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Abstract: System identification, or modelling from data, is used to develop
dynamic models for control design, performance prediction, and system analysis.
Some system identification algorithms are sensitive to the relative scaling of
different input and output channels. Ideally, the identified model would be
insensitive to arbitrary scaling of the input and output channels. For system
identification algorithms that are scale-sensitive, re-scaling the input and output
data can alleviate poor identification results due to initial inappropriate relative
scaling of the data. In this paper we describe several methods for choosing
weighting matrices for system identification with application to a laboratory
experiment. Copyright (©2006 I[FAC
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1 INTRODUCTION

Models produced by some system identification al-
gorithms depend on the scale of the data used to
create them. If one sensor measures displacement in
nanometers and another sensor measures displace-
ment in parsecs, the identified model may differ from
one identified where both sensors measure displace-
ment in the same units. Not all system identification
methods are scale-dependent. For example, max-
imum likelihood methods and the method of [10]
are scale-insensitive. Since no synthesis methods ex-
ist for maximum likelihood identification and other
non-convex optimization approaches, the modeler
generally must synthesize a model using another
method to be used as the initial condition for fur-
ther optimization. Time domain scale-independent
methods such as [10] may not be suitable for the
identification of large precision space structures [9].

We categorize system identification algorithms into
two types. The first category contains algorithms
for model synthesis. The second category contains
algorithms for model tuning. Model synthesis tech-
niques are characterized by using only data to create
a model. No initial condition or other information
is required for the algorithm to estimate a model.

Once a model has been synthesized using a method
such as [3, 10, 11, 13], an optimization problem can
be developed based on the modeler’s goals and con-
straints to solve for the model. This is model tun-
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ing. These model tuning techniques are iterative
and require a good initial condition to guarantee
convergence to a reasonable solution. Thus the sys-
tem identification process generally consists of two
steps, a synthesis step followed by a tuning step.

Typically, the goal of input/ouput data scaling is to
reduce the disparity in the range of signal levels so
that the model synthesis identification step consid-
ers all input-output channel pairs equally [12]. In
this work we describe several methods for select-
ing input-output weighting matrices for model syn-
thesis. Input/output scaling may also be used in
the model tuning step through a judicious choice of
model parameters (e.g., see [4]); however those types
of methods do not apply to the model synthesis step
where the initial model is created.

2 PROBLEM DESCRIPTION AND NOTA-
TION

We are given input-output data, and are to develop
a model describing the dynamics relating the com-
manded input to the measured output. In the time
domain, the data appear as

U = [u(1)
Y

where U € R™*N Y € RP*N and N is the number
of samples available. The variables u(k) € R™ and



y(k) € RP are given by

uy (k) y1(k)
: and y(k) = (2.3)
U (k) Y (k)

where u;(k) is the input applied at time k to in-
put channel . Similarly, y;(k) is the measured re-
sponse at time k for output channel i. In the fre-
quency domain, the complex Frequency Response
Function (FRF) data G € CP*™*N7 is written such
that G; ;(fx) is the response at output 4, to input j,
at frequency fy.

In the time domain case, the weighting matrices
W, € R™*™ and W, € RP*? are applied as

U=w,U (2.4)
Y =W,Y, (2.5)

where U € R™N and ¥ € RP*N represent the
scaled data. In the frequency domain, the weighting
matrices are applied at each frequency as

G(fr) = W,G(fr) Wy (2.6)

where G(fx), G(fx) € CP*™.

Once we have selected W,, and W, and synthesized
an initial model based on the scaled data, we must
invert the data scaling to return the model to the
initial scaling. For a state space model, this is done
as

A=A (2.7)
B=BwW;! (2.8)
c=w,'C (2.9)
D=W,'DW,", (2.10)

where A, B , C , and D represent the model in scaled
coordinates and A, B, C, and D represent the model
in as-measured coordinates.

3 RMS DATA SCALING IN THE TIME
DoMAIN

One approach to selecting W,, and W, for time do-
main data is to choose them such that

RMS(U) = Ry (3.1)
RMS(Y) = Ry (3.2)

where Ry € R™ and Ry € RP are selected by the
modeler and

VEX (1) - & 2, 21(7)
N—-1

2

RMS(X) . (3.3)

VEL (20 ()% SN, 20 (7)°
N—1

This problem can be solved with positive definite
diagonal matrices W,, and W,

W, = diag(Ry./RMS(U))) (3.4)
W, = diag(Ry./RMS(Y))) (3.5)
where the symbol “./” represents element-by-
element division, and the output of the function

diag(u) : R" — R™*"™ is a diagonal matrix whose
diagonal elements are the elements of the argument

w 0 - 0
diag(u) 2 | © (3.6)
: . w0
0 -~ 0 wu,

One strategy for choosing Ry and Ry is to set each
element to 1. Another is to set them inversely pro-
portional to the standard deviation of each channel,
if these data are available.

