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Motivation

e iIncreases uncertainties imn EOS models
e can be important in impedance matching

e strength affects stress state in diamond anvil cell
(Chijioke et al., J6-2)

* understanding of strength needed for accurate
computational results

e weapons and armor applications (ceramic armor,
etc.) influenced by strength

* Rayleigh-Taylor instabilities inhibited by strength



What is Strength?

» strength 1s the ability of a material to

: O
sustain T;; # 0 or O, # Oy, VoYY
e for a 1-D shock or 1sentropic
. .. —_— <+—
experiment, this 1s means o,, = 0,, # Oy, G
e conservation equations provide no =
information about o, T
O \4 / O By a simple tensor transformation (45°
/ rotation), the stress state can be

expressed as a mean stress (mechanical

\ / pressure) and a shear stress
A AN

t=0. 5( O, — Oyy) By analogy with uniaxial tension, Y=2t,



What is Strength? (cont.)

* Within the context of metals, strength 1s controlled
by dislocation formation, motion, and annihilation
(plastic deformation) and mechanisms such as
twinning

* Other mechanisms may be relevant for different
classes of materials; e.g. chain untangling and sliding
in polymers, microcracking for brittle materials

* Deformation mechanisms are typically irreversible
and path-dependent



Techniques to Determine
Strength at High Pressures

lateral gauges :
g comparison to
< > hydrostat
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* most common method: compare
with hydrostatic data

* stress gauges can provide
independent measures of o, and
rmine dynamic strength .
850 CEETI 02 COIRTI2 U TR  hydrostat from ultrasonic sound

* calibration of gauges difficult speed data (C vs. P) or diamond
» gauges only function to ~20 GPa anvil cell (P -V)
due to shorting of insulation ..
* uncertainties can be very large

also: X-ray diffraction, pressure-shear loading, growth of
Rayleigh-Taylor instabilities, within diamond anvil cells



Isentropic Loading Accesses Cool Regimes
Where Strength Is More Important

e

= o>

Aluminum - Sesame 3700 (Kerley,

80 87) . .

Hugoniot

e Hugoniot passes into liquid
phase at ~120 GPa

e [sentrope remains in solid

T 6000 | Liquid Phase

melt line

Solid Phase T phase, rise of T minimal

2000 |
isentrope

0 | 100 | 200
— > P (GPa)
Steinberg-Guinan Strength Model (rate-independent version):
Y n G(P,T) G P dG
—=(1+B, +5)) - . =

YO
strength larger under isentropic loading due to smaller AT
strain rate orders of magnitude lower than shock case

G(P.T)=G,+ (T-T,)
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Z. Machine Provides New
Capabilities for Isentropic Loading

 Designed for ICF applications

» Generates >20 MA over 100°s of ns,
11.5 MJ of stored energy

 Current generate magnetic forces

* Magnetic forces create smooth waves g
in materials s

* Waves used for 1sentropic loading to
stresses >250 GPa
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Strength Under Quasi-Isentropic
Loading: Previous Work

: : : Chhabildas & Barker, 1988
aluminum - 1sentrope stiffer . . . .

than Hugoniot to 9 GPa —e— Quasi-isentropic °

""" hock, t, =
(Barker-SNL) jo | T Shoek =%, S
—4& - Shock, T, =0

tungsten - isentrope from Y
graded-density impactor (GPa)
lies above Hugoniot up to T

140 GPa due to strength

molybdenum - isentrope from
Z compared with hydrostat

51¢L

to estimate strength I e )
0

(Reisman-LLNL/SNL)

50 100 150 200 250
lateral gauges — > o, (GPa)
h

e AD-1 aluminum and copper (Bat’kov et al.)

e copper, iron, steel (Rosenberg ef al.)

growth of Rayleigh-Taylor instabilities - aluminum and vanadium (LLNL)



@% Self Consistent Method
e (Asay, Lipkin, Chhabildas, et al.)

reshock & release

configuration results for 6061-T6 Al
impactor target E{Léllif)ading
2L Hugoniot\~I
u State
laser (kmr;s) E{Iealsét;%ing
interferometer I
Release Release
L Initial
Shock\
low or high impedance transparent 0 IAsay SILIChhabilldas’ 198|1
backing material window 0 1 2
——> t (us)
t
. e wave speed determined from
/ VISAR release or reloading
profiles

 unloading path calculated
from incremental relations

€
strength based on relative difference from Hugoniot state



6061-T6 Al
free surface

_j

v 9.1-1909

Ax
At

h = 600, 850, 1100,
and 1350 um

C:

