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Microcantilever Chemical Sensor Arrays 

Comparison of experimental temperature variation with 
thermal model. VDC= 2.75V, VAC=2.25V, f = 50 Hz

Cantilever chip with 5 measurement and 5 
reference cantilevers

A. Choudhury, Prof. P.J. Hesketh (G-Tech), Z. Hu, T. Thundat (Oak-Ridge National Labs.) 

Motivation:
• Microcantilever sensors provide high sensitivity with simple design and fabrication 
• Selective coatings can be defined with MOF layers on the cantilevers.
• Microcantilever arrays provide a built-in thermomechanical reference for chemical sensing
• Low cost, low power, platform for real-time label-free sensing.

Results:
• Thermal model has good agreement with the cantilever transient response.
• Deflection tests match up with analytical models for completed sensors.
• Low noise resistance measurements with AC bridge.  



Issues:
• Distribution of pore sizes, properties
• Surface chemistry is difficult to control
• Synthetic templates may be required
• Growth on substrate materials to 

create hybrid materials is problematic
• Novel materials may solve some of 

these problems:
– Carbon nanotubes
– Synthetic zeolites
– Block copolymers
– Anodized aluminum oxide
– Aerogels
– Metal organic frameworks

Zeolites

Anodized Aluminum Oxide

Block copolymers

Control over the properties of nanoporous materials is a 
prerequiste for successful application of these materials

Single-walled CNT

Alumina aerogel



Metal Organic Frameworks: self-assembled, hybrid materials 
with tailorable properties

“Isoreticular” MOF: Rigid, 
open framework with tunable 
pore size, chemistry (Yaghi et al.)

– Inorganic clusters linked by coordinating organic ligands
– Crystalline materials
– 1D, 2D, or 3D structures
– Wide range of metals used, including Zn, Cu, Co, Ni, Ag, Cd, lanthanides
– Open coordination sites possible
– Rigid porosity in some structures, with pore diameters comparable to zeolites
– Chemically tailorable pore environment

Cr MIL: 6000 m2/g surface 
area (Férey et al., Science 
2005)

Cu MOF: replaceable 
groups within the pore 
(Chui et al. Science 1999)



IRMOF synthesis occurs by self assembly

CO2HHO2CZn(NO3)2•6H2O +
DEF

Δ 48 hrs, 70 °C

11
.2 

Å

Example: IRMOF-1 (MOF-5)

Secondary 
Building Unit

Yaghi et al. Nature 2003



“Isoreticular” IRMOFs: Unique properties among crystalline 
porous materials

• Thermally stable to > 400 ºC

• Homogeneous, periodic pores
• Lowest density
• Extremely high surface areas
• Functionalizable pores

• Reversible Type 1 adsorption

MOF porosity compared to zeolites. 
MOFs:      sorption;     XRD.       : zeolites

Many potential applications:
• Sensors
• Sorbants
• Gas storage
• Chromatography 
• Molecular templates
• Drug delivery
• Catalysts



The complexity of MOF structures makes it challenging to 
employ theory as a guide to MOF growth on surfaces

• Plane-wave DFT impractical as a screening 
tool for MOF substrates

– 3000 CPU hours, 64 processors on 
Sandia “Thunderbird”

• DFT can predict bulk properties
– Crystal structure (good agreement with 

expt)
– Elastic constants:

• reduced modulus  = 21
• Nanoindentation: 5 – 100 (avg ~ 18) 

Problems with the measurement:
–Crystal orientation
–Surface roughness
–Decomposition

• B/GH = (fracture resist/plastic deform.) 
= 3.2 (ductile)

Suggests adaptability to substrates

IRMOF-1(001) on 6x6 cells of ZnO(0001) 
structure predicted by DFT (SNL/CA)
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Preliminary Results

• The sensitivity based upon ac excitation of 1V pk-pk and lock-in-amplifier 
measurements at 50 kHz with a 100 mS time constant provides a resolution of 5 mΩ
of resistance.

• Cantilever bridge sensitivity is calculated based upon AFM deflection tests of ~1 
mΩ/nm deflection, i.e. gauge factor KB =  117 which corresponds to a surface stress 
gauge factor of KS = 51 and therefore a surface stress sensitivity 0.04 mN/m !

