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Abstract— This paper* develops a novel control system design and losslessness as understood in nonlinear circuit theody
methodology that uniquely combines: concepts from thermog — their counterparts in classical physics. Most recentlye@a,
namic exergy and entropy; Hamiltonian systems; Lyapunov's jiang and Hill [5] reviewed recent results on the stabii@a

direct method and Lyapunov optimal analysis; electric AC paver f l t . it h Passivit
concepts; and power flow analysis. Relationships are derige O NONline€ar systems using a passivity approach. Fassivity

between exergy/entropy and Lyapunov optimal functions for Properties play a vital role in designing asymptoticallg-st
Hamiltonian systems. The methodology is demonstrated with bilizing controllers for nonlinear systems where the noedir

two fundamental numerical simulation examples: 1) a Duffing versions of the Kalman-Yacubovitch-Popov lemma are used as
oscillator/Coulomb friction nonlinear model that employs PID key testing tools. The dissipative characteristics of dyical

regulator control and 2) a van der Pol nonlinear oscillator . Lo - .
system. The control system performances and/or approprialy systems has its origins in work by Willems [6] with further

identified terms are partitioned and evaluated based on exgy Specifics given by Hill and Moylan [7]. In [7], a technique
generation and exergy dissipation terms. This novel nonliear is introduced for generating Lyapunov functions for a broad

control methodology results in both necessary and sufficién class of nonlinear systems represented by state equations.
conditions for stability of nonlinear systems. The system, for which a Lyapunov function is required, is
assumed to have a property called dissipativeness. In other
words, the system absorbs more energy from the external
Today's engineering systems sustain desirable perforenangorid than it supplies. Different types of dissipativeness
by using well-designed control systems based on fundarhensg considered depending on how the “power input” is selected
principles and mathematics. Many engineering breakttisuissipativeness is shown to be characterized by the existen
and improvements in sensing and computation have helpsfda computable function which can be interpreted as the
to advance the field. Control systems currently play ciiticastored energy” of the system. Under certain conditions th
roles in many areas, including automation, manufacturingnergy function is a Lyapunov function which establishes
electronics, communications, transportation, computangl stability, and in some cases asymptotic stability, of tinsied
networks, as well as many commercial and military sysystem. It was shown that for a certain class of nonlinear
tems [1]. Traditionally, almost all modern control design isystems, that an “energy” approach was useful in analyzing
based on forcing the nonlinear systems to perform and behayebility. Kokotovic and Arcak [8] provide a recent discus-
like linear systems, thus limiting its maximum potentiad. | sion about the historical perspective of constructive imealr
this paper a novel nonlinear control design methodology éntrol theories. Structural properties of nonlinear syst and
introduced that overcomes this limitation. passivation-based designs exploit the connections betpes
Several of the popular advanced nonlinear control systesivity and inverse optimality, and between Lyapunov fumasi
approaches are based in passivity and dissipative contad optimal value functions. Recursive design procedures,
theories. Initially, Moylan [2] discussed the implicatomf such as backstepping and forwarding, achieve certain aptim
passivity for a broad class of nonlinear systems, a conmectproperties for important classes of nonlinear systems.eSom
is established between the input-output property of pigsivof the more popular nonlinear control system designs [9],
and a set of constraints on the state equations for the syst¢na], [11] have their fundamental foundations built upoaga
Later, Wyatt, et.al. [3], [4] clarified the meaning of pas$isiv concepts.
In other engineering disciplines, Alonso and Ydstie [12]
1Sa_mdia National Laboratories is a multiprogram laboratoperated by connect thermodynamics and the passivity theory of noatine
Sandia Corporation, a Lockheed Martin Company, for the &partment . . . .
control. The storage function is derived from the convexity

of Energy’s National Nuclear Security Administration undmntract DE- | h ;
AC04-94AL85000. of the entropy and is closely related to thermodynamic avail

I. INTRODUCTION



ability. Dissipation is related to positive entropy protlan. The term on the left represents the rate at which energy is
In this form the supply function is a product of force andhanging within the system. The heat entering or leaving the
flow variation variables. Results are discussed in relatign system is given byQ; and the work entering or leaving the
to heat conduction and reaction diffusion equation proklensystem is given by/vj. Next, material can enter or leave the
Anthony [13] suggests that non-equilibrium thermodynamisystem by, that includes enthalpy,, kinetic and potential

of irreversible processes may be included into the framkwoenergieske, pe, etc. In addition, each term is “summed” over
of a Lagrangian formalism. This formalism presents a unifiexh arbitrary number of entry and exit locationg, k

method for reversible and irreversible processes. A ditaig The second law or entropy rate equation for a system [14]
forward procedure allows for the incorporation of both thg given as

first and second laws of thermodynamics into the Lagrangian.

