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It is often necessary to generate realizations of nonstationary random processes for the
simulation of random environments. A framework useful for modeling nonstationary
random processes is the Karhunen-Loeve (KL) expansion; a strength and shortcoming is
that its description involves a stochastic vector of zero-mean, unit variance, uncorrelated
random variables that are not necessarily jointly Gaussian, and not necessarily
independent. These facts can make it difficult to simulate the random process accurately.
However, the Markov chain Monte Carlo technique, when coupled to a multi-variate
kernel density estimator, presents a tractable approach to the simulation problem. This
paper discusses the tools, mentioned here, required to generate realizations of
nonstationary random process realizations, and presents a numerical example.

INTRODUCTION

Practically all the environments to which structural dynamic systems are subjected are realizations of random
processes. That is, the environments that excite systems, whether described in the time domain or in a transform
space, cannot be predicted precisely in advance of their measurement. For example, random vibration environments
are the prototypical stochastic environments that excite structures. But, beyond those environments, others, like
mechanical shock environments, are also random processes. That is, most shock environments are signals that come
from a source that has a formal, probabilistic description. Of course, measures of mechanical environments, like the
shock response spectrum, are themselves random processes because they are simply well-defined transformations of
random processes. Some valuable capabilities in the representation and analysis of randomly excited structural
dynamic systems are the facilities to model a random source, then generate realizations of the source.

A compact framework for describing general random processes is the Karhunen-Loeve (KL) expansion (Traina, et
al. [7], Ghanem and Spanos [1], Masri, et al. [2], Paez and Hunter [3], [4]). The KL expansion models a random
process as a mean function plus a random deviation from the mean. The random deviation from the mean is the
product of normalized shape functions, amplitude constants, and randomizing variates. (The specifics of the
expansion will be covered later.) The random variates come from a multi-variate random source, i.e., a vector
random variable. The random variates in the KL expansion are guaranteed uncorrelated, but not statistically
independent. So if the random process is Gaussian distributed, then the vector random variable has a joint Gaussian
distribution. If the random process is not Gaussian distributed, then the vector random variable has some distribution
other than a joint Gaussian distribution. In this latter case, it is usually difficult to characterize the joint distribution
of the vector random variable, and therefore, it is difficult to generate realizations of the random process.

However, an empirical/numerical construct is available for the description of joint probability density functions
(PDF) known only through data they produce. This is the kernel density estimator (KDE), and it is useful for



characterizing joint probability density functions in up to a few dimensions. The KDE is described, for example, in
Silverman [6]. It is particularly useful for describing the joint PDFs of vector random variables, where the random
variables are dependent and non-Gaussian. But even though the expression of the KDE in terms of measured data is
simple and direct, it presents a form that is not convenient for generating multi-variate realizations of the represented
random vector.

The Markov chain Monte Carlo (MCMC) method is an efficient numerical technique for the generation of multi-
variate realizations from a vector random source, when the joint PDF of the source is known. It is described, for
example, in Press [5]. It uses a Markov chain random sampling scheme to develop multi-variate random vector
realizations, and then determines whether or not the realizations are acceptable samples of the target source.

This investigation develops (1) the KL expansion as an efficient means for modeling general random processes, (2)
the KDE as a framework for modeling the joint PDF of the jointly distributed random variables in the KL expansion,
and (3) the MCMC construct to generate realizations of the underlying random vector in the KL expansion
representation of the random process of interest. Once these things are done, a practical problem and its data are
described, and the simulation technique developed here is applied to it.

KARHUNEN-LOEVE EXPANSION

We assume that the random source under consideration will be sampled at discrete values of a parameter (like time
or frequency), and that every sample will have finite duration and the same number of points. Denote the random
process of interest X, = {Xj = 0,...,n—1}; the random process may be nonstationary, or a finite segment of a

stationary random process. Assume, further, that we have M measured realizations of the random process, and that
they are denoted x,,,,m=1,...,M . Each signal, x,, is an nx1 vector of real values and a realization of the random

process Xy,. The entire collection of realizations may be collected in the matrix of column vectors

X9 =[x1 X ... xM]. As stated previously, our objective is to generate n, additional random process
realizations using the KL expansion, a KDE, and MCMC sampling.