0.1 0.2 0.3 0.4 0.5
——> t(us)

e four profiles, both loading and
unloading histories

e peak attenuation evident

eunloading structure develops in
thicker samples



Lagrangian Analysis Technique

* backwards integration technique of Dennis Hayes is non-unique
for elastic-plastic materials

* Lagrangian analysis technique follows previous work by Grady
and others (Anderson, H6-3) e

i 6061-T6 Aluminum Z 1220 |

05}
1) determine c(u,) by least- (uts)O.4
squares fit to VISAR data
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Lagrangian Analysis Technique (2)

6061-T6 Aluminum Z 1220

20 t
2) correct c(u,) to c(u,) by (k;,s)

impedance matching of T
window and sample

10 t

Lo+ Z,
’ 27

Au Au

w
\)

0

0 | i ' 2
— > u (km/s)

relaxation due to drop in strain rate?
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Lagrangian Analysis Technique (3)

75 : .
ol 6061-T6 Aluminum
(GPa)
3)integrate stress and strain T oo | 7 leentope, Sesame 5700
using incremental I — Isotherm, Greeneet al. y
. — 71220 Vs
relations: ' p
Ao =p,c Au, 25 |
Ae = Au / C P
p : =
for unloading, ignore . |
0 0.1 0.2

attenuation by beginning
at lowest peak u,



Assumptions in Lagrangian
Analysis Technique

e characteristics not bent by window interactions
e rate-independent material

 all points experience same loading history
 window behavior known

 window loads along its principal isentrope

none of assumptions fully met!

none is too bad, either!
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Strength Measurement

Since stress-strain histories "
are somewhat different for T
each material point, VISAR
results are analyzed in a
pairwise fashion.

Loading responses are very
similar for the three pairs.

Difference between loading
and unloading curves is a
measure of the strength.

60

Pa)

40 |

20

Z 1220
6061-T6 Aluminum

—1-2

0 0:1 0.2
3
Y Z(UL —GU)
=34,2.2,1.5 GPa

results suspect due to
wave interactions

0.3



D2

“ Strength Measurement (2)

Difference increases rapidly 10

3(0 -o ) 6061-T6 Aluminum Z 1220
L U - i

due to elastic unloading. B —
(GPa)
Slope decrease but difference 6 [
continues to increase, either
due to work hardening or

analysis artifacts. |
Effective values for Y are 3.1, 05 o oz o0m  om 03
2.2, and 1.5 GPa (ambient —

value was 0.3 GPa).



Strength Values

estrength under isentropic
loading continues to increase
with increased stress (due to
pressure and/or work
hardening)

e current experimental results
agree with Steinberg model at
low stresses but deviate at
higher stresses (though higher
stress have lower confidence)
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Strength Values

estrength under isentropic
loading continues to increase
with increased stress (due to
pressure and/or work
hardening)

e current experimental results
agree with Steinberg model at
low stresses but deviate at
higher stresses (though higher
stress have lower confidence)

e comparison with isotherm
unreliable for calculating
strength (isentrope from Davis
2005, isotherm from Greene et
al. 1994)

Y = 3/2(o; - op AC)
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Davis (high)

Davis (low)
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(no thermal softening)
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—> 0, Or o, (GPa)



Simulated Data for Z 1220

Experiment & Simulation

20 |

: : . 60
6061-T6 Aluminum Z 1220 o
(GPa)
u 27 T
p
(km/s) 40
1
—— Experiment
— Alegra Simulation
0 b= - “:v-—mu—-—""/ "l.’ 1 1 1 1 0
0.1 0.2 0.3 0.4 0.5
—> t (us)

