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Abstract

What we have identified is a suite of technologies that
together define a solution to fusion which captures a
reasoning model that supports fusion. It is this approach
that is needed if we are to capture the human capability of
performing fusion which has at its core a reasoning
function. It is a hybridization of formal and temporal
concept reasoning, Peircean reasoning with an
instantiation of Mills canons, Modal logic and coupled to
an architecture based on Hawkins model of the neocortex.
The solution concept will have significant impact on
sensor development and a major impact on information
architecture design. The effort supporting this effort is
working towards a 70-80 percent solution to demonstrat
the capabilities and the feasibility of linkage of the
technologies.
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Introduction

This document provides information on the current state
of a development effort at Sandia Labs that is taking an
integrated systems engineering approach to the design of
a data and information fusion engine for use in
information intensive environments. The approach takes
a step back to understand the requirements associated
with this design from a higher perspective. In doing so
we find a number of fundamental changes in approach
that need to be made to identify solutions that are robust
in the information domain. We need to recognize the
dynamically chaotic environment these systems operate
in, to understand decision making at a fundamental levels
and then search the technological domains that may yield
solutions to these problems. An engineering paradigm of
divide, constrain and conquer can not be used to deal with
the complex problems associated with combat and the
information systems supporting command and control in
this domain.

Information systems support command, control,
fusion, decision support, as well as data and information
collection. Vulnerability, is not failure of the “pipes” but
it is the defeat, delay and disruption of the information

itself. Design of these systems must be grounded in the
theoretical  foundations of logic, reasoning, an
understanding of neural architecture and evolutionary
mathematics. They cannot survive the rigors of their
operational environment if constructed on a paradigm of
layered failure mode and effects risk mitigation. The
effort described herein, identifies a hybrid solution
approach that folds Peircean reasoning and modal logic
into an architecture based on a human neocortical model.
That model of fusion is then integrated into a co-
evolutionary game engine to begin the development of a
predictive decision aid that interfaces to the command
decision maker through his or her belief state.

Command Paradigm

The first step in identifying the needs of a command
decision support sub-system is to understand the decision
making process. It is felt that we often neglect the
cognitive load imposed on our commanders and as a
result provide them with burdensome applications that
take away from a fundamental task, one of survival.
Systems engineering provides the means by which we can
assess the larger context of the problem being addressed
to ensure we solve the correct problem. One observation
in the process is the need to understand the decision
making process from a philosophically based perspective,
and to approach the design in a manner that augments the
decision making process and mitigates the impact on the
tasks being addressed. Recognizing that decisions are
based on a decision makers “belief state” enables us to
design decision aids that simply modify that belief state.

The model shows a system that collects data and
convolves that with their collected knowledge to create an
understanding of a situation, creating a belief state.
The model permits the accretion of more data as well as
updating the knowledge base, through learning or by
adding to the command collective, individuals or systems
with different skills. Once a belief state is generated
decisions are made which are tempered by uncertainty,
and risk aversion. This model also adds some insight into
the concept of information deception. What can we do or
what can an adversary do to corrupt the belief state of the
decision maker?
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Figure 1. Decision making paradigm.
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Figure 2. An interpretation of Hawkins neocortical model.
Fusion Architecture

If we start with a fusion architecture, as a base of
design the impacts on the other systems begin to emerge.
In Hawkins book “On Intelligence” we see a model for
the neocortex defined which ideally suites the needs of an
information fusion paradigm that supports the essential
elements of a reasoning based approach to fusion. In his

Additionally, by approaching design from this
perspective, we can develop solutions which enable the
decision maker to employ their considerable problem
solving skills to situations that may be novel, or were not
recognized in the course of command activities.
Basically, are attempting to augment a commanders skills
rather than replacing them.

