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Modified Element Quadrature
e Basis and trial functions are now discontinuous
e For XFEM-Level set methods, functions become
generalized functions of the level set variable
— Heaviside and Dirac delta functions
Moderately Invasive Feature in XFEM Codes
e Quadrature rule depends on level set variable
e Coupling issues, time derivative evaluation
Several Solutions
e Diffuse integration
— Smoothed generalized functions
e Subelement integration

— Subdivide elements into conformal subelements
— Implementation issues

e Develop new integration rules for generalized functions

— Derive new integration rules that account for generalized
functions

XFEM Integration - Motivation
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XFEM Subelement Integration - Issues

Basics

e Decompose non-conformal element into conformal
subelements

e Perform standard Gauss integration over
subelements

Important Implementation Details

e What is definition of subelements?
— Option 1: Coordinates of subelements are
parametric coordinates for owning element
— Option 2: Coordinates of subelements are real coordinates
e (Consequences
— Option 1
— Gauss point locations in parent element are directly known
— Pathological errors for low order subelements
— Option 2
— Gauss point locations are unknown and must be solved for
using nonlinear iteration
— Optimal accuracy obtained for low order subelements @
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- Integration Rules for Elements with
Generalized Functions - Motivation

Philosophical
e |Integration rules designed to exactly integrate finite element functions
— Enriched functions need modified quadrature rules
Pragmatic When Compared with Alternatives
e Diffuse methods
— Simple but inaccurate, inconsistent
e Subelement methods

— Must be carefully implemented

— Can be expensive when having to solve nonlinear system for parametric
coordinates

— Must specifically account for degenerate cases
Allows Advanced Capabilities
e Provides analytical Jacobian information
— Required by full Newton codes
— Make interfacial optimization possible
Possible Disadvantages
e Possibly increases number of quadrature points for same element
e Difficult, if not impossible to derive for higher order elements
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Generalized Quadrature - Method

Approach

» Develop quadrature rules capable of exactly integrating finite element
functions including a generalized function of the level set variable
— Piecewise polynomial times Heaviside or Dirac delta function

e Form:
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Generalized Quadrature - Method

e Form linear system for weightGS
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— Select quadrature point locations
— Valid quadrature rules yield nonsingular matrix,

— Normally quadrature point locations considered unknowns select so
that integration achieves desired order with minimal number of points

— Arbitrary interface location makes fortuitous point selection impossible
— Simplest valid quadrature rules involve points on the nodes and edges
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. | Generalized Quadrature - Method

e Form linear system for weights, cont’'d
— Analytically evaluate integrals as function of nodal level set values
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e Solve for weights as functions of nodal level set values
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Results
e Weights are continuous functions of nodal level set values
— Allows analytical Jacobian formation
— All degenerate cases handled without special consideration @ Sandia
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Generalized Quadrature — Other
Elements

3D Tetrahedra g
e Mapping:

e Analytically evaluate inffegrals as function of nodal level set values
— Case 1: 1 node on opposite side from other 3
— Case 2: 2 nodes on opposite side from other 2
Higher Order Elements (Including quads/hexes)
e Analytically evaluate integrals as function of nodal level set values

— Integrals difficult, if not impossible, to evaluate in general
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Generalized Quadrature — Test
Problem

Conduction in Annulus and Spherical Shell
e Poisson equation, k=1,g=1
V-kVT +q=0

e Boundary conditions
— Insulated inner surface
— Robin-type output surface, =10

—n,,, -kVT =h(T -0)
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Discretization

e Linear triangle and tetrahedral elements,
linear temperature, linear level set function

e Randomly perturbed nodes of structured
mesh

— Rigorous test for deformed meshes
ValidatiOn 0 0.1 0.z 0.3 04 05 0.6 0.7 0.8 0.9 1
e Compare against exact solutions
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Generalized Quadrature — 2D Test

Results
e Visualization - Elements that use
ghost nodes and exterior nodes are
removed

e Sharp discontinuities captured along
inner and outer surfaces

e 2" order accuracy demonstrated
over multiple decades w
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Generalized Quadrature — 3D Test
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Summary and Conclusions

Care Must be Taken When Using Subelement Integration
e Definition of subelements — Parametric or real coordinates?
e Performance issues — Quadrature point location inversion
e Low order subelements can lead to suboptimal convergence
Analytic Integration with Generalized Functions

e (Can be used to formulate fixed point integration rules with weights that
depend continuously on nodal level set values

e Provides analytic Jacobian information
e Handles degenerate cases smoothly without special consideration

Hybrids are Possible
e Subelement methods could be used to form fixed point integration rules
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Implementation — Applying XFEM to
Laser Welding

Problem Discretization
e Fixed unstructured mesh
e Solid-liquid interface described by enthalpy method

—  Specific heat is temperature dependent to account for latent heat
—  Viscosity sharp function of temperature around between solidus and liquidus

e Liquid-vapor interface described by level set method
Variable Enrichment

e Variables allowed to be discontinuous across liquid-vapor interface
Subelement Integration

o ]Bequired to integrate discontinuous quantities resulting from discontinuous variables and trial
unctions

Interfacial conditions
e XFEM approach produces natural mechanism for applying interfacial fluxes
e Several options discussed in literature for handling surface tension
Coupling
e Implemented in code designed for fully coupled, Newton’s method

e Choice of surface tension application made this impossible

—  Final algorithm involves loosely coupling the level set evolution to the mass, momentum, and energy
evolution
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Complex Interfacial Conditions

Implementation — Interfacial
Conditions
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Laser heat flux
— Gaussian or flat radial distribution
— Highly dependent on surface normal
— Weakly applied to energy equation along interface
Radiative heat flux
— Highly dependent on surface temperature
— Weakly applied to energy equation along interface
Latent heat due to vaporization
— Vaporization rate assumed to be function of surface superheat
— Highly dependent on surface temperature
— Weakly applied to energy equation along interface
Vapor recoil pressure
— Vaporization rate assumed to be function of surface superheat
— Highly dependent on surface temperature
— Weakly applied to momentum equation along interface

Surface tension
— Weakly applied to momentum equation along interface
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Full physics simulations in
realistic geometries

e Previous ALE capability
limited to non-joining
simulations of welding

e XFEM capturing important
surface discontinuities

e XFEM framework amenable
to varied interface conditions

e Not just prettier pictures,
revealing new insight into
process and failure
mechanisms

Results — XFEM Simulations of Laser
Welding
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Problem Discretization
e Fixed unstructured mesh

e Solid-liquid interface described by enthalpy method

— Specific heat is temperature dependent to account for
latent heat

— Viscosity sharp function of temperature around between
solidus and liquidus

e Liquid-vapor interface described by level set method
— Level set evolution described by evolution equation
— 2 components of interfacial motion: flow and reaction
Variable Enrichment

e Variables allowed to be discontinuous across liquid-
vapor interface

Subelement Integration

e Required to integrate discontinuous quantities resulting
from discontinuous variables and trial functions

Interfacial Conditions

e XFEM approach produces natural mechanism for
applying interfacial fluxes including surface reaction and
surface tension

' Implementation — Applying eXtended Finite
Elements (XFEM) to Foam Decomposition
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e XFEM capturing important surface discontinuities, fluxes
e As expected, viscosity of fluid phase plays critical role in

dynamics Sandia
— Experimental effort to determine viscosity of decomposing foam @ lNaagg’rg?['mes




