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Abstract: System identification, or modelling from data, is used to develop
dynamic models for control design, performance prediction, and system analysis.
Some system identification algorithms are sensitive to the relative scaling of
different input and output channels. Ideally, the identified model would be
insensitive to arbitrary scaling of the input and output channels. For system
identification algorithms that are scale-sensitive, re-scaling the input and output
data can alleviate poor identification results due to initial inappropriate relative
scaling of the data. In this paper we describe several methods for choosing
weighting matrices for system identification with application to a laboratory
experiment. Copyright c©2006 IFAC
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1 Introduction

Models produced by some system identification al-
gorithms depend on the scale of the data used to
create them. If one sensor measures displacement in

ing. These model tuning techniques are iterative
and require a good initial condition to guarantee
convergence to a reasonable solution. Thus the sys-
tem identification process generally consists of two
steps, a synthesis step followed by a tuning step.
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nanometers and another sensor measures displace-

ment in parsecs, the identified model may differ from
one identified where both sensors measure displace-
ment in the same units. Not all system identification
methods are scale-dependent. For example, max-
imum likelihood methods and the method of [10]
are scale-insensitive. Since no synthesis methods ex-
ist for maximum likelihood identification and other
non-convex optimization approaches, the modeler
generally must synthesize a model using another
method to be used as the initial condition for fur-
ther optimization. Time domain scale-independent
methods such as [10] may not be suitable for the
identification of large precision space structures [9].

We categorize system identification algorithms into
two types. The first category contains algorithms
for model synthesis. The second category contains
algorithms for model tuning. Model synthesis tech-
niques are characterized by using only data to create
a model. No initial condition or other information
is required for the algorithm to estimate a model.

Once a model has been synthesized using a method
such as [3, 10, 11, 13], an optimization problem can
be developed based on the modeler’s goals and con-
straints to solve for the model. This is model tun-

∗This work was supported in part by the AFOSR under
laboratory research initiative 00VS17COR.
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ally, the goal of input/ouput data scaling is to
the disparity in the range of signal levels so

he model synthesis identification step consid-
input-output channel pairs equally [12]. In
ork we describe several methods for select-
put-output weighting matrices for model syn-

Input/output scaling may also be used in
odel tuning step through a judicious choice of
parameters (e.g., see [4]); however those types
hods do not apply to the model synthesis step
the initial model is created.

roblem Description and Nota-

ion

e given input-output data, and are to develop
el describing the dynamics relating the com-
d input to the measured output. In the time
n, the data appear as

U =
[
u(1) · · · u(N)

]
, (2.1)

Y =
[
y(1) · · · y(N)

]
(2.2)

U ∈ R
m×N , Y ∈ R

p×N , and N is the number
ples available. The variables u(k) ∈ R

m and



y(k) ∈ R
p are given by

u(k) =

⎡
⎢⎣

u1(k)
...

um(k)

⎤
⎥⎦ and y(k) =

⎡
⎢⎣

y1(k)
...

yp(k)

⎤
⎥⎦ (2.3)

where ui(k) is the input applied at time k to in-
put channel i. Similarly, yi(k) is the measured re-
sponse at time k for output channel i. In the fre-
quency domain, the complex Frequency Response
Function (FRF) data G ∈ C

p×m×Nf is written such
that Gi,j(fk) is the response at output i, to input j,
at frequency fk.

In the time domain case, the weighting matrices
Wu ∈ R

m×m and Wy ∈ R
p×p are applied as

Û = WuU (2.4)

Ŷ = WyY, (2.5)

where Û ∈ R
m×N and Ŷ ∈ R

p×N represent the
scaled data. In the frequency domain, the weighting
matrices are applied at each frequency as

Ĝ(fk) = WyG(fk)Wu (2.6)

where Ĝ(fk), G(fk) ∈ C
p×m.

Once we have selected Wu and Wy, and synthesized
an initial model based on the scaled data, we must
invert the data scaling to return the model to the
initial scaling. For a state space model, this is done
as

A = Â (2.7)

B = B̂W−1
u (2.8)

C = W−1
y Ĉ (2.9)

D = W−1
y D̂W−1

u , (2.10)

where Â, B̂, Ĉ, and D̂ represent the model in scaled
coordinates and A,B,C, and D represent the model
in as-measured coordinates.

