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Abstract— This paper1 develops a novel control system design
methodology that uniquely combines: concepts from thermody-
namic exergy and entropy; Hamiltonian systems; Lyapunov’s
direct method and Lyapunov optimal analysis; electric AC power
concepts; and power flow analysis. Relationships are derived
between exergy/entropy and Lyapunov optimal functions for
Hamiltonian systems. The methodology is demonstrated with
two fundamental numerical simulation examples: 1) a Duffing
oscillator/Coulomb friction nonlinear model that employs PID
regulator control and 2) a van der Pol nonlinear oscillator
system. The control system performances and/or appropriately
identified terms are partitioned and evaluated based on exergy
generation and exergy dissipation terms. This novel nonlinear
control methodology results in both necessary and sufficient
conditions for stability of nonlinear systems.

I. I NTRODUCTION

Today’s engineering systems sustain desirable performance
by using well-designed control systems based on fundamental
principles and mathematics. Many engineering breakthroughs
and improvements in sensing and computation have helped
to advance the field. Control systems currently play critical
roles in many areas, including automation, manufacturing,
electronics, communications, transportation, computers, and
networks, as well as many commercial and military sys-
tems [1]. Traditionally, almost all modern control design is
based on forcing the nonlinear systems to perform and behave
like linear systems, thus limiting its maximum potential. In
this paper a novel nonlinear control design methodology is
introduced that overcomes this limitation.

Several of the popular advanced nonlinear control system
approaches are based in passivity and dissipative control
theories. Initially, Moylan [2] discussed the implications of
passivity for a broad class of nonlinear systems, a connection
is established between the input-output property of passivity
and a set of constraints on the state equations for the system.
Later, Wyatt, et.al. [3], [4] clarified the meaning of passivity
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and losslessness as understood in nonlinear circuit theory, and
their counterparts in classical physics. Most recently, Ortega,
Jiang, and Hill [5] reviewed recent results on the stabilization
of nonlinear systems using a passivity approach. Passivity
properties play a vital role in designing asymptotically sta-
bilizing controllers for nonlinear systems where the nonlinear
versions of the Kalman-Yacubovitch-Popov lemma are used as
key testing tools. The dissipative characteristics of dynamical
systems has its origins in work by Willems [6] with further
specifics given by Hill and Moylan [7]. In [7], a technique
is introduced for generating Lyapunov functions for a broad
class of nonlinear systems represented by state equations.
The system, for which a Lyapunov function is required, is
assumed to have a property called dissipativeness. In other
words, the system absorbs more energy from the external
world than it supplies. Different types of dissipativenesscan
be considered depending on how the “power input” is selected.
Dissipativeness is shown to be characterized by the existence
of a computable function which can be interpreted as the
“stored energy” of the system. Under certain conditions, this
energy function is a Lyapunov function which establishes
stability, and in some cases asymptotic stability, of the isolated
system. It was shown that for a certain class of nonlinear
systems, that an “energy” approach was useful in analyzing
stability. Kokotovic and Arcak [8] provide a recent discus-
sion about the historical perspective of constructive nonlinear
control theories. Structural properties of nonlinear systems and
passivation-based designs exploit the connections between pas-
sivity and inverse optimality, and between Lyapunov functions
and optimal value functions. Recursive design procedures,
such as backstepping and forwarding, achieve certain optimal
properties for important classes of nonlinear systems. Some
of the more popular nonlinear control system designs [9],
[10], [11] have their fundamental foundations built upon these
concepts.

In other engineering disciplines, Alonso and Ydstie [12]
connect thermodynamics and the passivity theory of nonlinear
control. The storage function is derived from the convexity
of the entropy and is closely related to thermodynamic avail-
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ability. Dissipation is related to positive entropy production.
In this form the supply function is a product of force and
flow variation variables. Results are discussed in relationship
to heat conduction and reaction diffusion equation problems.
Anthony [13] suggests that non-equilibrium thermodynamics
of irreversible processes may be included into the framework
of a Lagrangian formalism. This formalism presents a unified
method for reversible and irreversible processes. A straight-
forward procedure allows for the incorporation of both the
first and second laws of thermodynamics into the Lagrangian.
The theory is illustrated in three representative exampleswhich
include; material flow, heat conduction, diffusion and chemical
reactions.