The theory is illustrated in three representative examplésh -7 Q; . LG y
include; material flow, heat conduction, diffusion and cheah §= Z T; + zk: sk + 8 = Se + Si 2)
reactions.

The main contribution of this paper is to present a nov&Vhere the left hand term is the rate entropy changes within
nonlinear control design methodology that is based on théire system and the right hand terms represent, in order, the
modynamic exergy and irreversible entropy production comate heat conducts entropy to and from the system and the
cepts. Relationships are developed between exergy, igible rate material carries it in or out. These two terms can be
entropy production, Hamiltonian systems, Lyapunov optimaombined into one tern®., the entropy exchanged (either
functions, electric AC power concepts, and power flow, fgositive or negative) with the environment a is the
control system design. Both necessary and sufficient coniieversible entropy production rate within the systengure 1
tions for stability are determined for nonlinear systemg. B(middle) shows the entropy exchanges and production within
combining the first and second laws of thermodynamics, #ime system [15].
exergy analysis approach is developed to construct Lyapuno The irreversible entropy production rate can be written as
optimal functions for Hamiltonian systems. The first tim¢éhe sum of the thermodynamic forces and the thermodynamic
derivative of the Lyapunov functions, based on exergy- irrélows [15], [16]
yersib_le entropy proidu_ctio.n rate, and power f|OV\{ is pamitio S = Z FoX >0 3)
into either exergy dissipative or exergy generative terms.

This paper is divided into eight sections. Sections Il and
Il provide the preliminary thermodynamics and Hamiltaniawhere the entropy change is the sum of all the changes due to
mechanics definitions. Section IV develops the relatigmshithe irreversible flowsY;, with respect to each corresponding
and connections between thermodynamics and Hamiltoni#grmodynamic forcer;.
mechanics. Section V defines the necessary and sufficienNext, for systems with a constant environmental tempera-
conditions for stability of nonlinear systems. Section Wows ture, a thermodynamic quantity called the availabilitydtion
how, with simplifications to this novel control theory, cem+ which has the same form as the Helmholtz free energy function
tional Lyapunov optimal and passivity control design metho is defined as [15]
ologies are recovered. Section VIl presents regulatorrobnt
design examples that include; 1) a PID control regulatorafor

nonlinear Duffing oscillator/Coulomb friction dynamic $§81 here 7, is the reference environmental temperature. The
and 2) a van der Pol nonlinear oscillator system. Numericglailability function is described as the maximum theawty

simulations resulted in the demonstration of both perf(ﬂma available energy that can do work which we call exergy.
and Stablllty criteria. Fina”y, section VIII summarizekbet Exergy is also known as negative_entropy [14], [17] By

[1]

—E-T,S 4)

results with concluding remarks. taking the time derivative of the availability function (4nd
substituting in the expressions for (1) and (2) results & th
Il. THERMODYNAMIC CONCEPTS exergy rate equation
In this section the first and second laws of thermodynamics = -y (1 _ _) o)
are used to define exergy. One interpretation of the first faw o Flow .
thermodynamics states energy is conserved (see Fig.)1-left +Z ( —Po dt) + 2k G = 108
The second law of thermodynamics implies that the entropy of (5)

the universe always increases. The first law is a conservathere= is the rate at which exergy stored within the system
equation while the second law is an inequality. MathemByica is changing. The terms on the right, in order, define the rate

a result of the first law can be written in terms of it's timeeXergy is carried in/out by; i) heat, ii) work (less any work
derivatives or energy rate for a system [14] as the system does on the environment at constant environimenta

pressurep, if the system volumé’ changes), and iii) by the

£ = Z QHZ Wj +ka (hy + key +pex +...). (1) ma_terial (or quantity knc_)wn as flow ex_ergy). The final term,
r p % T,S;, is the rate exergy is destroyed within the system.