Systems Considerations

The design of information systems are highly non-
linear systems that operate in a domain in which the
dynamics can be characterized as chaotic. As a result, the
design of fusion systems information architectures, the
command system, decision aids supporting command or
the intelligence and sensor systems feeding the fusion
systems are implicitly linked to each other and the
requirements are a balance among them. This linkage
between components makes design in an uncoupled
manner, whether you optimize within the sub-domains or
not, result in a sub-optimal system level performance. It
is hoped that in the course of working through the
elements of a fusion system we can see these intimate
dependencies.

model he articulates a layered system in which different
levels of abstraction are realized at each of the six layers.
Figure 2. takes a little liberty in representing the model
Hawkins proposed and adds a technical solution to the
representation of the layers of the neocortex. The points
to capture from this construct is the comprehensive
feedback loops between layers of the neocortex and the



links to different sensors, like auditory, visual, smell, etc.
The feedback loops activate an “expectation mechanism,
when performing a similar function daily we expect
things to be the same as the day before. Opening the door
to your office, we expect to find a round smooth knob
which must be turned. When that knob was changed
overnight and we now discover a lever, we stop and have
to adjust or discover a method for entering that door. We
have effectively shifted from an inductive-deductive
pattern matching system to an abductive based system.

In a similar way, the expectation crosses sensor
boundaries such that not only do we expect a certain feel
to the door knob but we expect to hear that familiar
squeak, also a silver color and the knob to be at room
temperature. When any of these conditions have changed
we shift to an abductive problem solving paradigm.

In the model presented in figure 2, we have
represented each layer as an ART neural network. The
reason for selecting this initial technology is because of
the classification capability of that design. We are
looking for a system that correlates attributes with
instances, a given set of attributes are possessed by a
specific object. That object can in turn be a member of a
higher level set of attributes which define a more complex
abstraction.  This abstraction mechanism becomes
important for high level reasoning and fits into a
knowledge representation technology that is based on
formal concept analysis.

Reasoning Engine

The reasoning engine is based on C.S. Peirce’s model
of scientific inquiry.  This philosophical construct
provides the foundation for how we as humans reason
about situations we new to us. This model consists of
three reasoning capabilities; Abduction, deduction and
induction. The logic associated with these forms of
reasoning are captured in figure 3.

A crude way of looking at this suite of logic is
abduction provides the hypotheses to possibly explain an
observation, deduction is a means for selecting from that
set of hypotheses, and induction is the means to validate
the hypothesis selected. Induction can be viewed as a
statistical collection of data that confirms or supports the
hypothesis. This statistical validation must be tempered
by maxims such as “severe” testing as defined by Mayo.
A second nuance of this problem is the frequentist
perspective that needs to be tempered by Bayesian
statistics for many of the problem domains this solution is
being proposed to address.

Components of Peircean Reasoning
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Figure 3. Formal representation of Peircean reasoning.

The architecture for the reasoning engine needed to
support the fusion model being developed is provided in
figure 4. This sub-system uses formal concept analysis
technologies to capture the knowledge domains and for
the basis for conceptual and temporal reasoning.

Reasoning System
Information Process Flow

Figure 4. Peircean reasoning engine, temporally
augmented.



The component provides a contextual framework in
order to narrow the potential domains of knowledge to
search within. This aspect enables one to to recognize
that “bullet items” is different if we are trying to
understand the preparation of a presentation or if we are
discussing weapon systems. This contextual information
coupled with data being processed provides the basis for
the construction of a working context that is used by the
Peircean reasoning engine. Data is associated with
attributes which is a gross screening process. The data
must be processed via some form of logic operator, in this
case the initial system will use a disjunctive logic filter to
provide a degree of validation of the data.

The knowledge operators which are being designed on
principle identified by J.S. Mills provides the basis for the
conceptual reasoning. The augmented operators will
reflect the need to fold temporal aspects of into the
reasoning process in order to operate on process reasoning
issues. The result of this set of process steps is a viable
hypothesis to explain a set of observations or provide a
means for processing a task. Should the existing
knowledge base prove insufficient in establishing a
solution the system needs to be able to expand its
knowledge base to augment its deficiencies. The
successful result will provide the basis for establishing or
updating the belief state. Again it is the belief state,
human or machine that forms the basis for decision or
actions.