The main contribution of this paper is to present a novel
nonlinear control design methodology that is based on ther-
modynamic exergy and irreversible entropy production con-
cepts. Relationships are developed between exergy, irreversible
entropy production, Hamiltonian systems, Lyapunov optimal
functions, electric AC power concepts, and power flow, for
control system design. Both necessary and sufficient condi-
tions for stability are determined for nonlinear systems. By
combining the first and second laws of thermodynamics, an
exergy analysis approach is developed to construct Lyapunov
optimal functions for Hamiltonian systems. The first time
derivative of the Lyapunov functions, based on exergy, irre-
versible entropy production rate, and power flow is partitioned
into either exergy dissipative or exergy generative terms.

This paper is divided into eight sections. Sections II and
III provide the preliminary thermodynamics and Hamiltonian
mechanics definitions. Section IV develops the relationships
and connections between thermodynamics and Hamiltonian
mechanics. Section V defines the necessary and sufficient
conditions for stability of nonlinear systems. Section VI shows
how, with simplifications to this novel control theory, conven-
tional Lyapunov optimal and passivity control design method-
ologies are recovered. Section VII presents regulator control
design examples that include; 1) a PID control regulator fora
nonlinear Duffing oscillator/Coulomb friction dynamic system
and 2) a van der Pol nonlinear oscillator system. Numerical
simulations resulted in the demonstration of both performance
and stability criteria. Finally, section VIII summarizes the
results with concluding remarks.

II. T HERMODYNAMIC CONCEPTS

In this section the first and second laws of thermodynamics
are used to define exergy. One interpretation of the first law of
thermodynamics states energy is conserved (see Fig. 1-left).
The second law of thermodynamics implies that the entropy of
the universe always increases. The first law is a conservation
equation while the second law is an inequality. Mathematically,
a result of the first law can be written in terms of it’s time
derivatives or energy rate for a system [14] as

Ė =
∑

i

Q̇i +
∑

j

Ẇj +
∑

k

ṁk (hk + kek + pek + . . .) . (1)

The term on the left represents the rate at which energy is
changing within the system. The heat entering or leaving the
system is given byQ̇i and the work entering or leaving the
system is given byẆj . Next, material can enter or leave the
system byṁk that includes enthalpy,h, kinetic and potential
energies,ke, pe, etc. In addition, each term is “summed” over
an arbitrary number of entry and exit locationsi, j, k.

The second law or entropy rate equation for a system [14]
is given as

Ṡ =
∑

i

Q̇i

Ti

+
∑

k

ṁksk + Ṡi = Ṡe + Ṡi. (2)

Where the left hand term is the rate entropy changes within
the system and the right hand terms represent, in order, the
rate heat conducts entropy to and from the system and the
rate material carries it in or out. These two terms can be
combined into one termṠe, the entropy exchanged (either
positive or negative) with the environment anḋSi is the
irreversible entropy production rate within the system. Figure 1
(middle) shows the entropy exchanges and production within
the system [15].

The irreversible entropy production rate can be written as
the sum of the thermodynamic forces and the thermodynamic
flows [15], [16]

Ṡi =
∑

k

FkẊk ≥ 0 (3)

where the entropy change is the sum of all the changes due to
the irreversible flowsẊk with respect to each corresponding
thermodynamic forceFk.

Next, for systems with a constant environmental tempera-
ture, a thermodynamic quantity called the availability function
which has the same form as the Helmholtz free energy function
is defined as [15]

Ξ = E − ToS (4)

where To is the reference environmental temperature. The
availability function is described as the maximum theoretically
available energy that can do work which we call exergy.
Exergy is also known as negative-entropy [14], [17]. By
taking the time derivative of the availability function (4)and
substituting in the expressions for (1) and (2) results in the
exergy rate equation

Ξ̇ =
∑

i

(

1 − To

Ti

)

Q̇i

+
∑

j

(

Ẇj − po
dV̄
dt

)

+
∑

k ṁkζflow
k − ToṠi.

(5)
WhereΞ̇ is the rate at which exergy stored within the system
is changing. The terms on the right, in order, define the rate
exergy is carried in/out by; i) heat, ii) work (less any work
the system does on the environment at constant environmental
pressurepo if the system volumēV changes), and iii) by the
material (or quantity known as flow exergy). The final term,
ToṠi, is the rate exergy is destroyed within the system.