3 RMS Data Scaling in the Time

Domain

One approach to selecting Wu and Wy for time do-
main data is to choose them such that

RMS(Û) = RU (3.1)

RMS(Ŷ ) = RY (3.2)

where RU ∈ R
m and RY ∈ R

p are selected by the
modeler and

RMS(X)
�
=

⎡
⎢⎢⎢⎢⎣

N
i=1(x1(i)− 1

N
N
j=1 x1(j))2

N−1
...

N
i=1(xn(i)− 1

N
N
j=1 xn(j))2

N−1

⎤
⎥⎥⎥⎥⎦ . (3.3)

This p
diagon

where
elemen
diag(u
diagon

One st
elemen
portio
if thes

4 R

q

N

In the
and W

where
also r
To en
condit

Prob

The c

Jc

the su
this ca
matric
using

One st
1p,m ∈
strate
to the
attem
mum
this in
ing R̂
last it

5 R

q

t

As in S
Howev

2

roblem can be solved with positive definite
al matrices Wu and Wy

Wu = diag(RU ./RMS(U))) (3.4)

Wy = diag(RY ./RMS(Y ))) (3.5)

the symbol “./” represents element-by-
t division, and the output of the function
) : R

n → R
n×n is a diagonal matrix whose

al elements are the elements of the argument

diag(u)
�
=

⎡
⎢⎢⎢⎢⎣

u1 0 · · · 0

0
. . . . . .

...
...

. . . . . . 0
0 · · · 0 un

⎤
⎥⎥⎥⎥⎦ . (3.6)

rategy for choosing RU and RY is to set each
t to 1. Another is to set them inversely pro-
nal to the standard deviation of each channel,
e data are available.

MS Data Scaling in the Fre-

uency Domain with Condition

umber Optimization

frequency domain the goal is to choose Wu

y such that√√√√ 1
Nf

Nf∑
k=1

∣∣∣Ĝi,j(fk)
∣∣∣2 = R̂i,j (4.1)

R̂ ∈ R
p×m is selected by the modeler. We

equire that Wu and Wy both be invertible.
force the condition (4.1) and the invertibility
ion, we define the optimization problem

lem 1: Minimize Jc(Wu,Wy) such that (4.1).

ost function Jc(Wu,Wy) is defined as

(Wu,Wy)
�
=

cond(Wu)
m

+
cond(Wy)

p
, (4.2)

m of the condition numbers of Wu and Wy. In
se, Wu and Wy are generally fully populated
es and Jc ≥ 1

m + 1
p . Problem 1 can be solved

gradient search based methods.

rategy for choosing R̂ is to set R̂ = 1p,m where
R

p×m is the p × m ones matrix. Another
gy is to set each element inversely proportional
channel-by-channel standard deviation, in an
pt to synthesize a model suitable for maxi-
likelihood tuning. A third approach is to use
an iterative fashion, at each iteration choos-

equal to the un-weighted RMS error from the
eration.

MS Data Scaling in the Fre-

uency Domain with Shape Con-

rol

ection 4 we select Wu and Wy such that (4.1).
er, instead of choosing Wu and Wy that sat-



isfy (4.1) and have minimum condition numbers, we
elect to minimize the difference in “shape” between
the scaled and unscaled frequency response func-
tions [1]. To do this, we define the inner product

Gi,j · Ĝi,j
�
=

Nf∑
k=1

Gi,j(fk)conj(Ĝi,j(fk)), (5.1)

the norm

‖Gi,j‖ �
=

√
Gi,j · Gi,j =

√√√√ Nf∑
k=1

|Gi,j(fk)|2, (5.2)

and then the shape matrix s(G, Ĝ) ∈ [−1, 1]p×m is

si,j(G, Ĝ)
�
=

real(Gi,j · Ĝi,j)

‖Gi,j‖
∥∥∥Ĝi,j

∥∥∥ . (5.3)

si,j takes on values in [−1, 1], with 0 representing
orthogonal frequency response functions, 1 repre-
senting parallel SISO frequency response functions,
and -1 representing anti-parallel SISO frequency re-
sponse functions. This shape matrix s is a measure
of how close two frequency response functions are
to each other, ignoring scale. More precisely, note
that si,j(aG, bĜ) = si,j(G, Ĝ) for any 0 �= a, b ∈ R

+.
The optimization problem is then

Problem 2: Minimize Js(Wu,Wy) such that (4.1).