Logic Infusion

Figure 4 shows a number of instances in which logic
systems are being introduced into the reasoning
architecture. The set identified is a baseline that needs to
be assessed and expanded based on the needs / domains of
application. Modal logic, which folds the concepts of
possibility and plausibility into the reasoning landscape,
must play a key role in the processing of data,
information, knowledge and belief. The ambiguity of
language results in situations that have the potential of
producing contradictions that can be ameliorated to
varying degree through the application of logics. In the
knowledge domain, the update of knowledge or the
addition of new knowledge domains, can produce
examples of these conflicts that need to be resolved. The
bird paradigm is a simple example; birds have feathers,
lay eggs and fly. Consideration of penguins creates
conflict in this knowledge domain because penguins can
not fly. This problem is studied in a number of logical
research domains associated with non-monotonic and
paraconsistent logics.

We are attempting to address some the issues of
knowledge generation, and update through the functional
application of non-monotonic and / or paraconsistent
logic. We recognize the need to integrate logics into the
system some of the focused research / applicability of a

particular modal logic needs to be pursued in follow-on
efforts.

Similarly, belief generation and revision is the domain
of doxastic and epistemic logic. What is very obvious in
developing an architectural solution to the larger problem
of fusion and decision aid design is the overriding
dependence of these systems on temporal logic.
Temporal logic provides a framework enabling one to
reason about change. This technology addresses issues of
truth associated with timeliness, duration and order of
events and information. Simplistically, a target location
in a database that is 2 weeks old is not a good candidate
for prosecution in maneuver warfare. The architecture
being instanciated is helping to identify process points
where the various modal logics naturally fit into the
system.

Knowledge representation

The representation of knowledge has a number of
requirements that enable us to apply a number of
technologies to produce the hybrid solution being sought.
We need a technology that enables the construction of
knowledge bases, that minimize transformations between
conceptual reasoning and process reasoning systems, and
augment a Peircean based abductive reasoning
architecture. The most difficult of these requirements
involves the transformation between conceptual and
process reasoning. In conceptual reasoning we are
attempting to identify some object or concept while in
process reasoning we are having to recognize the concept
but and additionally the state and the allowable transitions
in state.

Formal Concept Analysis (FCA)

Formal concept analysis is a knowledge representation
development effort initiated by Ganter & Wille based on
ordered set theory. The mathematics of FCA lend
themselves to lattice theory and the rich representation
capabilities of that domain. FCA is based on the idea of a
formal context, Krc, defined by a “triple” as the one in
equation 1.

X, =(G,M,I) Eqn1

In this equation G and M are sets of objects and
attributes respectively and | is a binary relation between
the two sets. There is an operator defined, (-)’ which aids
in the definition of formal concepts from the formal
context.

(A)'={me M|(g,m) el forallg € A}

Eqgn 2
(B)'={ge G|(g,m) e I forallm € B}



In this expression, the operator action on the object set
A produces the set of attributes common to objects within
that set. Likewise, application of the operator on the set
of attributes B produces the set of objects which posses
those attributes.  The interesting application of this

operator, which has wvery practical operational
implications, is shown in equations 3.
Ac((A))
< ((A)) Eqn 3

(A)' =(((A))Y

Operationally, this operator permits us to efficiently
construct a working context based on data being
processed to produce a complete object / attribute context.
The first application of the operator identifies common
attributes while the second application identifies objects
possessing the attributes which were common to the
original set of objects. The result of this operation can
potentially be a larger object set than the original object
set based on the formal context on which the operator is
being applied. This is a very powerful tool for use in
knowledge / data search.

The linkage to lattice theory provides avenues into a
robust representation domain that can aid an analyst in
developing an understanding of the collected data. The
technologies use the “Begriff” of an identified context as
the basis for the construction of that lattice. The Begriff,
B(G,M,]), is the ordered set of all concepts within a

context. A concept is defined by the conditions in
equation 4.
fe
(A,B)—>(G,M,]I)
= Eqgn 4

AcG,BcM,(A)=B&(B)=A

The ordering of the concepts in B(G,M,I) is defined in
the next expression.

(A,B)<(A,,B,) A cA,vB,c B, Egn5

An example of a lattice is given in from information
developed by K. Wolff for his FCA tutorial. This example
is a simple model capturing aspects of a knowledge base
dealing with animals. In matrix representation the
information is the following.

Ostrich X

Bee X

Animals | Preying Flying Bird mammal
Lion X X
Finch X X
Eagle X X X
Hare X

Table 1. Matrix representation of an animal context.
The lattice representation of this information is shown
in figure 5.

