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Abstract 

What we have identified is a suite of technologies that 
together define a solution to fusion which captures a 
reasoning model that supports fusion.  It is this approach 
that is needed if we are to capture the human capability of 
performing fusion which has at its core a reasoning 
function.  It is a hybridization of formal and temporal 
concept reasoning, Peircean reasoning with an 
instantiation of Mills canons, Modal logic and coupled to 
an architecture based on Hawkins model of the neocortex.  
The solution concept will have significant impact on 
sensor development and a major impact on information 
architecture design.  The effort supporting this effort is 
working towards a 70-80 percent solution to demonstrat 
the capabilities and the feasibility of linkage of the 
technologies. 
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Introduction 
 
This document provides information on the current state 
of a development effort at Sandia Labs that is taking an 
integrated systems engineering approach to the design of 
a data and information fusion engine for use in 
information intensive environments.  The approach takes 
a step back to understand the requirements associated 
with this design from a higher perspective.  In doing so 
we find a number of fundamental changes in approach 
that need to be made to identify solutions that are robust 
in the information domain.  We need to recognize the 
dynamically chaotic environment these systems operate 
in, to understand decision making at a fundamental levels 
and then search the technological domains that may yield 
solutions to these problems.  An engineering paradigm of 
divide, constrain and conquer can not be used to deal with 
the complex problems associated with combat and the 
information systems supporting command and control in 
this domain.   

Information systems support command, control, 
fusion, decision support, as well as data and information 
collection.  Vulnerability, is not failure of the “pipes” but 
it is the defeat, delay and disruption of the information 

itself.  Design of these systems must be grounded in the 
theoretical foundations of logic, reasoning, an 
understanding of neural architecture and evolutionary 
mathematics.  They cannot survive the rigors of their 
operational environment if constructed on a paradigm of 
layered failure mode and effects risk mitigation.  The 
effort described herein, identifies a hybrid solution 
approach that folds Peircean reasoning and modal logic 
into an architecture based on a human neocortical model.  
That model of fusion is then integrated into a co-
evolutionary game engine to begin the development of a 
predictive decision aid  that interfaces to the command 
decision maker through his or her belief state. 
 
Command Paradigm 

The first step in identifying the needs of a command 
decision support sub-system is to understand the decision 
making process.  It is felt that we often neglect the 
cognitive load imposed on our commanders and as a 
result provide them with burdensome applications that 
take away from a fundamental task, one of survival.  
Systems engineering provides the means by which we can 
assess the larger context of the problem being addressed 
to ensure we solve the correct problem. One observation 
in the process is the need to understand the decision 
making process from a philosophically based perspective, 
and to approach the design in a manner that augments the 
decision making process and mitigates the impact on the 
tasks being addressed.  Recognizing that decisions are 
based on a decision makers “belief state” enables us to 
design decision aids that simply modify that belief state. 

The  model shows a system that collects data and 
convolves that with their collected knowledge to create an 
understanding of a situation, creating a belief state.   
The model permits the accretion of more data as well as 
updating the knowledge base, through learning or by 
adding to the command collective, individuals or systems 
with different skills.  Once a belief state is generated 
decisions are made which are tempered by uncertainty, 
and risk aversion.  This model also adds some insight into 
the concept of information deception.  What can we do or 
what can an adversary do to corrupt the belief state of the 
decision maker? 
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Figure 1.  Decision making paradigm. 

 

Additionally, by approaching design from this 
perspective, we can develop solutions which enable the 
decision maker to employ their considerable problem 
solving skills to situations that may be novel, or were not 
recognized in the course of command activities.  
Basically, are attempting to augment a commanders skills 
rather than replacing them.   