The KL expansion requires, first, an estimate of the random process mean. It is
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where the sample mean is an nx1 vector. Next, define a matrix of mean-normalized realizations

X=[x-%) (x-%) ... (xm-%) )

The matrix X has dimension nx M . Use the matrix of normalized realizations to estimate the stochastic process
auto- and cross-covariances.
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The dimension of C xx is nxn, and the i" row-j" column element denotes the estimated covariance between the
random variables X;j and X, the i™ and j" elements of the random process Xrp -

Compute the eigenvalue decomposition of the estimated covariance matrix.

Cxx =VWVT 4)



where the matrix V has dimension nxn, and the columns of V are the eigenvectors of the estimated covariance
matrix, and the diagonal matrix W has dimension nxn, and contains the eigenvalues of the estimated covariance

matrix. The eigenvectors are normalized so as to be orthonormal, i.e., VTV =1, where I is the nxn identity
matrix. The eigenvalues contained in W are nonnegative. The autocovariance estimate matrix can usually be
accurately approximated using only a fraction of the columns of ¥ and terms in W. We retain only the largest
diagonal terms of W in w, and the corresponding columns of ¥ in v. Then the approximation

C Xx = vy ()

can be written. When ny terms are retained in the approximation, the dimension of v is N x Ny, and the dimension
of wis Ny X Ng .

We can now use the sample mean X, and the factors of the approximate eigenvalue expansion v and w, to write the
approximate KL expansion of the stochastic process.

Xrp =20 + % (6)

where U is an ng x1 vector of mean-zero, unit-variance uncorrelated random variables. In this context, the shapes
contained in the columns of the matrix v are sometimes called the principal shapes of the KL expansion. The

diagonal elements of the matrix w2 are called the amplitudes of the KL expansion.

The realizations of U that correspond to the stochastic process realizations X =[x1 X ... xM] can be
evaluated through inversion of Eq. (6).
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where X is the matrix of mean-normalized realizations of the random process. The sample mean of the

ur(nrea'),m =1,..,M , is a zero vector, and the sample covariance (or correlation) is the ngxng identity matrix.

Because the parameters of the KL expansion expression of Eq. (6) are based on estimates of the random process
mean and covariance, the KL expansion is an estimate of the underlying random process. Because only a portion of
the components of W and ¥ are included in w and v, the KL expansion is only an approximation of the estimate of
the random process.

Equation (6) indicates that in order to generate realizations of the random process, X, , it is necessary to generate

realizations of the ngx1 random vector U. To generate realizations of the random vector U, we must first know the
joint PDF of the random variables in the vector U.

KERNEL DENSITY ESTIMATOR

Every random vector U has a joint probability distribution. One description of the probability distribution is a joint
PDF governing the behavior of the random variables in U, namely, U;,i=1,...,ny. In some instances, the theoretical
form for the distribution is known, however, in most practical situations, it is not. When sufficient realizations from

the random vector are available, an empirical expression for the joint PDF can be written; it is the kernel density

estimator (KDE). Let ugea'),m =1,...,M , be the ensemble of realizations of U expressed in Eq. (7). Each u,(,ﬁea') is

an ng x1 vector of real numbers. In terms of these vectors the KDE is expressed
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where ¢ is a smoothing parameter, and the symbol |||| refers to the operation of the norm — the square root of the
sum of the squares of the elements of the vector that is the argument. Equation (8) is essentially a superposition of
M, ng-variate, Gaussian PDFs with diagonal covariance matrix, and with each of the PDFs centered on a data

vector, ur(nrea'). Selection of the smoothing parameter is discussed in Silverman [6].

MARKOV CHAIN MONTE CARLO

As mentioned above, our objective is to generate realizations of the random process X, = {X jJ=0,.,n —1}, and

Eq. (6) shows that this can be accomplished, approximately, by generating realizations of the random vector U,
whose empirical PDF is given by Eq. (8). We propose to generate samples from U using the Markov chain Monte
Carlo (MCMC) approach, and specifically, the Metropolis-Hastings (MH) implementation of MCMC (Press, [5]).
Metropolis-Hastings sampling is a Bayesian technique for generating realizations of a multivariate random variable
(a random vector) with prescribed PDF.