Figure 5. Lattice of animal domain.

The expansion capability of this technology is captured
by the “Bee” entry in the matrix. The lattice prior to the
addition of the information related to the bee consists of
information in figure 5 with the upper right node (BEE)
removed. Expanding a knowledge base is a simple task in
this technology. Likewise, the parsing of a lattice can be
accomplished nearly as easily. What this does is give us
the ability to structure the lattice at varying levels of
knowledge abstraction and then when additional detailed
information is of interest we can “zoom” into an object
node to see the additional structure of the knowledge base
under the selected node. This mechanical process adds to
the potential understanding of knowledge and data being
worked with.

The reality of the situation is that attributes are often
defined by continuous real variables and / or may be
probabilistic.  Formal concept analysis deals with
attributes with continuous variables by defining a special

construct called a “many valued context”. They are
defined in the next expression.
X, =(GMW,I) Eqn 6

As before, G is the set of objects, M is a set of
attributes with values from the set W, defined by a ternary
relational operator 1. In this extension, the set of all
values an attribute may assume is defined by the domain
of that attribute.

dom(m) =g € G|(g,m,w) elweW Egn7

To use many-valued contexts in formal concept
analyses these attributes must go through a scaling




process in order to generate a formal context that
identifies the presence or absence of an attribute. Scaling
can be considered as a construction of a special context
that defines the relations of the many-valued attributes
with new attribute sets and then ‘joining’ the original
context and the new scale context. The new scaling
context can be represent in equation 8.

S =(G,.M,,I,) Eqn 8

M is a set of new attributes to represent the many-
valued attribute in G and I, is the binary relationship
between the attribute sets. An example from Tam
involves book prices.

Price >$0 >$25
Book A | $25.95 $25.95 X
Book B | $19.95 $19.95 X
Book C | $74.95 $74.95 X
Table 2. Initial book price context and scaling
context.
This results in a new context defined below.
Price > $0 Price >$25

Book A X

Book B X

Book C X

Table 3. Scale context of book prices.

This process of scaling is import in the extension
Wolff takes in extending formal concept analysis into the
temporal domain.

Dealing with uncertainty and probabilities of attribute
associations has been treated in a more mechanistic
fashion by the author. The Attribute sets carry a
probability of association with an object into the lattice
construction domain which is converted to a binary
relationship based on a ‘threshold’ value identified by an
analyst. This approach simplifies treatment of
information uncertainty and lends itself to use by Finn’s
instantiation of Mills first canon which requires the
construction of 3 exemplar lattices.

Temporal Logic

Temporal concept analysis is an extension of FCA in
which the evolutions of the system or object are
considered in conjunction with the conceptual aspects of
the object. The principle researchers in the area, Wolff
and Neouchi, approach the problem by adding directed
edges to the lattice to capture the evolutionary behaviors
of the attributes. Wolff’s efforts have resulted in a very
formal representation of the temporal extensions of FCA
while Neouchi has focused on the development /
definition of sets of operators that focus on issues
associated with temporal concepts.

Wolff has approached temporal concept analysis be
scaling the time and event space and adding directed

edges to the concept lattice of the context. The potential
difficulty of this approach can be seen in the simple
example in the next figure.

Temporal Concept Analysis
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Figure 6. Example of lattice with directed edge
overlay.

The blue vectors on the lattice in figure 6 indicate the
temporal evolution of the objects in the formal context.
The red vectors show persistent states of objects in that
context. What | think becomes clear is the complexity of
the display for even so simple an example. Complex
information bases will rapidly overwhelm an advantages
lattice representation bring to formal concept analyses.

A way around this complexity issue is to redefine how
we think about systems / objects and the states of those
systems.  Traditionally, we view a system in a specific
state as a unique object, so we are force in a FCA
paradigm to replicate an object as many times as we have
states for it. If we instead view the system as being
unique with sets of constant or time dependent attributes
we can reduce the complexity of the lattice.

The paradigm we are working to develop is a
‘zoomable’ model in which we can zoom into an object to
flesh out greater detail of the object at lower levels of
conceptual abstraction. We can perform a similar
function when approaching issues of systems state or the
time dependent attributes. We can zoom into the special
attribute and use the mathematics or technology that is
better suited for the problem being solved. For example
we can use FCA to move us into a conceptual
neighborhood and focus on a temporal attribute and use
Bayesian, Markov, or the temporally extended formal
concept analysis to refine our understanding of a
situation.