• Surface stress induced by aminoethane-thiol reaction with gold 0.45mN/m [2].
• Measured response above with 315ppb mercaptahexanol corresponds to a 

resistance change of shown bellow can be compared to the calculated surface stress 
sensitivity. Estimate of sensitivity with MOF coating of 0.1 – 1 

um thickness when a linear strain produced is 0.8%. 
Calculations using DF theory provide following 
properties for the MOF: Bulk modulus 1.58GPa; 
C11=0 .264 C12=0.107, C44=0.036. The surface stress 
would be well within the sensitive range for the 
cantilever sensor of 5 mΩ Other groups have 
reported a 6% volumetric strain [3].

Meassured cantilever resistance response 
exposed to 315 ppb of mercaptahexanol.

[2] McFarland et al. “Influence of surface stress on the resonance behavior of microcantilevers,” Appl Phys. Lett., Vol. 87, 2005. [3] A. J. Fletcher, et al., 
“Flexibility in metal-organic framework materials: Impact on sorption properties,” J. Solid State Chem., Vol. 178, pg. 2491, 2005. 

MOF 
thickness 
(μm)

Tip 
deflection 
(μm)

Calculated 
resistance 
change (Ω)

0.1 5.3 5.3

1 83 83



MOFs must be adapted to substrate materials to realize the 
potential of their unique properties

Photoluminescent
Electrical
Microfluidic
Micromechanical

SeparationsSensors
Growth on:
• SAMS
• Oxides (SiO2)
• Porous membranes
• Semiconductors
• Glass
• Plastics

Gas
Liquid

Chromatography

Surfaces

Cubic Zn-
Stilbene MOF

Eddaoudi et al. 
Science 2002



MOF growth on SAMs: entry point for patterning and device 
fabrication

Microcontact Printing

Apply 16-MCHD to stamp

Cast PDMS stamp from Master

Rinse substrate with EtOH

Apply stamp to Au substrate

Repeat with CF3-Dodecane to 
create 2nd SAM

SAM termination determines growth:
• MOF growth on CO2H SAM
• No growth on CF3 SAM



IRMOF growth on self assembled monolayers has 
been demonstrated

Hermes et al., JACS, 2005, 13744-13745

• Polycrystalline growth on CO2H-terminated 
Au(111)-SAM surface

• Confirmed by grazing incidence PXRD
• No growth on CF3-terminated surface
• Patterning effective, but growth is not uniform



Improved procedure results in dense, polycrystalline 
MOF-on-SAM films

Zn(NO3)2·6H2O
5mL DEF

25°C 48h
+

IRMOF-1 
on SAM

178 mg, 0.61 mmol 3.4 mg, 0.20 mmol

CO2HHO2C

Create SAM on gold surface with 16-MCHD: RT 6h
+HSCH2(CH2)13CH2OOH

rinse EtOH

Grow MOF on SAM: Saturated solution, filter:



Polycrystalline IRMOF growth can be achieved on 
surfaces, but layers are not uniform or dense

• MOFs on SAMs
– Entry point to devices
– Single crystal growth observed
– Dimensions comparable to 

MEMs devices

Silicon piezoresistive cantilever 
beam (fabricated by GA Tech)

IRMOF-1 crystals on SAM/Au



• Advantages of MOFs for membrane-based 
separations
– Thermal stability >> polymer membranes
– No swelling or decomposition by 

hydrocarbons
– Low-cost synthesis
– Tailorable pore environment
– Catalytic separations feasible

• Anodized aluminum oxide (AAO)
– Potential MOF support material
– Self-organized porosity controlled by 

processing conditions:
• Uniform 20-200 nm diameter
• Uniform 50-400 nm periodicity
• Random pore paths or straight, 

uniform lengths available

Anodized Aluminum Oxide membrane, 
side view

Growth on anodized aluminum oxide: departure point for 
using MOFs for separations



Carboxylate-based MOFs can be grown on AAO

Results in complete MOF coverage:

Zn(NO3)2·6H2O
5mL DEF

105°C 48h
+ IRMOF-1+AAO

178 mg, 0.61 mmol 3.4 mg, 0.20 mmol

CO2HHO2C+

BDCA-AAO

Pretreat AAO 
membrane with BDCA:

5mL DEF
25°C

+ CO2HHO2C



Summary

• Hybrid MOF materials created
- MOF-SAMs for surface coatings or patterned MOF deposition
- MOF-AAO with near-pinhole free coverage: future filter technology

• Simulations predict mechanical properties of IRMOF-1 in agreement with 
nanoindentation measurements
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