Metropolis-Hastings generates realizations of a random vector, U, by specifying an initial realization u(()MH) . When

the vector u(()MH) is used in Eq. (8) as the argument, the quantity fU(u(()MH)): Ly (u(()MH)) can be interpreted as the

likelihood that the random vector U would produce the realization u(()MH)

another realization of U — a trial realization - by adding to u(()MH)

. Metropolis-Hastings next generates

an ngx1, vector random deviate &. The
characteristics of the random variable &are chosen so that the quantity

Ui = ”(()MH) +0 9)

yields realizations at least some of which lie in the vicinity of the vectors ur(nrea'),m =1,...,M . Next, the likelihood

Ly (#riar ) OF #yriay is computed, and used with Ly, (u(()MH )) to form the acceptance probability

Pacc = min[ LU((u(t,\r/m)))’l] (10)
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The quantity p,ec iS the probability of acceptance of the trial realization, wyi, , as @ member of the ensemble of the
random vector U. Based on Eq. (10), when the likelihood, Ly (ayiq ), OF the trial realization, uyig , is greater than
or equal to the likelihood, LU(u(()MH)), of the current realization, u(()MH), the acceptance probability is one — the
realization uyy IS certain to be accepted as a realization of U. When the likelihood of the trial realization,
Ly (#iria ), is less than the likelihood of the current realization, L, (u(()MH)), the acceptance probability is less than

one, but typically nonzero — the realization ., IS accepted as a realization of U with the probability

Ly (#ria )/ Ly (u(()MH)). Even relatively unlikely “outlier” realizations can, on occasion, be accepted as realizations
of U. To establish whether or not the trial realization, iy , is accepted as a member of the ensemble of the random
vector U, we choose, at random, a number, 1y, from a source that is uniformly distributed on the interval [01]. If ry

is equal to or less than p,.. We accept the trial realization, wuyy , as the next realization of U in a sequence; if not
we reject it. In equation form
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This procedure is repeated an arbitrary number of times to build up a collection of vectors each of which is a likely

member of the ensemble of the random vector U. The vector realizations of U generated using the MH scheme are

denoted ugMH),j =1..NvH -

Numerous practical matters need to be treated before the MH procedure can be implemented in a specific case.
Among others, the distribution of the vector innovation random source & needs to be developed. This is an art. The
covariance of & needs to be small enough that most of the trial vectors are not rejected (because the innovations are

too far from the collection u,(,ﬁea'),m =1,..,M ). This should not be too difficult, because the ur(nrea'),m =1,..,M , are

known to have zero-mean and unit-variance, and to be uncorrelated. Further, when it is not certain that the starting

realization ugMH) is in the vicinity of the vectors u,(rr,ea'),m =1,...,M , then the first part of the generated sequence of

(MH),j =1,...Nyy , is discarded, and the latter part, only, of the sequence is retained.

i
However, in the present case, for the reasons mentioned above, it is considered safe to use a starting vector, u(()MH) ,

vector random variates u

that is the ny x1, zero vector.

Once the realizations of the random vector U are obtained, they can be used with Eqg. (6) to approximately define an
ensemble of realizations of the random process X, . The MH realizations are given by

x(MH) - 1120 (MH) | < (12)
where

U(MH):,,{MH) ,,gMH) . y(MH) (12a)

NMMH

The matrix XMH) has dimension nxnyy , and each of its nx1 columns is an approximate realization of the
random process.

NUMERICAL EXAMPLE

The data chosen for this study represent a normalized measure of the structural response at a single discrete location
on a spacecraft exposed to a resonant motor burn event. The resonant burn event produces an oscillatory pressure
fluctuation within the motor cavity that is very nearly sinusoidal in its character. However, at least with respect to
the measured structural response, both the amplitude and frequency of the sinusoidal excitation are changing with
time.

Due to the nature of this environment, the temporal data were analyzed using waterfall plots, which are simply a
series of Fourier transforms computed for sequential segments of time. The result is a 3-dimensional spectral profile
that shows how the amplitude and frequency content of the signal change with time.

For the purposes of this study it was decided that the change in amplitude as a function of frequency was the salient
feature of the data so the maximum envelope of the projection of the time-specific waterfall plots onto the
frequency-amplitude plane was used as the final measure of the environment. These will be called environment
spectra in the following description. Figure 1 shows the environment spectra for an ensemble of 15 flights. The
environment spectra are normalized so that the highest point on the most severe spectrum has a value of one.
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Figure 1. Realizations of environment spectra.