4 RMS DATA SCALING IN THE FRE-
QUENCY DOMAIN WITH CONDITION
NUMBER OPTIMIZATION

In the frequency domain the goal is to choose W,,
and W, such that

1 U

N 2

k=1

where R € RPX™ is selected by the modeler. We
also require that W, and W, both be invertible.

To enforce the condition (4.1) and the invertibility
condition, we define the optimization problem

Problem 1: Minimize J.(W,, W) such that (4.1).
The cost function J.(W,,, W,) is defined as

Jo(Wo, W) 2 cond(W,,) n cond(I/Vy)7 (4.2)
m p
the sum of the condition numbers of W,, and W,,. In
this case, W,, and W, are generally fully populated
matrices and J. > % + % Problem 1 can be solved
using gradient search based methods.

N 2 ~
Gi,j(fk)‘ =R, (4.1)

One strategy for choosing R is to set R = 1, m where
1pm € RPX™ is the p X m ones matrix. Another
strategy is to set each element inversely proportional
to the channel-by-channel standard deviation, in an
attempt to synthesize a model suitable for maxi-
mum likelihood tuning. A third approach is to use
this in an iterative fashion, at each iteration choos-
ing R equal to the un-weighted RMS error from the
last iteration.

5 RMS DATA SCALING IN THE FRE-
QUENCY DOMAIN WITH SHAPE CON-
TROL

As in Section 4 we select W, and Wy, such that (4.1).
However, instead of choosing W, and W, that sat-



isfy (4.1) and have minimum condition numbers, we
elect to minimize the difference in “shape” between
the scaled and unscaled frequency response func-
tions [1]. To do this, we define the inner product

Ny
Gij-Giy 23 Giy(fi)eonj(Gay(fr),  (5.1)
k=1

the norm

A —
1Gijll =/ Gij-Gij=

and then the shape matrix s(G,G) € [-1,1]P*™ is

Ny
S G (P (5:2)
k=1

~ é real(Gi,j . é@j)

5,(G,C) 2 Gig) (53
Gl HGm‘

s;; takes on values in [—1,1], with O representing
orthogonal frequency response functions, 1 repre-
senting parallel SISO frequency response functions,
and -1 representing anti-parallel SISO frequency re-
sponse functions. This shape matrix s is a measure
of how close two frequency response functions are
to each other, ignoring scale. More precisely, note
that s; ;(aG,bG) = s; ;(G, G) for any 0 # a,b € RY.
The optimization problem is then

Problem 2: Minimize Js(W,,, W,) such that (4.1).
The cost function Js(W,, Wy) is defined as

—s(G,W,GW,)|lp
2./mp
+ ad. (W, W,) (5.4)

1 m
JS(W'szy) é || D,

where @ € R is chosen to weigh the relative im-
portance of maintaining shape relative to minimiz-
ing the condition numbers of W, and W,. In this
context, W, and W, are generally fully populated
matrices. Problem 2 can be solved using gradient
search based methods.

6 NON-ITERATIVE RMS DATA SCALING
IN THE FREQUENCY DOMAIN

A variation on the method described in Section 4 is
to constraint the weighting matrices to be diagonal
and have positive elements. Under this condition,

W,RW, =R (6.1)

where R € RP*™ is given by

A

Ny
1 2
R;; = N, 1;1 |Gij(fr)l (6.2)

This allows us to formulate an optimization problem
for which a closed form solution exists.

Problem 3: Minimize J,(W,,, W,) where

A
Je (W, Wy) = [V = ellp (6.3)
VL'J é log Ri’j (64)
(6.5)

subject to W, € diag(RT™*™), W, € diag(RTP*P).
The matrix € € RP*™ is a modeler selected full rank
matrix with entries such that ¢; ; << 1 and

mawx;,; (QJ‘)

~ 1. 6.6
mini,j (61'7]') ( )
The solution is
vecWy)| 1,4,
|:V€C(Wu) =log™ (M~ vec(ep,m)) (6.7)

. -1 .
where * means pseudo-inverse, log™ " is the element-
by-element exponential, vec is the matrix vectoriza-
tion function and

I, 1p1 Op1 oo Oy

M= T Opr dpa (6.8)
: : 0p,1
Iy Op1 oo Op1 1pg

Because W,, W, are constrained to be diagonal,
there are only m + p — 1 independent weighting pa-
rameters. The problem is underdetermined, so the
a-priori effectiveness of this approach is not guar-
anteed. However, the benefit is that no numerical
optimization is required.

7 INPUT-OUTPUT NORMALIZATION
DATA SCALING IN THE FREQUENCY
DoMAIN

Another option is to compute the input and output
scaling matrices independently in the spirit of the
time domain scaling method of Section 3. The out-
put weighting can be selected so that RMS levels of
all the outputs are equal for equal input levels.