The cost function Js(Wu,Wy) is defined as

Js(Wu,Wy)
�
=

‖1p,m − s(G,WyGWu)‖F

2
√

mp

+ αJc(Wu,Wy) (5.4)

where α ∈ R is chosen to weigh the relative im-
portance of maintaining shape relative to minimiz-
ing the condition numbers of Wu and Wy. In this
context, Wu and Wy are generally fully populated
matrices. Problem 2 can be solved using gradient
search based methods.

6 Non-iterative RMS Data Scaling

in the Frequency Domain

A variation on the method described in Section 4 is
to constraint the weighting matrices to be diagonal
and have positive elements. Under this condition,

WyRWu = R̂ (6.1)

where R ∈ R
p×m is given by

Ri,j
�
=

√√√√ 1
Nf

Nf∑
k=1

|Gi,j(fk)|2 (6.2)

This allows us to formulate an optimization problem
for which a closed form solution exists.
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em 3: Minimize Jr(Wu,Wy) where

Jr(Wu,Wy)
�
= ‖V − ε‖F (6.3)

Vi,j
�
= log R̂i,j (6.4)

(6.5)

t to Wu ∈ diag(R+m×m), Wy ∈ diag(R+p×p).
atrix ε ∈ R

p×m is a modeler selected full rank
with entries such that εi,j << 1 and

maxi,j(εi,j)
mini,j(εi,j)

≈ 1. (6.6)

lution is[
vec(Wy)
vec(Wu)

]
= log−1(M∗vec(εp,m)) (6.7)

∗ means pseudo-inverse, log−1 is the element-
ment exponential, vec is the matrix vectoriza-
nction and

=

⎡
⎢⎢⎢⎢⎣

Ip 1p,1 0p,1 . . . 0p,1

Ip 0p,1 1p,1

...
...

...
. . . 0p,1

Ip 0p,1 . . . 0p,1 1p,1

⎤
⎥⎥⎥⎥⎦ . (6.8)

se Wy, Wu are constrained to be diagonal,
are only m + p− 1 independent weighting pa-
ers. The problem is underdetermined, so the
ri effectiveness of this approach is not guar-
. However, the benefit is that no numerical
ization is required.

put-Output Normalization

ata Scaling in the Frequency

omain

er option is to compute the input and output
matrices independently in the spirit of the

omain scaling method of Section 3. The out-
eighting can be selected so that RMS levels of
outputs are equal for equal input levels.

Wy = diag(1./Sc) (7.1)

Sc
�
= 11,pR (7.2)

Wu = diag(1./Sr) (7.3)

Sr
�
= R 1m,1 (7.4)

xperimental Example: Deploy-

ble Optical Telescope Plant

e apply the methods of Sections 4 to 7 to a
tory example. The Deployable Optical Tele-
(DOT) is a space traceable sparse-aperture
pe used to develop and evaluate technologies
l to the fielding of future large space tele-
[2, 5–9, 14–16]. The telescope has 10 ac-

s and 9 sensors. Frequency response function
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Figure 1: DOT Principal Gains

data were collected using sine dwell data collection
methods. The singular values of the data are plot-
ted in Figure 1. Note the large dynamic range and
“gap” apparent in the principal gains.

