to-disk approach and the trends to develop systems
of ever-increasing size, may force the community to seriously
evaluate alternative approaches.

Checkpoint-to-memory [7], [12], [16] is one such alterna-
tive to checkpoint to disk. The goal is to reduce the check-
point overhead by having compute nodes manage the state of
other compute nodes in their local memory. Since network
and memory bandwidth is typically much faster than storage,
this approach significantly reduces the time to perform a check-
point. One problem with in-memory approaches is the parity
computation [13]. If an application processor computes the
parity, the bandwidth advantage of network/memory over stor-
age decreases significantly [11]. However, the biggest problem
with in-memory approaches and large-scale scientific applica-
tions are the memory resources required by the compute nodes.
Since many large-scale scientific applications are already re-
source constrained on the compute node, in-memory approaches
are seen as impractical for large systems.

A number of other approaches exist in research [3], [5], [6],
but have never been accepted by the scientific community. The
best explanation for the lack of interest among developers of
large-scale applications is that the scale of the systems have not
been large enough to justify a change. As we show in Section V,
checkpoints only become a problem for the I/O system when
systems reach scales at and beyond the largest existing MPP sys-
tems. Because of this, application-directed checkpoint to disk
still dominates as the most widely used approach in HPC. How-
ever, if the technology trends continue along the same path, we
will soon have systems with hundreds of thousands of nodes.
If reliability of hardware and systems software do not improve
substantially, checkpoint-to-disk will soon become impractical
for large applications.

In this paper, we approximate, through analytic models, the
performance impact of the checkpoint-to-disk approach on cur-
rent and next-generation systems. We then describe a re-
cently funded project to investigate lightweight storage archi-
tectures [9] and overlay networks [8] for fault tolerance. Our
project has three phases: develop an I/O efficient checkpoint
library that uses lightweight storage to dump checkpoint data
direct to storage devices, integrate overlay networks to improve
I/O performance by bufferring state from bursty checkpoint op-
erations, and investigate algorithms that use overlay networks to
manage and restore state on failed compute nodes.

II. MODELING CHECKPOINTS

To get some perspective on the performance impact of the
checkpoint-to-disk approach, we constructed a simple analytic
model of the checkpoint operation and applied it to current and
next-generation systems at Sandia. Our model uses the follow-
ing parameters:
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τopt = Optimal checkpoint interval
n = Number of compute nodes used for the application
d = Amount of data written by each node
δ = The time to output a checkpoint/restart file

M = Mean time to interrupt (MTTI) per node
βs = Aggregate storage system throughput
βn = Aggregate bi-section network bandwidth
βL = One-way network bandwidth per link
αc = Start-up cost of a checkpoint operation

βchkpt = Perceived bandwidth of a checkpoint operation

We calculate the optimal checkpoint interval using Daly’s
equation for τopt [4]

τopt =


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Daly’s equation is not perfect. For example it assumes an ex-
ponential distribution for the time between failures, which may
not match emperical evidence [15]. Despite this flaw, the Daly
equation is becoming popular among computational scientists
as a good approximation to the optimal checkpoint interval. For
that reason alone, it is useful in this analysis.

We use an optimistic equation to calculate δ, the time required
to output the checkpoint/restart file. In earlier papers, authors
assume a fixed amount of time for the checkpoint operation. We
use a more scientific approach. For our representative architec-
tures (see Section ??), a checkpoint operation is either bound by
the aggragate network bandwidth, the bi-section network band-
width, or the storage system. The following equation for the
checkpiont bandwidth, βchkpt, accounts for the three different
possibilities,

βchkpt = min(nβL, βn, βs).

The equation for the checkpoint overhead becomes

δ = αc +
nd

βchkpt
,

where αc is the start-up cost (e.g., creating files) associated with
a checkpoint operation.

The start-up cost of a checkpoint operation depends heavily
on the algorithm used for the checkpoint. In POSIX-compliant
parallel file systems, consistency semantics and device conflicts
contribute to poor performance when writing to a shared file. To
compensate, many Sandia applications create a file-per-process
for checkpoint/restart files. The second approach improves write
performance, but creates a significant overhead associated with
sending thousands of simultaneous create operations through a
centralized metadata server. See Figure 2 for measured results
of the create and write phase of a checkpoint operation.