I1l. HAMILTONIAN MECHANICS B. Reversible Thermodynamic Systems

The derivation of the Hamiltonian [18] begins with the A thermodynamic system is reversible if
Lagrangian for a system defined as

s = L
L=1T(q,q,t) = V(g t) (6) §ds = $9— o
t = time explicitly §ds $1dS; + dS.] = § [gi n 58} dt =0

g = N-dimensional generalized coordinate vector == . . ) o

where ¢ = N-dimensional generalized velocity vector whlch implies thatS, = Q/T since by definition the second
7 = Kinetic energy, and law givess; = 0.
v = Potential energy. C. Irreversible Thermodynamic Systems

The Hamiltonian is defined in terms of the Lagrangian as
"~ 0L | . .
H=> a4~ £@.d0) = Hlg..1). @)
i=1 1

The Hamiltonian in terms of the canonical coordinates)
is

=1
where the canonical momentum is defined as
oL
Pi= o 9
0¢;
Then Hamilton’s canonical equations of motion become
. OH
qi s
) i 10
Di = *g—Z + Qi (10)

whereQ); is the generalized force vector. Next taking the time
derivative of (8) gives

. " oL 0oL oL
:E( %G+ Dils — —— — — s — —s | . 11
H £ (pt% + pig; ot a%‘ qi a(h QL) ( )
Then substitute (10) into (11) and simplifying gives
. - . oL
H= ,;:1 Qigi — ot (12)

Hamiltonians for most natural systems are not explicit func
tions of time (oroL/dt = 0). Then for

L=L(g,9) (13)
the power (work/energy) equation becomes
H(q,p) = Z Qidi- (14)
=1

IV. THERMO-MECHANICAL RELATIONSHIPS
A. Conservative Mechanical Systems
A system is conservative if

H=0

A force is conservative if

%F-daﬁZ%F"ljdt:%QﬂL‘dt:O

whereF' is the forcedx the displacement, andthe velocity.
Basically, all of the forces can be modeled as potentialeforc
fields which are storage devices.

and ‘H = constant

For

j{dS:j{[SﬂrSe}dt:O

thenS., < 0 andS; > 0.

D. Analogies and Connections

Now the connections between thermodynamics and Hamil-

tonian mechanics are investigated.

1) The irreversible entropy production rate can be ex-
pressed as

. . 1 _
S = Z}—ka =T ZQka > 0. (15)
% %

2) The time derivative of the Hamiltonian is equivalent to
the exergy rate

>k Qrdr

W —T,S; = Zévzl Q45 — Zl]\iEN Qi
(16)

Where N is the number of generatord/ — N the

number of dissipators, and I8’ = > .W;. The

following assumptions apply when utilizing the exergy

rate equation (5) foHamiltonian systems

a) No substantial heat flow:

Q; ~0.
b) No substantial exergy flow or assuriig is only

slightly greater thar,:
T
1— ?‘) ~ 0.

c) No p,V work on the environment:

av

ZZ —0
podt

-

d) No mass flow rate:
> il = 0.
k

e) Then define:

W_ > 0 power input/generated
T7,S; > 0 power dissipated

3) A conservative system is equivalent to a reversible
system when

H=0 and S, =0



then A. Stability and Instability Theorems

S;=0 and W =0. To describe a nonlinear system’s behavior two theorems [20]
help to characterize the essential features of its motion. |
4) For a system that “appears to be conservative”, but asldition, by bounding the Lyapunov function between these

not reversible is defined as: Theorems, both necessary and sufficient conditions are a
) result of the transition of the time derivative of the Lyapun
Have = Fave(oOver acyclg =0 function from stable to unstable.
= %f’g W - Tosi].dt 1) Lyapunov Theorem for Stability Assume that there
= (Wave = (ToSi)ave exists a scalar functioll of the stater, with continuous
= 1 fﬂzy Qa5 — SN Quan)at first order derivatives such that

V(z) s positive definite
V(x) is negative definite
V(z) — oo as |z|]| — o0

wherer is the period of the cycle. To be more specific

about the average power calculations, the AC power
factor [19] provides an excellent example. For the gen-
eral case of alternating current supplied to a complex  Then the equilibrium at the origin is globally asymptot-
impedance the voltage and current differ in phase by an ically stable.