III. H AMILTONIAN MECHANICS

The derivation of the Hamiltonian [18] begins with the
Lagrangian for a system defined as

L = T (q, q̇, t) − V(q, t) (6)

where

t = time explicitly
q = N-dimensional generalized coordinate vector
q̇ = N-dimensional generalized velocity vector
T = Kinetic energy, and
V = Potential energy.

The Hamiltonian is defined in terms of the Lagrangian as

H ≡
n

∑

i=1

∂L
∂q̇i

q̇i − L(q, q̇, t) = H(q, q̇, t). (7)

The Hamiltonian in terms of the canonical coordinates(q, p)
is

H(q, p, t) =
n

∑

i=1

piq̇i − L(q, q̇, t) (8)

where the canonical momentum is defined as

pi =
∂L
∂q̇i

. (9)

Then Hamilton’s canonical equations of motion become

q̇i = ∂H
∂pi

ṗi = −∂H
∂qi

+ Qi
(10)

whereQi is the generalized force vector. Next taking the time
derivative of (8) gives

Ḣ =
n

∑

i=1

(

ṗiq̇i + piq̈i −
∂L
∂t

− ∂L

∂qi

q̇i −
∂L
∂q̇i

q̈i

)

. (11)

Then substitute (10) into (11) and simplifying gives

Ḣ =
n

∑

i=1

Qiq̇i −
∂L
∂t

. (12)

Hamiltonians for most natural systems are not explicit func-
tions of time (or∂L/∂t = 0). Then for

L = L(q, q̇) (13)

the power (work/energy) equation becomes

Ḣ(q, p) =
n

∑

i=1

Qiq̇i. (14)

IV. T HERMO-MECHANICAL RELATIONSHIPS

A. Conservative Mechanical Systems

A system is conservative if

Ḣ = 0 and H = constant.

A force is conservative if
∮

F · dx =

∮

F · vdt =

∮

Qj q̇jdt = 0

whereF is the force,dx the displacement, andv the velocity.
Basically, all of the forces can be modeled as potential force
fields which are storage devices.

B. Reversible Thermodynamic Systems

A thermodynamic system is reversible if

dS = dQ
T

∮

dS =
∮

dQ
T

= 0
∮

dS =
∮

[dSi + dSe] =
∮

[

Ṡi + Ṡe

]

dt = 0

which implies thatṠe = Q̇/T since by definition the second
law givesṠi = 0.

C. Irreversible Thermodynamic Systems

For ∮

dS =

∮

[

Ṡi + Ṡe

]

dt = 0

then Ṡe ≤ 0 and Ṡi ≥ 0.

D. Analogies and Connections

Now the connections between thermodynamics and Hamil-
tonian mechanics are investigated.

1) The irreversible entropy production rate can be ex-
pressed as

Ṡi =
∑

k

FkẊk =
1

To

∑

k

Qk q̇k ≥ 0. (15)

2) The time derivative of the Hamiltonian is equivalent to
the exergy rate

Ḣ =
∑

k Qk q̇k

Ξ̇ = Ẇ − ToṠi =
∑N

j=1
Qj q̇j −

∑M−N

l=N Qlq̇l

(16)
Where N is the number of generators,M − N the
number of dissipators, and leṫW =

∑

j Ẇj . The
following assumptions apply when utilizing the exergy
rate equation (5) forHamiltonian systems:

a) No substantial heat flow:

Q̇i ≈ 0.

b) No substantial exergy flow or assumeTi is only
slightly greater thanTo:

1 − To

Ti

≈ 0.

c) No poV̄ work on the environment:

po

dV̄

dt
= 0.

d) No mass flow rate:
∑

k

ṁkζflow
k = 0.

e) Then define:

Ẇ ≥ 0 power input/generated
ToṠi ≥ 0 power dissipated.

3) A conservative system is equivalent to a reversible
system when

Ḣ = 0 and Ṡe = 0



then

Ṡi = 0 and Ẇ = 0.