We judged, in this case, that it is more appropriate to model the random process that is the common logarithm of the

environment spectra - the log-environment spectra. The common logarithms of the 15 curves in Figure 1 are shown
in Figure 2. The mean of the logarithms is also shown in the graph.
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Figure 2. Common logarithms of the environment spectra of Figure 1. Sample mean curve is dashed line.

The KL expansion was computed and the parameters v and w were established. In this application, five components
were retained in the KL expansion, i.e., ng =5. The principal shapes of the KL expansion, v, are plotted in Figure 3.

The amplitudes of the KL expansion, diag(w” 2), are plotted in Figure 4.
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Figure 3. Principal shapes of the estimated KL expansion of the log-environment spectrum random process.




(o]
X4
~
o (o]
& 2 ° o
(o]
0]
0] 5
Index, k

Figure 4. Amplitudes of the estimated KL expansion of the log-environment spectrum random process.

In view of the fact that the KL expansion includes five components, the random vector U has dimension 5x1, and
because the approximation to the KL expansion of the log-environment spectrum random process is based on 15

measured realizations, M =15, and we can evaluate the vectors ur({ea'),m =1,...15. Of course, the vectors cannot be

plotted in all their dimensions simultaneously because the plot would require five dimensions. We can, however,
plot the realizations in two of their dimensions at a time using a scatter plot. Figure 5 shows the 15 realizations of
the random variable U, (the second random variable in the random vector U) plotted versus the 15 realizations of

the random variable U, . Figure 6 is similar, plotting realizations of U5 versus realizations of U, .
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Figures 5 and 6. Realizations of U, versus realizations of U, , and realizations of U5 versus realizations of U, .

The MCMC process was used to generate realizations uEMH),j =1,..,nyn , of the of the random vector U. Two-

hundred realizations were generated, i.e., nyyy =200, and partial results are shown in Figures 7 and 8, in the style

of Figures 5 and 6. The realizations generated via the Metropolis-Hastings implementation of MCMC are shown by
the blue dots, and the realizations from the identified KL model are shown as red circles. As before, Figure 7 plots
realizations of U, versus realizations of U, and Figure 8 plots realizations of U3 versus realizations of U;. The

two figures show that the MCMC-generated random variable realizations appear to satisfactorily represent the
realizations that come directly from the KL model.

(MH)
J
blue dots in Figures 7 and 8, were used in Eq. (12) to obtain realizations of the log-environment spectrum random
process. The realizations are shown by the blue curves in Figure 9. The figure also includes the 15 realizations of the
log-environment spectrum random process in red.

The realizations that correspond to the full vector realizations u ,J =1,....NyH , part of which are shown by the
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Figures 7 and 8. Realizations of U, versus realizations of U, , and realizations of U3 versus realizations of U, .

Realizations from the identified KL model are shown as red circles, and MCMC-generated realizations are shown as
blue dots.
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Figure 9. Realizations of the log-environment spectrum random process. MCMC-generated realizations (blue).
Realizations from the KL model (red).

Of course, the random process realizations in Figure 9 could be transformed back into the original space by raising
each point on each curve to the power 10. Further, though 200 MCMC realizations were generated for this example,
an arbitrary number can be generated for user-defined purposes.

And given that realizations of the log-environment spectrum random process are available, the applications are only
limited by the needs of the analyst. For example, if a test specification is required, a criterion that measures the
severity of the specific log-environment spectrum realizations can be defined, and the generated realizations can be
ranked according to the measure. The single log-environment spectrum that falls on the probability limit of the
specification defines the test specification. For example, if a ninety percent conservative environment is sought and
the severity criterion is the peak value of the realization, then the 200 peaks of the random process realizations
shown by the blue curves in Figure 9 are evaluated, and the curve with the ninetieth percentile value defines the test
specification.

CONCLUSIONS

A method for generating random process realizations via the Markov Chain Monte Carlo (MCMC) technique is
described here. The method uses measured random process realizations to approximate a Karhunen-Loeve (KL)
expansion for the random process. Next, it uses a kernel density estimator to characterize the joint probability
density function of the underlying random vector in the KL expansion. Finally, the method uses the Metropolis-
Hastings implementation of the MCMC technique to generate vector random variable realizations from the random
source that is the underlying random vector in the KL expansion.



A specific example is given here, but the technique is useful for the generation of random process realizations from
any random source where experimentally measured realizations are available.
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