The equation for δ assumes that each processor writes the
same amount of state to the checkpoint/restart file(s) and that
the parallel file system is perfectly scalable. These are overly
optimistic assumptions, but they still provide a resonable lower
bound on the performance impact of the checkpoint operation.
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Fig. 1. The LWFS core architecture.

III. IMPROVING CHECKPOINTS WITH LIGHTWEIGHT
STORAGE

Lightweight storage architectures [9] allow secure, direct ac-
cess to storage, bypassing features of traditional file systems that
impose performance bottlenecks. Figure 1 illustrates the core
architecture of a lightweight file system (LWFS). The LWFS
core only includes mechanisms for security, efficient data trans-
port, and direct access to storage. It does not provide direct
support for traditional file system services like naming, consis-
tency/conflict management, or organizational information that
describes data distribution. If the application requires these ser-
vices, the user includes the necessary library services at link
time.

The LWFS architecture is well suited for application check-
points. As Figure 2 illustrates, the imposed consistency seman-
tics of traditional file systems hinders performance to shared
files, but the alternative (file per process) generates an unnec-
essarily large number of operations to a centralized metadata
server. With LWFS, it is possible to design a library such that
each client process allocates its own object on a storage server
for checkpoint data. After all clients dump their state, the appli-
cation selects one process to construct the necessary metadata to
represent the distributed dataset and associate it with a name in
an external naming service. This approach avoids the expensive
overhead of a file-per-process case, while still achieving near
physical bandwidths to the storage system. With respect to the
model for a checkpoint operation, this only effects the start-up
cost. Based on the measured results from Figure 2-c, we set
αc = n/60, 000 for LWFS, a conservative guess to the cost of
allocating objects on a large system.

IV. IMPROVING CHECKPOINTS WITH OVERLAY NETWORKS

The LWFS provides a direct-to-storage option for check-
points that can modestly improve I/O performance for a check-
point operation. Another way to improve I/O performance is to
buffer data on intermediate nodes in an “overlay networks” [8]
between the client and the storage system. In this way, the appli-
cation can transfer much of the application state off the node at
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Fig. 2. The left figure (a) shows write performance of nto1 (shared file) and nton (file per process). The right figures (b and c) show throughput (ops/sec) of
creating files using Lustre and creating objects (in parallel) using LWFS. All experiments were performed on Sandia’s Darkstar cluster.

network bandwidths, rather than storage bandwidths. To model
this impact, we modify the equation for checkpoint time to

δ = αc +

{
dn
βN

dn ≤ k
k

βN
+ (dn−k)

βs
dn > k

,

where k is the amount of data transferred over the network
before the tranfer becomes bound by the storage system and
βN = min(nβL, βn) is the minimum of the aggregate link
bandwidth and the bi-section bandwidth of the network. The
variable k is the sum of µ, the combined memory in the overlay
network, and the amount of data transferred to storage while µ
was being transferred to the overlay networks. Thus,

k = µ + µ
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)
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)
.

The left half of the equation for δ represents the time spent
bound by the network. The right half (for dn > k) represents
the time spent bound by the storage system.

Note that systems like BlueGene and RedStorm already pass
data through “I/O nodes” that act as intermediate-nodes. On
BG/L, there are 1024 nodes that act as file-system client that
simply forward calls to the file system. On RedStorm there are
256 nodes (128 each side), each attached to storage devices. In
both cases, these nodes run Linux. One goal of this project is to
investigate how to use these nodes for more application-specific
purposes (buffers for example), rather than just interfaces to the
I/O system. We also want to explore using application-dedicated
nodes for this purpose, and eventually investigate opportunities
to use these nodes to manage state in a way that allows recovery
from individual node failure without restarting the entire appli-
cation.

It is also important to note that overlay nodes do not impact
the checkpoint interval. If an overlay node dies, it does not
impact the application beyond reducing the number of buffers
available to the application. In addition, this approach does

TABLE I
PARAMETER VALUES FOR MPPS

Parameter Red Storm BlueGene/L Petaflop
nmax 10, 368× 2 65, 536× 2 50, 000
dmax 2 GB 0.5 GB 5 GB
M 5 yr 5 yr 5 yr
βs 50 GB/s 45 GB/s 500 GB/s
βn 1.15 TB/s 360 GB/s 30 TB/s
βL 3 GB/s 1.4 GB/s 40 GB/s

not require additional memory resources on the compute node,
a limitation that makes checkpoint-to-memory, asynchronous
checkpoints, and incremental checkpoint approaches impracti-
cal for large systems [11].