angled. For 2) Chetaev Theorem for Instability Considering the equa-
) tions of disturbed motion, I6t" be zero on the boundary
W = P=Qj=vi=\20cos(wt+0) v2icoswt of a regionR which has the origin as a boundary point,
= i [cosf + cos(2wt + 6)] and let bothl” andV be positive-definite in?; then the

) . ) _ undisturbed motion is unstable at the origin.
where P is power,v is voltage §), i is current ), 0

is the phase angle, and is the frequency. Integrating B- Stability Lemma for Nonlinear Systems

over a cycle gives Based on the relationship between thermodynamic exergy
) - and Hamiltonian systems a fundamental stability Lemma can
(W)ave = vicost be formulated.
Fundamental Stability Lemma for Hamiltonian Systems
where for the second term The stability of Hamiltonian systems is bounded between
Theorems1 and 2. Given the Lyapunov derivative as a
}{cos(th +6)dt =0. decomposition and sum of exergy generation rate and exergy
dissipation rate then:
This is an important set of conditions that will be N M—N
used in the next section to find the generalized stability V=W-T,S = Z Qjd; — Z Qudy (19)
boundary. j=1 I=N
5) Finally, the power terms are sorted into three categx)rieiﬁat is subject to the following general necessary and serffic
a) (W)ave - power generator{Q;d;)ave > 0, conditions:

b) (T,S:)ave - power dissipators{Q;qg;)ave < 0,
c) (TOS,.C,U)GUC - reversible/conservative exergy stor-
age terms{Qxqx)ave = 0.
These three categories are fundamental terms in the faigpwi' "€ following corollaries encompass both stability and in-
design procedures. stability for Hamiltonian systems which utilize AC power
concepts [19]:

Cor 1: For(T,S;)ave = 0 and (W), = 0 thenV = 0 the
Hamiltonian system is neutrally stable, conservative
and reversible. _ _

The Lyapunov function is defined as the total energy which Cor 2: For(7oS;)ave = 0 and (W)aye > 0 thenV > 0 the

for most mechanical systems is equivalent to an appropriate Hamiltonian system is unstable. ,
Hamiltonian function Cor 3:For (ToSi)ave > 0 and (W)ape = 0 thenV <
0 the Hamiltonian system is asymptotically stable
V=H (17) and a passive system in the general sense (passivity
controllers).
Cor 4: Given apriori(T,S;)ave > 0 and (W)qpe > 0 then
Vo= = S, Quir = ijy Qidj — ZlIVZIEN vl the Hamiltonian system is further subdivided into:

- WoTS, 4.1: For (TOSZ- > (W with V. < 0
(18) yields asymaﬁteotic stablli‘tlff

T,S; > 0 Positive semi-definite, always true
w > 0 Positive semi-definite; exergy pumped in.

V. NECESSARY ANDSUFFICIENT CONDITIONS FOR
STABILITY

which is positive definite. The time derivative is



4.2: For (T,S; = (W with V' = 0 nonlinear stiffness and Coulomb friction coefficients &g 1.
yields neutral stability.” ** andCy, respectively. The PID controller is defined as
4.3: For (T,S; < (W with V> 0
yields an unstable system.
The bottom line is that stability is defined in terms of powelhere Kp, K;, and K, are the proportional, integral and
flow which determines whether the system is moving towadkrivative controller gains, respectively.
or away from its minimum energy and maximum entropy state. Initially, the nonlinear Duffing oscillator is investigateas
a neutrally stable, reversible conservative system or

Mjf‘+K[C+KNLIC3:7KPl‘

t
u:—Kpm—Kj/de—KDdU (23)
0

VI. LYAPUNOV OPTIMAL AND PASSIVITY CONTROL

Present day robotic and aerospace applications use fdedbac
controller designs that afeyapunov Optima[21]. A control Subject to the initial conditionz(0) = xz, = 1.0. Now
law is Lyapunov Optimalf it minimizes the first time deriv- @PPly exergy/entropy control design and the derivativehef t
ative of the Lyapunov function over a space of admissibleyapunov function/Hamiltonian becomes
controls. In general, a set of feedback gains are optimized ) ) ) ) N M—N
by minimizing the regulating and/or tracking error of the V=H=W-T,5=> Q4 — Y Qi
feedback controller while regulating to zero and/or tragki j=1 I=N
a desired reference input. The Lyapunov function is thel totghich yields
error energy which for most mechanical systems is equiv/aler)r S
to an appropriate Hamiltonian function VI; ¢

V ="H. (20)  (T,Srev)ave = (Mi-i+ (K + Kp)z - &+ Knpa® - &) qve
=0.

