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Z experiments probed a broad variety of plasmas with 
emission or absorption spectroscopy 

•Z-pinch

•Dynamic hohlraum

•Capsule implosions

•Opacity measurements

EBIT measurements have supported this work by line identification 
and wavelength measurements. Exploitation of transition probability 
and polarization effects should strengthen future research.



Z experiments implode plasmas with 20 
million Amp current
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Tungsten plasmas emit > 200 TW of x-rays, but 
radiation processes are not completely understood
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• One outstanding puzzle is that x-ray energy exceeds pinch kinetic energy.
• Spectroscopy can help solve this problem
• First we must identify the lines!

Then apply:
Tomographic spectroscopy
Polarization spectroscopy



Doppler-shifted line emission may help 
understanding of kinetic energy thermalization
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Dynamic hohlraum radiation source is created by 
accelerating a tungsten plasma onto a low Z foam
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Dynamic hohlraums are interesting because they 
couple large x-ray energy to implode capsules 

• Z DH provides an intermediate step between NOVA and NIF 

• Exploiting this potential requires accurate interior diagnostics of 
the drive temperature and the symmetry
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Si tracer spectroscopy probes local dynamic 
hohlraum interior conditions.
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Photo-pumped line emission can be used to determine 
conditions ahead of the main shock.
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Tomographic reconstruction of the 2D Te and ne spatial 
profiles could test capsule and hohlraum understanding

top view

side view

Each space-resolved lineout represents a slice through the plasma
Each photon energy depends on spatial emissivity and opacity properties
The combination is a powerful constraint on Te (r,) ne(r,) 

Diagnosing hot spot Te and ne profiles is a key ICF capability
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We are meeting the biggest challenge for tomographic 
spectroscopy: acquiring the data

Resolution: 
Time ~ 350 psec
Space ~ 85 m
Spectral ~ 800
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The  dynamic hohlraum radiation source is 

useful for opacity measurements
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• The source both heats and 
backlights the sample

• Experiments with and without 
sample determine the opacity



The dynamic hohlraum backlighter measures 
transmission over a very broad  range
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The sample conditions are diagnosed from Mg 
absorption spectra
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The shot to shot reproducibility is good, if 
conditions are carefully controlled
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• Both experiments used 10 m CH | 0.3 m Mg + 0.1 m Fe | 10 m CH sample

• No scaling was applied for this comparison

• Reproducibility is not always this extraordinary, but variations are less than 
approximately +10%
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Comparisons with PRISMSPECT exhibit remarkable 
agreement, if we adjust the sample areal density  

experiment
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Comparisons with PRISMSPECT exhibit remarkable 

agreement, if we adjust the sample areal density
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Comparisons with PRISMSPECT exhibit remarkable 

agreement, if we adjust the sample areal density
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Comparisons with PRISMSPECT exhibit remarkable 
agreement, if we adjust the sample areal density 

experiment
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Initial comparisons with OPAL exhibit reasonable 
agreement  

experiment
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The data enables tests of the calculated charge 
state distribution 
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Conclusions of present work

• The excellent agreement between PRISMSPECT calculations and 
the measurements demonstrates a promising degree of 
understanding for both modeling and experiments

• This agreement depends on assumption that the sample areal 
thickness was not as specified. Therefore it should be regarded as 
a relative opacity measurement at present.

• Comparisons with MUTA and OPAL are also promising, but 
refinements may be needed

This data provides the ability to test model calculations of:
• Charge state distribution
• Relative line intensities and wavelengths
• Level of detail required for different classes of transitions

Improved experiments may be needed to test model calculations of 
continuum absorption



goals for future work

• Determine experiment uncertainties

• Evaluate possibility of self emission, non-LTE effects, 
photopumping, gradients

• Refined model comparisons

• Optimize tamping and sample design with benchmarked rad-hydro 
simulations

• Extend to higher densities and temperatures:

• ZR planned for 2007 completion

ZR & use of dedicated experiments should extend measurements to 
~ 180-220 eV regime