 

Systems Considerations 
The design of information systems are highly non-

linear systems that operate in a domain in which the 
dynamics can be characterized as chaotic.  As a result, the 
design of fusion systems information architectures, the 
command system, decision aids supporting command or 
the intelligence and sensor systems feeding the fusion 
systems are implicitly linked to each other and the 
requirements are a balance among them.  This linkage 
between components makes design in an uncoupled 
manner, whether you optimize within the sub-domains or 
not, result in a sub-optimal system level performance.  It 
is hoped that in the course of working through the 
elements of a fusion system we can see these intimate 
dependencies.  

 

 
Figure 2.  An interpretation of Hawkins neocortical model. 
Fusion Architecture 

If we start with a fusion architecture, as a base of 
design the impacts on the other systems begin to emerge. 
In Hawkins book “On Intelligence”  we see a model for 
the neocortex defined which ideally suites the needs of an 
information fusion paradigm that supports the essential 
elements of a reasoning based approach to fusion.  In his 

model he articulates a layered system in which different 
levels of abstraction are realized at each of the six layers. 
Figure 2. takes a little liberty in representing the model 
Hawkins proposed and adds a technical solution to the 
representation of the layers of the neocortex.  The points 
to capture from this construct is the comprehensive 
feedback loops between layers of the neocortex and the 



links to different sensors, like auditory, visual, smell, etc.  
The feedback loops activate an “expectation mechanism, 
when performing a similar function daily we expect 
things to be the same as the day before.  Opening the door 
to your office, we expect to find a round smooth knob 
which must be turned.  When that knob was changed 
overnight and we now discover a lever, we stop and have 
to adjust or discover a method for entering that door.  We 
have effectively shifted from an inductive-deductive 
pattern matching system to an abductive based system.   

In a similar way, the expectation crosses sensor 
boundaries such that not only do we expect a certain feel 
to the door knob but we expect to hear that familiar 
squeak, also a silver color and the knob to be at room 
temperature.  When any of these conditions have changed 
we shift to an abductive problem solving paradigm.   

In the model presented in figure 2, we have 
represented each layer as an ART neural network.  The 
reason for selecting this initial technology is because of 
the classification capability of that design.  We are 
looking for a system that correlates attributes with 
instances, a given set of attributes are possessed by a 
specific object.  That object can in turn be a member of a 
higher level set of attributes which define a more complex 
abstraction.  This abstraction mechanism becomes 
important for high level reasoning and fits into a 
knowledge representation technology that is based on 
formal concept analysis.  

 
Reasoning Engine 

The reasoning engine is based on C.S. Peirce’s model 
of scientific inquiry.  This philosophical construct 
provides the foundation for how we as humans reason 
about situations we new to us.  This model consists of 
three reasoning capabilities; Abduction, deduction and 
induction.  The logic associated with these forms of 
reasoning are captured in figure 3. 

A crude way of looking at this suite of logic is 
abduction provides the hypotheses to possibly explain an 
observation, deduction is a means for selecting from that 
set of hypotheses, and induction is the means to validate 
the hypothesis selected.  Induction can be viewed as a 
statistical collection of data that confirms or supports the 
hypothesis.  This statistical validation must be tempered 
by maxims such as “severe” testing as defined by Mayo.  
A second nuance of this problem is the frequentist 
perspective that needs to be tempered by Bayesian 
statistics for many of the problem domains this solution is 
being proposed to address. 

 

 
Figure 3.  Formal representation of Peircean reasoning. 

 
The architecture for the reasoning engine needed to 

support the fusion model being developed is provided in 
figure 4.  This sub-system uses formal concept analysis 
technologies to capture the knowledge domains and for 
the basis for conceptual and temporal reasoning. 

 
Figure 4.  Peircean reasoning engine, temporally 
augmented. 

 



The component provides a contextual framework in 
order to narrow the potential domains of knowledge to 
search within.  This aspect enables one to to recognize 
that “bullet items” is different if we are trying to 
understand the preparation of a presentation or if we are 
discussing weapon systems.  This contextual information 
coupled with data being processed provides the basis for 
the construction of a working context that is used by the 
Peircean reasoning engine.  Data is associated with 
attributes which is a gross screening process.  The data 
must be processed via some form of logic operator, in this 
case the initial system will use a disjunctive logic filter to 
provide a degree of validation of the data. 