Numerical simulations are performed with the numerical
values listed in Table I. Note that for all cases that= 10.0
kg, K = 10.0 N/m, and Ky; = 100.0 N/m3. For this
initial Case 1 the phase plane plot and the potential and
) ) . N N ) kinetic energy rate plots are shown in Fig. 2 (top row).
V=H=-T,8=-Y Qi=—Y FiR, (21)  This run demonstrates Corolladyand a stable orbit for the

j=1 j=1 nonlinear system with offsetting potential and kinetic rgrye

which is independent of system dynamics and isrematic ates responses. - _
quantitythat applies to any system. Note tigtdenotes a set _Next, consider the additional PID, linear, and Coulomb
of forces acting on a mechanical system a@agddenotes the friction effects applied to the Duffing oscillator and ptatn

1l

Then the concept of Lyapunov Optimal [21] follows directly
from setting’ = 0 in (19) and maximizingl,,S; for which
the time derivative of the Lyapunov function (Hamiltoniaor)
the modified power (work/energy) equation is written as

inertial linear velocity of the point wheréj is applied. into exergy generation and exergy dissipation terms. Now

Passivity control [9] for robotic systems follows directly2PPly the exergy/entropy control design and the derivative
from settingi¥’ = 0 in (19). the Lyapunov function/Hamiltonian becomes

N M—-N
VIl. REGULATOR CONTROL DESIGN EXAMPLES V=H=W-T,8 = Z Qjd; — Z Qi

Two nonlinear dynamic systems are investigated to demon- _ =1 =N
strate exergy/entropy control design analogies for contiwhich yields
design theory and to provide unique insights as well. T_hes_(}»osi = (C+ Kp)i - & + Cyy, sign(#) - &
examples are based on 1) a PID regulator control for nonlinea; — K, ft vdr - &

o

Duffing oscillator/Coulomb friction dynamic system and 2) a

van der Pol nonlinear system. (ToSre)ave = (M- &+ (K + Kp)a - &+ Knpa® - #)ave

=0.
A. Duffing Oscillator/Coulomb Friction with PID Control To determine the nonlinear stability boundary from the ex-
System ergy/entropy control design
This example is the design of a control law for a single V=H=W-T,8;

degree of freedom nonlinear oscillator. The Duffing oseilla hich ai
tor/Coulomb friction dynamic model (see Fig. 1 - right) igVnich gives W (1.8
defined as (W)ave = (ToSi)ave-

) . — 3 Substituting the actual terms yields the following:
M+ Ci+ Cyyp sign(z) + Ko+ Knpa® = u (22)

t
where M, C, K, and u are the mass, damper, stiffness co _KI/O dr - m] oo =[(C+ Kp)i - &+ Cny signi) - 2],
efficients and external force input terms, respectivelye Th (24)