4) For a system that “appears to be conservative”, but is
not reversible is defined as:

Ḣave = Pave(over a cycle) = 0

= 1

τ

∮

[Ẇ − ToṠi]dt

= (Ẇ )ave − (ToṠi)ave

= 1

τ

∮

[
∑N

j Qj q̇j −
∑M−N

l=N Qlq̇l]dt

whereτ is the period of the cycle. To be more specific
about the average power calculations, the AC power
factor [19] provides an excellent example. For the gen-
eral case of alternating current supplied to a complex
impedance the voltage and current differ in phase by an
angleθ. For

Ẇ = P = Qq̇ = v i =
√

2v̄ cos(ωt + θ) ·
√

2̄i cosωt
= v̄ī [cos θ + cos(2ωt + θ)]

whereP is power,v is voltage (̄v), i is current (̄i), θ
is the phase angle, andω is the frequency. Integrating
over a cycle gives

(Ẇ )ave = v̄ī cos θ

where for the second term
∮

cos(2ωt + θ)dt = 0.

This is an important set of conditions that will be
used in the next section to find the generalized stability
boundary.

5) Finally, the power terms are sorted into three categories:

a) (Ẇ )ave - power generators;(Qj q̇j)ave > 0,
b) (ToṠi)ave - power dissipators;(Qlq̇l)ave < 0,
c) (ToṠrev)ave - reversible/conservative exergy stor-

age terms;(Qk q̇k)ave = 0.

These three categories are fundamental terms in the following
design procedures.

V. NECESSARY ANDSUFFICIENT CONDITIONS FOR

STABILITY

The Lyapunov function is defined as the total energy which
for most mechanical systems is equivalent to an appropriate
Hamiltonian function

V = H (17)

which is positive definite. The time derivative is

V̇ = Ḣ =
∑

k Qk q̇k =
∑N

j Qj q̇j −
∑M−N

l=N Qlq̇l

= Ẇ − ToṠi.
(18)

A. Stability and Instability Theorems

To describe a nonlinear system’s behavior two theorems [20]
help to characterize the essential features of its motion. In
addition, by bounding the Lyapunov function between these
Theorems, both necessary and sufficient conditions are a
result of the transition of the time derivative of the Lyapunov
function from stable to unstable.

1) Lyapunov Theorem for Stability Assume that there
exists a scalar functionV of the statex, with continuous
first order derivatives such that

V (x) is positive definite
V̇ (x) is negative definite
V (x) → ∞ as ‖x‖ → ∞

Then the equilibrium at the origin is globally asymptot-
ically stable.

2) Chetaev Theorem for Instability Considering the equa-
tions of disturbed motion, letV be zero on the boundary
of a regionR which has the origin as a boundary point,
and let bothV andV̇ be positive-definite inR; then the
undisturbed motion is unstable at the origin.

B. Stability Lemma for Nonlinear Systems

Based on the relationship between thermodynamic exergy
and Hamiltonian systems a fundamental stability Lemma can
be formulated.

Fundamental Stability Lemma for Hamiltonian Systems
The stability of Hamiltonian systems is bounded between
Theorems1 and 2. Given the Lyapunov derivative as a
decomposition and sum of exergy generation rate and exergy
dissipation rate then:

V̇ = Ẇ − ToṠi =

N
∑

j=1

Qj q̇j −
M−N
∑

l=N

Qlq̇l (19)

that is subject to the following general necessary and sufficient
conditions:

ToṠi ≥ 0 Positive semi-definite, always true
Ẇ ≥ 0 Positive semi-definite; exergy pumped in.

The following corollaries encompass both stability and in-
stability for Hamiltonian systems which utilize AC power
concepts [19]:

Cor 1: For(ToṠi)ave = 0 and (Ẇ )ave = 0 then V̇ = 0 the
Hamiltonian system is neutrally stable, conservative
and reversible.

Cor 2: For(ToṠi)ave = 0 and (Ẇ )ave > 0 then V̇ > 0 the
Hamiltonian system is unstable.

Cor 3: For (ToṠi)ave > 0 and (Ẇ )ave = 0 then V̇ <
0 the Hamiltonian system is asymptotically stable
and a passive system in the general sense (passivity
controllers).

Cor 4: Given apriori(ToṠi)ave > 0 and (Ẇ )ave > 0 then
the Hamiltonian system is further subdivided into:

4.1: For
(

ToṠi

)

ave
>

(

Ẇ
)

ave
with V̇ < 0

yields asymptotic stability.