First, scaling matrices were selected according the
method of Section 5 with α = 0.01. The original
RMS matrix is

RMS(G) =⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

7 2 9 3 3 3 1 3 2 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
1 0 2 10 9 9 1 3 3 1
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
2 0 3 4 3 3 2 7 7 1
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (8.1)

where three sensors dominate the response of the
system, and the ratio of the maximum to the mini-
mum RMS value is

r(RMS(G))
�
=

max(RMS(G))
min(RMS(G))

(8.2)

= 1, 265.8, (8.3)

and the scaled RMS matrix is

RMS(WyGWu) = 19,10. (8.4)

The scaling matrices have

cond(Wu) = 7.7404 (8.5)

and
cond(Wy) = 33.9753. (8.6)

The principal gains of the scaled system are shown
in Figure 2. Note that the gap between singular
values 3 and 4 has disappeared. The shape matrix
is depicted in Figure 3.

The utility of the scaling methods of Sections 6
and 7 were also investigated with this system. All
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Figure 3: DOT Shape Matrix

data scaling methods reduced the ratio of
um-to-minimum SISO RMS response levels,

ling Method r ‖G − H‖ n
NE 1265.81 2.59 200

ape 1.00 3.44 194
alytical Log 8.36 4.05 192
alytical Sums 10.91 3.12 194

he unscaled identified model. The shape opti-
on method reduced the ratio maximally, but
n-iterative methods were effective also. The
ion in the dynamic range of the principal
was comparable for all the scaling methods
t shown in Figure 2.

e will discuss the effects of the different scal-
proaches on the properties of the identified
. The DynaMod [3] system identification soft-
as used to synthesize models from the scaled

nscaled FRF data. The model order was se-
to be 200 arbitrarily. The “ideal” model or-

as not obvious from the singular value plot.
model was synthesized with 256 block rows
00 was the upper bound on the model order
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Figure 4: E for model identified from unscaled data
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Figure 5: E for model identified from scaled data,
see Section 5.

in the synthesis algorithm. All models synthesized
with scaled FRFs had unstable poles which were
truncated. The model identified from the unscaled
FRF data was stable. The quality of the identified
models was assessed with a normalized SISO error
metric

Ei,j =

√√√√∑Nf

k=1 |Hi,j(fk) − Gi,j(fk)|2∑Nf

k=1 |Hi,j(fk)|2
, (8.7)

the RMS of the error between the measured and
model generated FRFs in each input/output pair,
scaled by the RMS level of the measured FRF. H is
the unscaled identified model. This gives a normal-
ized measure of the level of the model error in each
channel. See Figures 4 - 7.

While the RMS error increased for all of the models
identified using scaled data compared to the model
identified using the unscaled data, the normalized
SISO error E was significantly decreased using all
of the scaling approaches.
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7: E for model identified from scaled data,
ction 7.

onclusion

system identification algorithms are sensitive
ut-output scaling. Different channels can have
nt ranges associated with them for several rea-
the units of the data with respect to the quan-
eing measured, the disturbance affecting each
el, and the system response to the input ex-
n. For system identification algorithms that
ale-sensitive, applying weighting matrices to
put and output data may alleviate poor iden-
ion results due to initial inappropriate relative

of the data. We described several methods
oosing weighting matrices for frequency do-
system identification. We also presented ex-
ental results from a structural control experi-

et effect of RMS input-output scaling may be
erweight the response of some paths in a fre-

y band as much as other paths may be over-
ed in a frequency band without scaling. This
that applying the weighting matrices and



synthesizing models for different frequency bands
separately and then stitching the resulting models
together to create the final identified model may im-
prove the quality of the final, stitched, model.

Input-output data scaling must be used judiciously
because it essentially warps the space from which
model parameters are extracted. The scaling meth-
ods described in this paper effectively amplify low
response level paths and diminish the high response
paths. The net effect on the final unscaled model
may be smaller errors in the low response paths at
the expense of larger errors in the high response
paths.

Based on our experiences, input/output data scal-
ing may be beneficial when r is very large (e.g., >
1000). Data scaling was very effective on the DOT
system that satisfied this criterion, but had less dra-
matic results on a system with small r. The choice
of scaling method depends on the problem. One
should choose the method that leads to the best
identified model; however we know of no theory to
determine this a-priori. From a practical perspec-
tive, one should always start with the simplest ap-
proaches.
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