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XFEM Integration - Motivation

Modified Element Quadrature
• Basis and trial functions are now discontinuous
• For XFEM-Level set methods, functions become 

generalized functions of the level set variable
– Heaviside and Dirac delta functions

Moderately Invasive Feature in XFEM Codes
• Quadrature rule depends on level set variable
• Coupling issues, time derivative evaluation

Several Solutions
• Diffuse integration

– Smoothed generalized functions
• Subelement integration

– Subdivide elements into conformal subelements
– Implementation issues

• Develop new integration rules for generalized functions
– Derive new integration rules that account for generalized 

functions



XFEM Subelement Integration - Issues

Basics
• Decompose non-conformal element into conformal 

subelements
• Perform standard Gauss integration over 

subelements
Important Implementation Details

• What is definition of subelements?
– Option 1: Coordinates of subelements are 

parametric coordinates for owning element
– Option 2: Coordinates of subelements are real coordinates

• Consequences
– Option 1

– Gauss point locations in parent element are directly known
– Pathological errors for low order subelements

– Option 2
– Gauss point locations are unknown and must be solved for 

using nonlinear iteration
– Optimal accuracy obtained for low order subelements



Integration Rules for Elements with 
Generalized Functions - Motivation

Philosophical
• Integration rules designed to exactly integrate finite element functions

– Enriched functions need modified quadrature rules
Pragmatic When Compared with Alternatives

• Diffuse methods
– Simple but inaccurate, inconsistent

• Subelement methods 
– Must be carefully implemented
– Can be expensive when having to solve nonlinear system for parametric 

coordinates
– Must specifically account for degenerate cases

Allows Advanced Capabilities
• Provides analytical Jacobian information

– Required by full Newton codes
– Make interfacial optimization possible

Possible Disadvantages
• Possibly increases number of quadrature points for same element
• Difficult, if not impossible to derive for higher order elements



Generalized Quadrature - Method
Approach

• Develop quadrature rules capable of exactly integrating finite element 
functions including a generalized function of the level set variable

– Piecewise polynomial times Heaviside or Dirac delta function
• Form:

• Mapping:
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• Form linear system for weights

– Require all monomials in a quadratic function be exactly integrated

– Select quadrature point locations
– Valid quadrature rules yield nonsingular matrix,
– Normally quadrature point locations considered unknowns select so 

that integration achieves desired order with minimal number of points
– Arbitrary interface location makes fortuitous point selection impossible
– Simplest valid quadrature rules involve points on the nodes and edges

Generalized Quadrature - Method
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Generalized Quadrature - Method
• Form linear system for weights, cont’d

– Analytically evaluate integrals as function of nodal level set values

• Solve for weights as functions of nodal level set values

Results
• Weights are continuous functions of nodal level set values

– Allows analytical Jacobian formation
– All degenerate cases handled without special consideration

• Weights are not positive definite
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3D Tetrahedra
• Mapping:

• Analytically evaluate integrals as function of nodal level set values
– Case 1: 1 node on opposite side from other 3
– Case 2: 2 nodes on opposite side from other 2

Higher Order Elements (Including quads/hexes)
• Analytically evaluate integrals as function of nodal level set values

– Integrals difficult, if not impossible, to evaluate in general

Generalized Quadrature – Other 
Elements

1r  

3r  

5r  

2r  

4r  
10r  

6r  

8r  

7r  

9r  

r 
s t 



Generalized Quadrature – Test 
Problem

Conduction in Annulus and Spherical Shell
• Poisson equation, k = 1, q = 1

• Boundary conditions
– Insulated inner surface
– Robin-type output surface, h = 10

Discretization
• Linear triangle and tetrahedral elements, 

linear temperature, linear level set function
• Randomly perturbed nodes of structured 

mesh
– Rigorous test for deformed meshes

Validation
• Compare against exact solutions
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Generalized Quadrature – 2D Test

Results
• Visualization - Elements that use 

ghost nodes and exterior nodes are 
removed

• Sharp discontinuities captured along 
inner and outer surfaces

• 2nd order accuracy demonstrated 
over multiple decades
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Generalized Quadrature – 3D Test