4.2: For
(

ToṠi

)

ave
=

(

Ẇ
)

ave
with V̇ = 0

yields neutral stability.
4.3: For

(

ToṠi

)

ave
<

(

Ẇ
)

ave
with V̇ > 0

yields an unstable system.

The bottom line is that stability is defined in terms of power
flow which determines whether the system is moving toward
or away from its minimum energy and maximum entropy state.

VI. LYAPUNOV OPTIMAL AND PASSIVITY CONTROL

Present day robotic and aerospace applications use feedback
controller designs that areLyapunov Optimal[21]. A control
law is Lyapunov Optimalif it minimizes the first time deriv-
ative of the Lyapunov function over a space of admissible
controls. In general, a set of feedback gains are optimized
by minimizing the regulating and/or tracking error of the
feedback controller while regulating to zero and/or tracking
a desired reference input. The Lyapunov function is the total
error energy which for most mechanical systems is equivalent
to an appropriate Hamiltonian function

V = H. (20)

Then the concept of Lyapunov Optimal [21] follows directly
from settingẆ = 0 in (19) and maximizingToṠi for which
the time derivative of the Lyapunov function (Hamiltonian)or
the modified power (work/energy) equation is written as

V̇ = Ḣ = −ToṠi = −
N

∑

j=1

Qj q̇j = −
N

∑

j=1

FjṘj (21)

which is independent of system dynamics and is akinematic
quantitythat applies to any system. Note thatFj denotes a set
of forces acting on a mechanical system andṘj denotes the
inertial linear velocity of the point whereFj is applied.

Passivity control [9] for robotic systems follows directly
from settingẆ = 0 in (19).

VII. R EGULATOR CONTROL DESIGN EXAMPLES

Two nonlinear dynamic systems are investigated to demon-
strate exergy/entropy control design analogies for control
design theory and to provide unique insights as well. These
examples are based on 1) a PID regulator control for nonlinear
Duffing oscillator/Coulomb friction dynamic system and 2) a
van der Pol nonlinear system.

A. Duffing Oscillator/Coulomb Friction with PID Control
System

This example is the design of a control law for a single
degree of freedom nonlinear oscillator. The Duffing oscilla-
tor/Coulomb friction dynamic model (see Fig. 1 - right) is
defined as

Mẍ + Cẋ + CNL sign(ẋ) + Kx + KNLx3 = u (22)

where M, C, K, and u are the mass, damper, stiffness co-
efficients and external force input terms, respectively. The

nonlinear stiffness and Coulomb friction coefficients areKNL

andCNL, respectively. The PID controller is defined as

u = −KP x − KI

∫ t

0

xdτ − KDẋ (23)

where KP , KI , and KD are the proportional, integral and
derivative controller gains, respectively.

Initially, the nonlinear Duffing oscillator is investigated as
a neutrally stable, reversible conservative system or

Mẍ + Kx + KNLx3 = −KP x

subject to the initial conditionx(0) = xo = 1.0. Now
apply exergy/entropy control design and the derivative of the
Lyapunov function/Hamiltonian becomes

V̇ = Ḣ = Ẇ − ToṠi =

N
∑

j=1

Qj q̇j −
M−N
∑

l=N

Qlq̇l

which yields

ToṠi = 0

Ẇ = 0

(ToṠrev)ave = (Mẍ · ẋ + (K + KP )x · ẋ + KNLx3 · ẋ)ave

= 0.

Numerical simulations are performed with the numerical
values listed in Table I. Note that for all cases thatM = 10.0
kg, K = 10.0 N/m, and KNL = 100.0 N/m3. For this
initial Case 1 the phase plane plot and the potential and
kinetic energy rate plots are shown in Fig. 2 (top row).
This run demonstrates Corollary1 and a stable orbit for the
nonlinear system with offsetting potential and kinetic energy
rates responses.

Next, consider the additional PID, linear, and Coulomb
friction effects applied to the Duffing oscillator and partition
into exergy generation and exergy dissipation terms. Now
apply the exergy/entropy control design and the derivativeof
the Lyapunov function/Hamiltonian becomes

V̇ = Ḣ = Ẇ − ToṠi =

N
∑

j=1

Qj q̇j −
M−N
∑

l=N

Qlq̇l

which yields

ToṠi = (C + KD)ẋ · ẋ + CNL sign(ẋ) · ẋ
Ẇ = −KI

∫ t

o
xdτ · ẋ

(ToṠrev)ave = (Mẍ · ẋ + (K + KP )x · ẋ + KNLx3 · ẋ)ave

= 0.