We might be able to see these possibilities in more
detail by considering the information in the next figure.
The notional example considers different temporal traces
for the 4 attributes and a different set of attributes for two



objects. We can see that taking a shapshot of these
systems or objects at different points in time produces
different collects of attributes for the objects. This can
also change with different threshold levels. At point ‘a’,
object 1 is characterized by attributes A while object 2 by
attributes A and D. If D was not in the data set the
correct hypothesis could not be identified. Using a
process of temporal matching could refine the hypothesis
since A is present in object 1 at all three states while it is
only present at state ‘a’ in object 2.

Knowing the Markov transition matrix could aid in the
proper identification of a temporally dependent
hypothesis.  Likewise temporal extensions of formal
concept analysis could also be used to refine the selection
mechanisms. The second approach may require
additional computational overhead, but should be just as
effective.

Temporal Traces
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Figure 7. Temporal traces of four attributes and two
objects with a mix of attributes.

“Belief State”

Referring back to the architecture diagram in figure 4,
there is a belief state cache identified. This cache can be
viewed as the tagged collection of validated hypotheses
generated by the reasoning system. This cache contains
the understanding up to the current point in time, of data
being collected and assesed. The structure of this cache is
defined in the next equation.

tj,Actzvej

~ higd...d,d),...d)} Eqn 9
P\ Aoy dypdl sy by s By Y

n’ m

hpdye.d,dl s dih, ek,

Bk

These belief kernels consist of a time tag, t an
activation flag, Acitve;, a hypothesis, h;, data collected that
results in the hypothesis, d, and data collected to validate
the hypothesis, d',. The next two notional inclusions
consist of hypotheses from higher levels of abstraction
that may depend on hypotheses generated at sets of lower
abstraction. This construct is needed to trace the impact
of changes or updates to information at lower levels of
abstraction.

Conclusion

What we have identified in this short note is a suite of
technologies that together define a solution to fusion
which captures a reasoning model that supports fusion. It
is this approach that is needed if we are to capture the
human capability of performing fusion which has at its
core a reasoning function. The solution we are working
towards is a 70-80 percent solution, to demonstrate the
synergistic functioning of the major technologies we have
identified as integral to that solution.

Significant additional work needs to be performed to
ensure the optimal identification of the modal logics
required by the solution. There may be a better mix, or
alternatives that have not been realized. Logic has
implications on the information security, on its timeliness,
on its validity, and its quality. Modal logics also aid in
the management of knowledge and the belief. The effort
here has only scratched the surface, but the importance of
this integration can not be missed or ignored.

The knowledge representation technology of formal
concept analysis is in my opinion the best suited to
support logic, reasoning, and the neocortical architecture
identified as the real time fusion engine. It also seems to
support the two major forms of reasoning that we need in
decision aid problems were we need to be able to perform
concept reasoning as well as process or temporal
reasoning.

Finally, a fusion solution requires a core reasoning
capability. When the inductive — deductive functioning of
the system cannot identify a situation you need to be able
to switch into an abductive hypothesis generating function
in the effort to find a solution to this new situation.
Working in a very tightly coupled manner is Hawkins
neocortical model, this structure supports pPeircean
reasoning, is a natural for multi-sensor fusion, and the
feedback mechanisms are a very powerful approach for
prediction / expectation functionality.



Implications

I think the most significant implication of this
approach to solving fusion lies in its impact on
information system architectures. There seems to be a
belief that we need huge information conduits to move
data from the sensor to the decision maker. This
approach results in smaller conduits to the higher decision
making functionaries, with only slightly larger conduits
near the data collection assets. This is because we
abstract the data into multiple levels of information. This
permits us to communicate ideas rather than ‘bits’ of data.

A second implication concerns the impact on the
design of sensors. If we build a robust fusion system, we
can optimize the function of the sensor systems to
maximize the effectiveness of the sensors. We may not
want to collect raw acoustic data but capture data related
to a higher level of abstraction the will lead to more
effective detection capabilities.
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