The knowledge operators which are being designed on 
principle identified by J.S. Mills provides the basis for the 
conceptual reasoning.  The augmented operators will 
reflect the need to fold temporal aspects of into the 
reasoning process in order to operate on process reasoning 
issues.  The result of this set of process steps is a viable 
hypothesis to explain a set of  observations or provide a 
means for processing a task.   Should the existing 
knowledge base prove insufficient in establishing a 
solution the system needs to be able to expand its 
knowledge base to augment its deficiencies.  The 
successful result will provide the basis for establishing or 
updating the belief state.  Again it is the belief state, 
human or machine that forms the basis for decision or 
actions. 

 
Logic Infusion 

Figure 4 shows a number of instances in which logic 
systems are being introduced into the reasoning 
architecture.  The set identified is a baseline that needs to 
be assessed and expanded based on the needs / domains of 
application.  Modal logic, which folds the concepts of 
possibility and plausibility into the reasoning landscape, 
must play a key role in the processing of data, 
information, knowledge and belief.  The ambiguity of 
language results in situations that have the potential of 
producing contradictions that can be ameliorated to 
varying degree through the application of logics.  In the 
knowledge domain, the update of knowledge or the  
addition of new knowledge domains, can produce 
examples of these conflicts that need to be resolved.  The 
bird paradigm is a simple example; birds have feathers, 
lay eggs and fly.  Consideration of penguins creates 
conflict in this knowledge domain because penguins can 
not fly.  This problem is studied in  a number of logical 
research domains associated with non-monotonic and 
paraconsistent logics.   

We are attempting to address some the issues of 
knowledge generation, and update through the functional 
application of non-monotonic and / or paraconsistent  
logic.   We recognize the need to integrate logics into the 
system  some of the focused research / applicability of a 

particular modal logic needs to be pursued in follow-on 
efforts.   

Similarly, belief generation and revision is the domain 
of doxastic and epistemic logic.  What is very obvious in 
developing an architectural solution to the larger problem 
of fusion and decision aid design is the overriding 
dependence of these systems on temporal logic.  
Temporal logic provides a framework enabling one to 
reason about change.  This technology addresses issues of 
truth associated with timeliness, duration and order of 
events and information.  Simplistically, a target location 
in a database that is 2 weeks old is not a good candidate 
for prosecution in maneuver warfare.  The architecture 
being instanciated is helping to identify process points 
where the various modal logics naturally fit into the 
system. 

 
Knowledge representation 

The representation of knowledge has a number of 
requirements that enable us to apply a number of 
technologies to produce the hybrid solution being sought.  
We need a technology that enables the construction of 
knowledge bases, that minimize transformations between 
conceptual reasoning and process reasoning systems, and 
augment a Peircean based abductive reasoning 
architecture.  The most difficult of these requirements 
involves the transformation between conceptual and 
process reasoning.  In conceptual reasoning we are 
attempting to identify some object or concept while in 
process reasoning we are having to recognize the concept 
but and additionally the state and the allowable transitions 
in state.   

 
Formal Concept Analysis (FCA) 

Formal concept analysis is a knowledge  representation 
development effort initiated by Ganter & Wille based on 
ordered set theory.  The mathematics of FCA lend 
themselves to lattice theory and the rich representation 
capabilities of that domain. FCA is based on the idea of a 
formal context, KFC, defined by a “triple” as the one in 
equation 1.  

  

  K FC = (G,M,I)  Eqn 1 
 
In this equation G and M are sets of objects and 

attributes respectively and I is a binary relation between 
the two sets.  There is an operator defined, (⋅)′ which aids 
in the definition of formal concepts from the formal 
context.   
 