Results
• 2nd order accuracy
• Successfully integrates 

discontinuous function using 
fixed gauss point quadrature 
rule

• Successfully handles 
degenerate cases without 
special consideration

 

Radius

0.00 0.15 0.30 0.45 0.60

T
em

pe
ra

tu
re

-0.02

-0.01

0.00

0.01

0.02

0.03

0.04

0.05

0.06

2-D interior nodes
2-D ghost nodes
2-D analytical solution
3-D interior nodes
3-D ghost nodes
3-D analytical solution

Average Element Size

0.01 0.1

E
rr

or

0.0001

0.001

0.01

0.1

Maximum Error
L1 Error
Line of Slope 2



Summary and Conclusions

Care Must be Taken When Using Subelement Integration
• Definition of subelements – Parametric or real coordinates?
• Performance issues – Quadrature point location inversion
• Low order subelements can lead to suboptimal convergence

Analytic Integration with Generalized Functions
• Can be used to formulate fixed point integration rules with weights that 

depend continuously on nodal level set values
• Provides analytic Jacobian information
• Handles degenerate cases smoothly without special consideration

Hybrids are Possible
• Subelement methods could be used to form fixed point integration rules
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Implementation – Applying XFEM to 
Laser Welding

Problem Discretization
• Fixed unstructured mesh
• Solid-liquid interface described by enthalpy method

– Specific heat is temperature dependent to account for latent heat
– Viscosity sharp function of temperature around between solidus and liquidus

• Liquid-vapor interface described by level set method
Variable Enrichment

• Variables allowed to be discontinuous across liquid-vapor interface
Subelement Integration

• Required to integrate discontinuous quantities resulting from discontinuous variables and trial 
functions

Interfacial conditions
• XFEM approach produces natural mechanism for applying interfacial fluxes
• Several options discussed in literature for handling surface tension

Coupling
• Implemented in code designed for fully coupled, Newton’s method
• Choice of surface tension application made this impossible

– Final algorithm involves loosely coupling the level set evolution to the mass, momentum, and energy 
evolution



Implementation – Interfacial 
Conditions

Complex Interfacial Conditions
• Laser heat flux

– Gaussian or flat radial distribution
– Highly dependent on surface normal
– Weakly applied to energy equation along interface

• Radiative heat flux
– Highly dependent on surface temperature
– Weakly applied to energy equation along interface

• Latent heat due to vaporization
– Vaporization rate assumed to be function of surface superheat
– Highly dependent on surface temperature
– Weakly applied to energy equation along interface

• Vapor recoil pressure
– Vaporization rate assumed to be function of surface superheat
– Highly dependent on surface temperature
– Weakly applied to momentum equation along interface

• Surface tension
– Weakly applied to momentum equation along interface



Results – XFEM Simulations of Laser 
Welding

Full physics simulations in 
realistic geometries

• Previous ALE capability 
limited to non-joining 
simulations of welding

• XFEM capturing important 
surface discontinuities

• XFEM framework amenable 
to varied interface conditions

• Not just prettier pictures, 
revealing new insight into 
process and failure 
mechanisms



Implementation – Applying eXtended Finite 
Elements (XFEM) to Foam Decomposition

Problem Discretization
• Fixed unstructured mesh
• Solid-liquid interface described by enthalpy method

– Specific heat is temperature dependent to account for 
latent heat

– Viscosity sharp function of temperature around between 
solidus and liquidus

• Liquid-vapor interface described by level set method
– Level set evolution described by evolution equation
– 2 components of interfacial motion: flow and reaction

Variable Enrichment
• Variables allowed to be discontinuous across liquid-

vapor interface
Subelement Integration

• Required to integrate discontinuous quantities resulting 
from discontinuous variables and trial functions

Interfacial Conditions
• XFEM approach produces natural mechanism for 

applying interfacial fluxes including surface reaction and 
surface tension

Q

foam

gas



Results – XFEM Simulations

• XFEM capturing important surface discontinuities, fluxes
• As expected, viscosity of fluid phase plays critical role in 

dynamics
– Experimental effort to determine viscosity of decomposing foam