To determine the nonlinear stability boundary from the ex-
ergy/entropy control design

V̇ = Ḣ = Ẇ − ToṠi

which gives
(Ẇ )ave = (ToṠi)ave.

Substituting the actual terms yields the following:
[

−KI

∫ t

o

xdτ · ẋ
]

ave

= [(C + KD)ẋ · ẋ + CNL sign(ẋ) · ẋ]ave

(24)



which is thenonlinear stability boundary. To best understand
how the boundary is determined, concepts and analogies
from electric AC power have been introduced earlier. Essen-
tially, when the average powerin is equivalent to the average
powerdissipated over a cycle, then the system is operating
at the stability boundary. Later, in the exergy and exergy
rate responses for the nonlinear system, one may observe
that the area under the curves for the exergy rate generation
and the exergy rate dissipation are equivalent and for the
corresponding exergy responses the slopes will be equal and
opposite. This helps to explain why PID control works well
for nonlinear systems.

Numerical simulations are performed to demonstrate where
the nonlinear stability boundary lies for the Duffing oscilla-
tor/Coulomb friction dynamic model subject to PID control.
Three separate cases are conducted with the numerical values
listed in Table I. The nonlinear system is subject to an initial
condition of x0 = 1.0. For Case2 the integral of position,
position, velocity, and acceleration responses along withthe
exergy and exergy rate responses are plotted in Fig. 2 (second
row from top). For this case, the dissipative term is greater
than the generative term. This is observed from the decaying
system responses. In Case3 the system responses along with
the exergy and exergy rate responses are shown in Fig. 2 (third
row from top). In this case, the average exergy slopes and
integrated power areas for the dissipative and generative terms
are equivalent which demonstrates (24). This results in system
responses that do not decay, displaying constant nonlinear
oscillatory behavior. In final Case4, the system responses
along with the exergy and exergy rate responses are shown in
Fig. 2 (bottom row). In this case, the dissipative term is less
than the generative term which results in a system response
with increasing nonlinear oscillatory behavior. In conclusion,
Fig. 3 shows the responses for the total exergy with respect
to each case along with the phase plane plot for the nonlinear
system. For Case3 the nonlinear stability boundary (or neutral
stability) is characteristic of an average zero output for the
total exergy response or validation of (24). For the phase plane
plot, Case2 demonstrates an asymptotically stable decaying
response, Case3 a neutrally stable orbital response, and Case
4 an asymptotically unstable increasing orbit response.

The last three cases for the PID control regulator Duffing
oscillator/Coulomb friction dynamic system demonstratesthe
three subcases for Corollary 4: Given apriori(ToṠi)ave >
0 and (Ẇ )ave > 0 then the nonlinear system showed the
following:

i. Case2 yielded(ToṠi)ave > (Ẇ )ave; asymptotic sta-
bility; damped stable nonlinear response and demon-
stration of Corollary4.1.

ii. Case3 yielded (ToṠi)ave = (Ẇ )ave; neutral stabil-
ity; and demonstration of Corollary4.2. This case
is the nonlinear stability boundary where dissipation
and generation terms cancel each other out on the
average.

iii. Case 4 yielded (ToṠi)ave < (Ẇ )ave; increasingly
unstable towards another orbit; and demonstration of

Corollary 4.3.

B. Van der Pol Nonlinear System

The classic van der Pol’s equation [22] is analyzed using
the techniques of this section. Originally, the “van der Pol
equation” is credited to van der Pol, and is a model of an
electronic circuit for early radio vacuum tubes of a triode
electronic oscillator [22]. The tube acts like a normal resistor
when the current is high, but acts as a negative resistor if the
current is low. The main feature is that electrical circuitsthat
contain these elements pump up small oscillations due to a
negative resistance when currents are small, but drag down
large amplitude oscillations due to positive resistance when
the currents are large. This behavior is known as arelaxation
oscillation, as each period of the oscillation consists of a slow
buildup of energy (’stress phase’) followed by a phase in
which energy is discharged (’relaxation phase’). This particular
system has played a large role in nonlinear dynamics and has
been used to study limit cycles and self-sustained oscillatory
phenomena in nonlinear systems.