(A ′ ) := {m ∈ M (g,m) ∈ I for all g ∈ A}

(B ′ ) := {g ∈ G (g,m) ∈ I for allm ∈ B}
Eqn 2 

 



In this expression, the operator action on the object set 
A produces the set of attributes common to objects within 
that set.  Likewise, application of the operator on the set 
of attributes B produces the set of objects which posses 
those attributes.  The interesting application of this 
operator, which has very practical operational 
implications, is shown in equations 3. 

 
A ⊆ ((A ′ ) ′ ) 

(A ′ ) = (((A ′ ) ′ ) ′ ) 
 Eqn 3 

 
Operationally, this operator permits us to efficiently 

construct a working context based on data being 
processed to produce a complete object / attribute context.  
The first application of the operator identifies common 
attributes while the second application identifies objects 
possessing the attributes which were common to the 
original set of objects.  The result of this operation can 
potentially be a larger object set than the original object 
set based on the formal context on which the operator is 
being applied.  This is a very powerful tool for use in 
knowledge / data search. 

The linkage to lattice theory provides avenues into a 
robust representation domain that can aid an analyst in 
developing an understanding of the collected data.  The 
technologies use the “Begriff” of an identified context as 
the basis for the construction of that lattice.  The Begriff, 
B(G,M,I), is the ordered set of all concepts within a 
context.  A concept is defined by the conditions in 
equation 4. 

 

(A,B)→
fc

(G,M,I)

⇔
A ⊆ G, B ⊆ M, (A ′ ) = B & (B ′ ) = A

 Eqn 4 

 
The ordering of the concepts in B(G,M,I) is defined in 

the next expression. 
 

(A1,B1) ≤ (A2,B2) ⇔ A1 ⊆ A2 ∨ B2 ⊆ B1 Eqn 5 
 
An example of a lattice is given in from information  

developed by K. Wolff for his FCA tutorial. This example 
is a simple model capturing aspects of a knowledge base 
dealing with animals.  In matrix representation the 
information is the following. 

 
Animals Preying Flying Bird mammal 

Lion x   x 
Finch  x x  
Eagle x x x  
Hare    x 

Ostrich   x  
Bee  x   
Table 1.  Matrix representation of an animal context. 
The lattice representation of this information is shown 

in figure 5. 

 
Figure 5.  Lattice of animal domain. 
The expansion capability of this technology is captured 

by the “Bee” entry in the matrix.  The lattice prior to the 
addition of the information related to the bee consists of 
information in figure 5 with the upper right node (BEE) 
removed.  Expanding a knowledge base is a simple task in 
this technology.  Likewise, the parsing of a lattice can be 
accomplished nearly as easily.  What this does is give us 
the ability to structure the lattice at varying levels of 
knowledge abstraction and then when additional detailed 
information is of interest we can “zoom” into an object 
node to see the additional structure of the knowledge base 
under the selected node.  This mechanical process adds to 
the potential understanding of knowledge and data being 
worked with. 

The reality of the situation is that attributes are often 
defined by continuous real variables and / or may be 
probabilistic.  Formal concept analysis deals with 
attributes with continuous variables by defining a special 
construct called a “many valued context”.   They are 
defined in the next expression. 

 

  K mv = (G,M,W ,I) Eqn 6 
 
As before, G is the set of objects, M is a set of 

attributes with values from the set W, defined by a ternary 
relational operator I.  In this extension, the set of all 
values an attribute may assume is defined by the domain 
of that attribute.  

 
dom(m) := g ∈ G (g,m,w) ∈ I,w ∈ W  Eqn 7 

 
To use many-valued contexts in formal concept 

analyses these attributes must go through a scaling 



process in order to generate a formal context that 
identifies the presence or absence of an attribute.  Scaling 
can be considered as a construction of a special context 
that defines the relations of the many-valued attributes 
with new attribute sets and then ‘joining’ the original 
context and the new scale context.  The new scaling 
context can be represent in equation 8. 