*1-D Alegra simulation (explicit arbitrary
Lagrangian-Eulerian magneto-
hydrodynamics code, Steinberg-Guinan-
Lund strength model)

e current input somewhat off on loading,
too much structure in unloading wave

Lagrangian Analysis

z1220
| Alegra Simulation Y=2%, 1.6, and
1.4 GPa
—— Simulation
—1-2
—2-3
—3-4
0 l 0.11 l 0.12 l 0.3
—>¢

eloading captured extremely well

e first pair affected by window
perturbations reaching drive
surface, but others accurate
measurements of Y (1.48 GPa)



Z-1504 Tungsten to 61 GPa

aluminum
panel

W samples

LiF windows
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Al'W ! LiF

- — — Hugoniot (LANL)

L 7-1504

| - — — Isentrope (Chhabildas, 1988)
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08 __ 1.0 mm
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04t

0 0.2 I 0:4 I 0:6
—> t (us)

e thinnest sample obviously

affected by wave interactions,

spall signature
e fourth thickness noisy

e Lagrangian analysis gives results
that agree well with Hugoniot but
are softer than previous isentrope



Unloading Paths and Strength

80
o .
(GPa) |~~~ Isentrope (Chhabildas, 1988) /-
- — — Hugoniot (LANL - /
0 g ( ) 1ns L7 3(0L - ou) v -3.9GPa
| —— Z-1504 +1 ns- 4 ; Y= ?.7 GPa
/ (GPa) '
A T :
40 | 7
2
Ve
P Ve
Ve
20 | 2 21
P 7
_ e
P # <
0 - 1 L 1 1 1 0 ! ! ! !
0 0.05 0.1 0.15 0.11 0.12 0.13
> € ——> &

e shifting profile #2 by -1 ns brings responses calculated
for 1-3, 1-2, and 2-3 into agreement

e £1 ns shift changes Y only by about 8%, so strength is
relatively insensitive to small timing errors

0.14



Strength Under Isentropic and

Shock Loading
10 :
—&— Quasi-isentropic
-l Shock, T, =T,
. A Z-1504
Y
(GPa) Tou.
T ° T o }://15% uncertainty
.______._ ____________ l.-----------------".' """" |
0 . . .
0 50 100

— > o, (GPa)
* strength at 61 GPa somewhat lower than previous
results but overlap within uncertainty

* uncertainty of current measurements seems to be
lower than previous method; uncertainties more
easily quantifiable



u (o) . .
p Alegra Simulation
(km/s) (GPa) _ .
Lagrangian Analysis
T 0.8 T 50
04 | 25 L
—— Experiment
— — Alegra (optimized)
0 0.2 0.4 0.6 0.8 0 0.05 0.1 0.15
—> t (us) — >
70

Alegra Simulations

e initial Alegra simulations match |
VISAR profiles well ol h=1.0 mm

e Lagrangian analysis gives a

20% high strength value ZZ '
* loading path within material 10 |
nonuniform 02.3 2:4 25 2:6 2:7 2.8

——> t (us)



Ta Single Crystal Results

Ta, (100) Orientation Ta, (110) Orientation

u —0.625 mm ———0.625 mm

0.750 mm

0.750 mm

1.0 mm

1.0 mm

0.2 0.4 0.6 0.2
— >t (us) —> t (us)

e higher elastic limit for (100)
» strength at 80 GPa approximately 2.4 GPa for both orientations
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Conclusions

e first strength measurements made with the self-consistent
technique for isentropic loading

e strength measurements made on Z to 160 GPa for Al and
60 GPa for W

e results suggest surprisingly high strength for aluminum

e strength results are relatively insensitive to timing errors
(1 ns shift gives ~8% error in Y at 60 GPa)

e experiment must meet restrictions to avoid reverberations
and shock formation in window

e conservative estimate of 20-30% uncertainty on Y at 50
GPa for Al, 15% for W; error for higher pressure results
not yet quantified



Future Work

e gas gun experiments with graded-density impactors to remove
complications of magnetic loading and wave attenuation

e improved Lagrangian analysis technique to account for attenuation
(e.g. Aidun & Gupta)

e better establish error bars due to experimental uncertainty and
analysis technique

e strength model which more accurately matches VISAR histories
needed

e iterative MHD modeling may be needed for high stress levels

e comparison of different techniques (e.g. Rayleigh-Taylor, DAC,
and self-consistent) for same materials

e direct comparison of experiments with molecular dynamics

e investigate effect of solid-solid phase transformations on strength
and vice-versa