W, = diag(1./5.) (7.1)
Sc é ll,pR (72)
W, = diag(1./S,) (7.3)
S, 2R s (7.4)

8 EXPERIMENTAL EXAMPLE: DEPLOY-
ABLE OPTICAL TELESCOPE PLANT

Here we apply the methods of Sections 4 to 7 to a
laboratory example. The Deployable Optical Tele-
scope (DOT) is a space traceable sparse-aperture
telescope used to develop and evaluate technologies
critical to the fielding of future large space tele-
scopes [2, 5-9, 14-16]. The telescope has 10 ac-
tuators and 9 sensors. Frequency response function



I I I I I I I
50 100 150 200 250 300 350 400 450
Hz

Figure 1: DOT Principal Gains

data were collected using sine dwell data collection
methods. The singular values of the data are plot-
ted in Figure 1. Note the large dynamic range and
“gap” apparent in the principal gains.

First, scaling matrices were selected according the
method of Section 5 with o = 0.01. The original
RMS matrix is

RMS(G) =

(8.1)
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where three sensors dominate the response of the
system, and the ratio of the maximum to the mini-
mum RMS value is

A max(RMS(G))
T’(RMS(G)) - m (8'2)

=1,265.8, (8.3)

and the scaled RMS matrix is

RMS(W,GW,) = 19 10. (8.4)
The scaling matrices have
cond(W,,) = 7.7404 (8.5)
and
cond(W,) = 33.9753. (8.6)

The principal gains of the scaled system are shown
in Figure 2. Note that the gap between singular
values 3 and 4 has disappeared. The shape matrix
is depicted in Figure 3.

The utility of the scaling methods of Sections 6
and 7 were also investigated with this system. All
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Figure 2: DOT Scaled Principal Gains

Figure 3: DOT Shape Matrix

three data scaling methods reduced the ratio of
maximum-to-minimum SISO RMS response levels,
T.

Scaling Method r | |G- H] n
NONE 1265.81 2.59 | 200
Shape 1.00 3.44 | 194
Analytical Log 8.36 4.05 | 192
Analytical Sums 10.91 3.12 | 194

H is the unscaled identified model. The shape opti-
mization method reduced the ratio maximally, but
the non-iterative methods were effective also. The
reduction in the dynamic range of the principal
gains was comparable for all the scaling methods
to that shown in Figure 2.

Now we will discuss the effects of the different scal-
ing approaches on the properties of the identified
model. The DynaMod [3] system identification soft-
ware was used to synthesize models from the scaled
and unscaled FRF data. The model order was se-
lected to be 200 arbitrarily. The “ideal” model or-
der was not obvious from the singular value plot.
Each model was synthesized with 256 block rows
and 400 was the upper bound on the model order
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Figure 4: F for model identified from unscaled data
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Figure 5: E for model identified from scaled data,
see Section 5.

in the synthesis algorithm. All models synthesized
with scaled FRFs had unstable poles which were
truncated. The model identified from the unscaled
FRF data was stable. The quality of the identified
models was assessed with a normalized SISO error
metric

N 2
B — 2k |P{Vi;j(fk)—Gi,j2(fk)\ s
>only Hi g (fr)]

the RMS of the error between the measured and
model generated FRFs in each input/output pair,
scaled by the RMS level of the measured FRF. H is
the unscaled identified model. This gives a normal-
ized measure of the level of the model error in each
channel. See Figures 4 - 7.

While the RMS error increased for all of the models
identified using scaled data compared to the model
identified using the unscaled data, the normalized
SISO error E was significantly decreased using all
of the scaling approaches.

Log Scaled Channel Error RMS

Output Channel

Figure 6: E for model identified from scaled data,
see Section 6.

Sums Scaling Normalized Channel Error RMS

Output Channel

Input Channel

Figure 7: E for model identified from scaled data,
see Section 7.

9 CONCLUSION

Some system identification algorithms are sensitive
to input-output scaling. Different channels can have
different ranges associated with them for several rea-
sons: the units of the data with respect to the quan-
tity being measured, the disturbance affecting each
channel, and the system response to the input ex-
citation. For system identification algorithms that
are scale-sensitive, applying weighting matrices to
the input and output data may alleviate poor iden-
tification results due to initial inappropriate relative
scaling of the data. We described several methods
for choosing weighting matrices for frequency do-
main system identification. We also presented ex-
perimental results from a structural control experi-
ment.

The net effect of RMS input-output scaling may be
to underweight the response of some paths in a fre-
quency band as much as other paths may be over-
weighted in a frequency band without scaling. This
means that applying the weighting matrices and



synthesizing models for different frequency bands
separately and then stitching the resulting models
together to create the final identified model may im-
prove the quality of the final, stitched, model.

Input-output data scaling must be used judiciously
because it essentially warps the space from which
model parameters are extracted. The scaling meth-
ods described in this paper effectively amplify low
response level paths and diminish the high response
paths. The net effect on the final unscaled model
may be smaller errors in the low response paths at
the expense of larger errors in the high response
paths.

Based on our experiences, input/output data scal-
ing may be beneficial when r is very large (e.g., >
1000). Data scaling was very effective on the DOT
system that satisfied this criterion, but had less dra-
matic results on a system with small . The choice
of scaling method depends on the problem. One
should choose the method that leads to the best
identified model; however we know of no theory to
determine this a-priori. From a practical perspec-
tive, one should always start with the simplest ap-
proaches.
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