 

  Sm := (Gm,Mm ,Im )  Eqn 8 
 
Mm is a set of new attributes to represent the many-

valued attribute in G and Im is the binary relationship 
between the attribute sets.  An example from Tam 
involves book prices. 

 Price   >$0 >$25 
Book A $25.95  $25.95  x 
Book B $19.95  $19.95 x  
Book C $74.95  $74.95  x 

  Table 2.  Initial book price context and scaling 
context. 

This results in a new context defined below. 
 Price > $0 Price >$25 

Book A  x 
Book B x  
Book C  x 

Table 3.  Scale context of book prices. 
This process of scaling is import in the extension 

Wolff takes in extending formal concept analysis into the 
temporal domain. 

Dealing with uncertainty and probabilities of attribute 
associations has been treated in a more mechanistic 
fashion by the author.  The Attribute sets carry a 
probability of association with an object into the lattice 
construction domain which is converted to a binary 
relationship based on a ‘threshold’ value identified by an 
analyst.  This approach simplifies treatment of 
information uncertainty and lends itself to use by Finn’s 
instantiation of Mills first canon which requires the 
construction of 3 exemplar lattices. 

 
Temporal Logic 

Temporal concept analysis is an extension of FCA in 
which the evolutions of the system or object are 
considered in conjunction with the conceptual aspects of 
the object.  The principle researchers in the area, Wolff 
and Neouchi, approach the problem by adding directed 
edges to the lattice to capture the evolutionary behaviors 
of the attributes.  Wolff’s efforts have resulted in a very 
formal representation of the temporal extensions of FCA 
while Neouchi has focused on the development / 
definition of sets of operators that focus on issues 
associated with temporal concepts.  

Wolff has approached temporal concept analysis be 
scaling the time and event space and adding directed 

edges to the concept lattice of the context.  The potential 
difficulty of this approach can be seen in the simple 
example in the next figure. 

 
Figure 6.  Example of lattice with directed edge 

overlay. 
The blue vectors on the lattice in figure 6 indicate the 

temporal evolution of the objects in the formal context.  
The red vectors show persistent states of objects in that 
context.  What I think becomes clear is the complexity of 
the display for even so simple an example.  Complex 
information bases will rapidly overwhelm an advantages 
lattice representation bring to formal concept analyses. 

A way around this complexity issue is to redefine how 
we think about systems / objects and the states of those 
systems.   Traditionally, we view a system in a specific 
state as a unique object, so we are force in a FCA 
paradigm to replicate an object as many times as we have 
states for it.  If we instead view the system as being 
unique with sets of constant or time dependent attributes 
we can reduce the complexity of the lattice.   

The paradigm we are working to develop is a 
‘zoomable’ model in which we can zoom into an object to 
flesh out greater detail of the object at lower levels of 
conceptual abstraction.  We can perform a similar 
function when approaching issues of systems state or the 
time dependent attributes.  We can zoom into the special 
attribute and use the mathematics or technology that is 
better suited for the problem being solved.  For example 
we can use FCA to move us into a conceptual 
neighborhood and focus on a temporal attribute and use 
Bayesian, Markov, or the temporally extended formal 
concept analysis to refine our understanding of a 
situation.   

We might be able to see these possibilities in more 
detail by considering the information in the next figure.  
The notional example considers different temporal traces 
for the 4 attributes and a different set of attributes for two 



objects.  We can see that taking a snapshot of these 
systems or objects at different points in time produces 
different collects of attributes for the objects.  This can 
also change with different threshold levels.  At point ‘a’, 
object 1 is characterized by attributes A while object 2 by 
attributes A and D.  If  D was not in the data set the 
correct hypothesis could not be identified.  Using a 
process of temporal matching could refine the hypothesis 
since A is present in object 1 at all three states while it is 
only present at state ‘a’ in object 2.   