V. ANALYSIS

We estimated checkpoint overheads for the standard
checkpoint-to-disk approach for several different MPP architec-
tures. Our model represents an application that checkpoints half
of its available memory at intervals that match the Daly’s opti-
mal checkpoint interval. Each plot shows the performance of the
same application running on Sandia’s RedStorm, LLNL’s BG/L,
and a theoretical Petaflop machine, all scaled up to 128K nodes.

Table I shows values for the model parameters for the Red
Storm system at Sandia, the BlueGene/L system at Lawrence
Livermore, and a theoretical Petaflop system.

A. LLNL BlueGene Parameters

A recent newsletter from the BlueGene Consortium details
the projected performance of the I/O system on LLNL’s Blue-
Gene system [14]. The BlueGene/L (BGL) at LLNL consists of
64K compute nodes and 1K I/O nodes. Each I/O node is a Luster
client that connects to an 896 Terabyte Luster Cluster. The Lus-
ter cluster consists of 224 “Object Storage Servers” (OSS), each
attached to Data Direct Network 8500 RAID controller through
a 2Gb/s link. The BGL at LLNL uses a separate network for
storage and computation. The storage network consists of 1024
1Gb/s interfaces and can provide a potential I/O bandwidth of
128 GB/s to the storage system. However, the Lustre system
was designed to provide 45 GB/s theoretical bandwidth between
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BGL and the storage cluster. They hope to obtain 80% of theo-
retical, but to-date, they have only been able to achieve around
22 GB/s using LLNL’s IOR benchmark [14].

B. Sandia Red Storm Parameters

There are no published reports on the performance of Lustre
on Sandia’s Red Storm System. We gathered the parameters for
this analysis through [1], a paper that describes the architecture
and design philosophy behind the Red Storm at Sandia. San-
dia’s Red Storm consists of 10,368 compute nodes and 256 I/O
nodes. The I/O nodes are split evenly between two files systems
(one for classified and one for unclassified) that are each sup-
posed to provide 50 GB/s throughput to the storage devices. The
network consists of a 3-D mesh with a per-link (bi-directional)
bandwidth of 6 GB/s and a minimum bi-section bandwidth of
2.3 TB/s. For this analysis, we are concerned about one-way
traffic, so we cut the per-link and bi-section bandwidth in half.

C. Petaflop System

Although no true Petaflop capability class systems exist,
Tomkins presents a “conservative” description of the system re-
quirements for this next class of system in [18]. The architec-
ture of the Red Storm follow-on remains basically the same as
its predecessor with improvements in the network, storage sys-
tem, processors, and memory capacity. A Petaflop Red Storm
system will consist of over 50K compute nodes (applications
will have to execute on 25K or more nodes with over 50% ef-
ficiency) and have an I/O throughput to the file system of 500
GB/s. Each compute node will need at least 5 GB of memory
and the network will need a per-link bandwidth of 80 GB/s with
a bi-section bandwidth of 61 TB/s.

D. MTTI of large scale systems

The specifications of both the Red Storm and the proposed
Petaflop system require a MTTI of over 50 hours, including soft-
ware and hardware failures. While this is lofty goal, no system
of any scale has been able to achieve such reliability. A recent
paper from Schroeder et al.[15] documents a variety of different
types of interrupts registered for MPP systems at Los Alamos
National Laboratories. They found that even the most reliable
systems achieved MTTI of no longer than 5 years/device when
you include software interrupts caused by either the operating
system or application libraries.

E. Results

Figure 3 shows the optimal checkpoint interval as a function
of the number of compute nodes. Since the probability of ap-
plication failure is directly proportional to the number of com-
pute nodes used, the application has to increase the frequency
of checkpoints to account for the increased probability of fail-
ure. There is a kink in the checkpoint period plots when the
checkpoint performance goes from being bound by the network
to being bound by the storage system.

Figures 4 shows the throughput of the checkpoint operation.
For any job larger than 32 nodes, a checkpoint operation is lim-
ited to the storage system performance. For small jobs, the stor-
age system can keep up because the aggregate network links of
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Fig. 3. Optimal checkpoint period as a function of the number of compute
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Fig. 4. Throughput of the checkpoint write operation.

the individual compute nodes does not exceed the storage sys-
tems ability to consume data. These experiments do not consider
contention due to other applications.