Consider the van der Pol equation with mass (m) and
stiffness (k) values other than unity and a nonlinear damping
term (µ) to be defined as:

mẍ + µ(1 − x2)ẋ + kx = 0.

The appropriate Hamiltonian/Lyapunov function is defined as:

H = V =
1

2
mẋ2 +

1

2
kx2 > 0.

Then the corresponding time derivative of the Lyapunov
function/Hamiltonian becomes

V̇ = [mẍ + kx] ẋ
=

[

µẋ(1 − x2)
]

ẋ
= µẋ2 − µx2ẋ2.

Next identifying the generator and dissipator terms yields

ToṠi = µx2ẋ2

Ẇ = µẋ2

(ToṠrev)ave = (mẍ · ẋ + kx · ẋ)ave = 0.

The nonlinear stability boundarycan be determined as
[

Ẇ
]

ave
=

[

ToṠi

]

ave[

µẋ2
]

ave
=

[

µx2ẋ2
]

ave

By investigating several initial conditions both inside, on,
and outside the limit cycle then three separate regions can
be observed. Figure 4 shows these conditions with the corre-
sponding numerical values given in Table I. The responses are
plotted on the Hamiltonian 3D surface (top) with the projection
onto the phase plane shown on the 2D plot (middle). For the
case outside the limit cycle, the dissipator term dominates
and for the case inside the limit cycle the generator term
dominates. For both cases inside and outside the limit cycle,
the system migrates back to the stability boundary. For the case
already on the limit cycle then the system is already at neutral
stability. The neutral exergy-rate and exergy plots are shown in



Fig. 4 (bottom). The cycle is defined at approximatelyτ = 3.5
seconds. For the neutral pair the terms cancel each other outat
the end of the cycle or[Ẇ ]ave = [ToṠi]ave. For the generator
case then[Ẇ ]ave > [ToṠi]ave and for the dissipator case then
[Ẇ ]ave < [ToṠi]ave, respectively. Eventually, given enough
cycles both the generator and dissipator cases will converge
to the neutral case.

VIII. S UMMARY AND CONCLUSIONS

A novel control system design methodology was devel-
oped that uniquely combined: concepts from thermodynamic
exergy and entropy; Hamiltonian systems; Lyapunov’s direct
method and Lyapunov optimal analysis; electric AC power
concepts; and power flow analysis. Relationships were derived
between exergy/entropy and Lyapunov optimal functions for
Hamiltonian systems. The methodology is demonstrated with
two fundamental numerical simulation examples: 1) a Duffing
oscillator/Coulomb friction nonlinear model that employsPID
regulator control and 2) a van der Pol nonlinear oscillator
system. The control system performance results and/or appro-
priately identified terms were partitioned and evaluated based
on exergy generation and exergy dissipation terms. These
numerical results showed the stability boundaries for each
nonlinear system. This novel nonlinear control methodology
resulted in both necessary and sufficient conditions for stability
of nonlinear systems. In the near future, this novel control
system design methodology will be extended to tracking and
adaptive control of multi-input/multi-output nonlinear systems.
This methodoloy is applicable to a large class of nonlinear
systems.
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Fig. 1. Energy flow control volume (left), second law entropy with
flux exchange system (middle), and Duffing oscillator/Coulomb
friction system (right)

TABLE I

Duffing oscillator/Coulomb friction model and PID control
system gains

. Case KP KI KD C CNL

No. (kg/s2) (kg/s3) (kg/s) (kg/s) (N)

1 10.0 0.0 0.0 0.0 0.0
2 10.0 20.0 2.0 0.1 5.0
3 10.0 40.05 2.0 0.1 5.0
4 10.0 80.0 2.0 0.1 5.0

TABLE II

Van der Pol model numerical values

Case xo ẋo µ m k

(m) (m/s) (kg/s) (kg) (kg/s2)

generate 0.1 −0.1 1.5 1.0 1.0
neutral 1.0 −1.0 1.5 1.0 1.0

dissipate 2.0 −2.0 1.5 1.0 1.0
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Fig. 2. Cases 1-4: Duffing oscillator/Coulomb friction with PID
control numerical results
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Fig. 4. Van der Pol responses - 3D Hamiltonian, phase plane plot
(top), and exergy-rate and exergy plots (bottom)