Knowing the Markov transition matrix could aid in the 
proper identification of a temporally dependent 
hypothesis.  Likewise temporal extensions of formal 
concept analysis could also be used to refine the selection 
mechanisms.  The second approach may require 
additional computational overhead, but should be just as 
effective. 

 

 
Figure 7.  Temporal traces of four attributes and two 

objects with a mix of attributes. 
 

“Belief State” 
Referring back to the architecture diagram in figure 4, 

there is a belief state cache identified.  This cache can be 
viewed as the tagged collection of validated hypotheses 
generated by the reasoning system. This cache contains 
the understanding up to the current point in time, of data 
being collected and assesed.  The structure of this cache is 
defined in the next equation. 

 

 

Bk j =

t j,Active j

h j,0,d1,Kdn,d1
v ,Kdm

v{ }
h j,k ,d1,Kdn,d1

v,Kdm
v ,h j,k−1,Kh j,k− t{ }

h j,r,d1,Kdn,d1
v ,Kdm

v ,h j,r−1,Kh j,r−s{ }

Eqn 9 

 
These belief kernels consist of a time tag, tj an 

activation flag, Acitvej, a hypothesis, hj, data collected that 
results in the hypothesis, dn and data collected to validate 
the hypothesis, dv

m.  The next two notional inclusions 
consist of hypotheses from higher levels of abstraction 
that may depend on hypotheses generated at sets of lower 
abstraction.  This construct is needed to trace the impact 
of changes or updates to information at lower levels of 
abstraction. 

 

Conclusion 
What we have identified in this short note is a suite of 

technologies that together define a solution to fusion 
which captures a reasoning model that supports fusion.  It 
is this approach that is needed if we are to capture the 
human capability of performing fusion which has at its 
core a reasoning function.  The solution we are working 
towards is a 70-80 percent solution, to demonstrate the 
synergistic functioning of the major technologies we have 
identified as integral to that solution. 

Significant additional work needs to be performed to 
ensure the optimal identification of the modal logics 
required by the solution.  There may be a better mix, or 
alternatives that have not been realized.  Logic has 
implications on the information security, on its timeliness, 
on its validity, and its quality.  Modal logics also aid in 
the management of knowledge and the belief.  The effort 
here has only scratched the surface, but the importance of 
this integration can not be missed or ignored. 

The knowledge representation technology of formal 
concept analysis is in my opinion the best suited to 
support logic, reasoning, and the neocortical architecture 
identified as the real time fusion engine.  It also seems to 
support the two major forms of reasoning that we need in 
decision aid problems were we need to be able to perform 
concept reasoning as well as process or temporal 
reasoning. 

Finally, a fusion solution requires a core reasoning 
capability.  When the inductive – deductive functioning of 
the system cannot identify a situation you need to be able 
to switch into an abductive hypothesis generating function 
in the effort to find a solution to this new situation.  
Working in a very tightly coupled manner is Hawkins 
neocortical model, this structure supports pPeircean 
reasoning, is a natural for multi-sensor fusion, and the 
feedback mechanisms are a very powerful approach for 
prediction / expectation functionality. 

 



Implications 
I think the most significant implication of this 

approach to solving fusion lies in its impact on 
information system architectures.  There seems to be a 
belief that we need huge information conduits to move 
data from the sensor to the decision maker.  This 
approach results in smaller conduits to the higher decision 
making functionaries, with only slightly larger conduits 
near the data collection assets.  This is because we 
abstract the data into multiple levels of information.  This 
permits us to communicate ideas rather than ‘bits’ of data. 

A second implication concerns the impact on the 
design of sensors.  If we build a robust fusion system, we 
can optimize the function of the sensor systems to 
maximize the effectiveness of the sensors.  We may not 
want to collect raw acoustic data but capture data related 
to a higher level of abstraction the will lead to more 
effective detection capabilities. 
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