Figure 5 shows the overhead of all checkpoints as a percent-
age of the overall execution time of the application. This is re-
ally what matters to the application scientist because it provides
an upper bound on the scalability of the application. According
to our model, a 64K node application can achieve no better than
70% efficiency even on the Petaflop system. Our model assumes
extremely reliable hardware and software, a perfectly scalable
file system, and perfectly scalable application (i.e., no com-
munication besides checkpoint I/O). The dramatic increase in
checkpoint overhead as the system size increases demonstrates
the need to investigate alternative approaches.

Our analysis also provides substantial evidence to explain
why checkpoint to disk has been an acceptable solution so
far. On capacity systems, with small job sizes, system-directed
checkpoints, where the system checkpoints the entire memory
footprint are viable. For applications that scale to more than 4K
nodes, application-directed checkpoint to disk solutions are suf-
ficient because the application can be choose the data that needs
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to be dumped, opting to re-calculate portions of the lost memory.
As applications grow beyond 32K in size, application-directed
checkpoints begin to dominate the execution time, severely lim-
iting the scalability of the application.

We approximate the potential benefit of LWFS and overlay
networks by plotting results from the models derived in Sec-
tions II, III, and IV on the Petaflop system. The results for Red-
Storm and BG/L are similar, so we decided it was unnecessary
to present those results. In these plots, we assume there are 1024
intermediate nodes, each with 10 times the memory of a normal
compute node.

Figure 6 shows Daly’s optimal checkpoint interval for the nor-
mal PFS, LWFS, and LWFS with an overlay network. An inter-
esting side-effect of Daly’s equation is that a reduction in the
time to perform a checkpoint also reduces the checkpoint inter-
val. This is somewhat counter-intuitive and is not reflected in
other studies that assume a fixed amount of time for a check-
point. The effective throughput, illustrated in Figure 7, behaves
as we expected. The additional memory provided by the inter-
mediate nodes causes the throughput to be bounded by the ag-
gregate network, then the bi-section bandwidth, and finally the
storage bandwidth when the size of a checkpoint exhausts the
memory on the intermediate nodes. This has a dramatic effect
on the percent of execution time spent for checkpointing shown
in Figure 8. The overhead of the overlay network is consistently
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10% less than writing using a traditional PFS and 5% less than
writing direct to storage through the LWFS.

VI. EXTENSIONS FOR CONTINUOUS COMPUTING

Although our analytic models provide some evidence that we
can improve I/O performance for checkpoint operations, it is
clear that I/O improvements alone are not enough. Another im-
portant goal for this project is to investigate and develop algo-
rithms that use the intermediate nodes and lightweight storage
for continuous computing, even when application nodes fail.
This work requires research to develop mechanisms that allocate
and inject a new compute node into an existing application (al-
lowing the new node to assume the identity of the failed node).
We also need to develop algorithms to efficiently bring all of the
application nodes to a consistent state after replacing the failed
node.

Partial application recovery not only involves the integration
of LWFS with overlay networks, it also requires integration and
cooperation with other systems services that do not yet exist.
For example, if a compute node dies, we need to allocate a new
compute node, install the previous state (either stored in memory
or disk) onto a new node, possibly roll-back all other nodes or
update the new node to the current state, then we need to have
the new node resume the identity of the failed node. None of
these services exist in the systems software for MPP systems.
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We do not yet have clear ideas about how to accomplish this
goal. This is, after all, a research project. As we continue to in-
vestigate the applicability of previous academic solutions to our
environment, we hope to develop insight and expertise that will
help solve this problem. We will also rely heavily on collabora-
tive relationships with fault-tolerance and algorithms experts to
achive this goal.

VII. SUMMARY

Our analysis shows that our proposed solution to use LWFS
with overlay networks has potential to significantly improve per-
formance, scalability, and reliability of mission-critical DOE
scientific applications. Not only will this approach reduce the
I/O-induced overhead of checkpointing for applications, but, if
successful, it will also allow applications to survive independent
node failures, eliminating the implicit assumption that probabil-
ity of application failure is directly proportional to the number
of nodes used by the application. Such an advance will have a
tremendous impact on the HPC community because it signifi-
cantly reduces the burden of fault tolerance on the application,
network, and storage system.
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