which is thenonlinear stability boundaryTo best understand Corollary 4.3.
how the boundary is determined, concepts and analogijes .
from electric AC power have been introduced earlier. Esselraﬁl Van der Pol Nonlinear System
tially, when the average powgris equivalent to the average The classic van der Pol's equation [22] is analyzed using
POWeLlissipated OVEr @ cycle, then the system is operatinghe techniques of this section. Originally, the “van der Pol
at the stability boundary. Later, in the exergy and exergguation” is credited to van der Pol, and is a model of an
rate responses for the nonlinear system, one may obse@lectronic circuit for early radio vacuum tubes of a triode
that the area under the curves for the exergy rate generat@ctronic oscillator [22]. The tube acts like a normal sei
and the exergy rate dissipation are equivalent and for tiWéen the currentis high, but acts as a negative resistoeif th
corresponding exergy responses the slopes will be equal &udrent is low. The main feature is that electrical circtitat
opposite. This helps to explain why PID control works wel¢ontain these elements pump up small oscillations due to a
for nonlinear systems. negative resistance when currents are small, but drag down
Numerical simulations are performed to demonstrate whdegge amplitude oscillations due to positive resistancenwh
the nonlinear stability boundary lies for the Duffing osill the currents are large. This behavior is known aslaxation
tor/Coulomb friction dynamic model subject to PID controloscillation as each period of the oscillation consists of a slow
Three separate cases are conducted with the numericabvakigldup of energy ('stress phase’) followed by a phase in
listed in Table 1. The nonlinear system is subject to anahiti which energy is discharged ('relaxation phase’). Thisipatar
condition of zy = 1.0. For Case2 the integral of position, System has played a large role in nonlinear dynamics and has
position, velocity, and acceleration responses along #ith been used to study limit cycles and self-sustained oswiljat
exergy and exergy rate responses are plotted in Fig. 2 (decofienomena in nonlinear systems.
row from top). For this case, the dissipative term is greater Consider the van der Pol equation with mass) (and
than the generative term. This is observed from the decayigigffness &) values other than unity and a nonlinear damping
system responses. In Ca3%¢he system responses along witierm (i) to be defined as:
the exergy and exergy rate responses are shown in Fig. & (thir
row from top). In this case, the average exergy slopes and
integrated power areas for the dissipative and generativest The appropriate Hamiltonian/Lyapunov function is defined a
are equivalent which demonstrates (24). This results itegys 1 1
responses that do not decay, displaying constant nonlinear H=V= §m3b2 + 51@3:2 > 0.
oscillatory behavior. In final Caséd, the system responses

along with the exergy and exergy rate responses are showr] }f" the corresponding time derivative of the Lyapunov
Fig. 2 (bottom row). In this case, the dissipative term i$|e§unct|on/Ham|lton|§n becomes

mi + u(l — %)z + kx = 0.

than the generative term which results in a system response V. = [mi+ka]d
with increasing nonlinear oscillatory behavior. In corsitin, = [pi(l—2?)]d
Fig. 3 shows the responses for the total exergy with respect = ux? — pxlic.

to each case along with the phase plane plot for the nonlin : e o .
. - T\?éxt identifying the generator and dissipator terms yields
system. For Cas&the nonlinear stability boundary (or neutra ying g P y

stability) is characteristic of an average zero output fue t T,Si = pux’i?
total exergy response or validation of (24). For the phaaael W = pui?
plot, Case2 demonstrates an asymptotically stable decaying (ToSrev)ave = (mi- i+ k- @)qpe = 0.

response, Casga neutrally stable orbital response, and Ca

4 an asymptotically unstable increasing orbit response. Sﬁm nonlinear stability boundargan be determined as

The last three cases for the PID control regulator Duffing {W} _ {Tos-i:|
oscillator/Coulomb friction dynamic system demonstrates 5qve o Hgve
three subcases for Corollary 4: Given apriéfi,S;)ave > (i), = [pa®s jave
0 and (W)awe > 0 then the nonlinear system showed the By investigating several initial conditions both inside, o
following: and outside the limit cycle then three separate regions can

i Case2 yieIded(TC,(S"z-)ave > (W>ave; asymptotic sta- be observed. Figure 4 shows these conditions with the corre-
bility; damped stable nonlinear response and demosponding numerical values given in Table I. The responses ar
stration of Corollary4.1. plotted on the Hamiltonian 3D surface (top) with the praject

ii. Case3 yielded (TO‘S",-),“,e = (W),m; neutral stabil- onto the phase plane shown on the 2D plot (middle). For the
ity; and demonstration of Corollarg.2. This case case outside the limit cycle, the dissipator term dominates
is the nonlinear stability boundary where dissipatioand for the case inside the limit cycle the generator term
and generation terms cancel each other out on tHeminates. For both cases inside and outside the limit cycle
average. the system migrates back to the stability boundary. For éise ¢

iii. Case4 yielded (TOSi)aUe < (W)Cwe; increasingly already on the limit cycle then the system is already at aéutr
unstable towards another orbit; and demonstration sfability. The neutral exergy-rate and exergy plots arevshio



Fig. 4 (bottom). The cycle is defined at approximatelt 3.5 [13] K.-H. Anthony, Hamilton’s Action Principle and Thermodynamics

seconds. For the neutral pair the terms cancel each othat out ~ ©f Irreversible Processes - A Unifying Procedure for Refbtesand
. : Irreversible Processes]. Non-Newtonian Fluid Mechanics, Vol. 96,
the end of the cycle ofV]uve = [T Si]ave- FOr the generator 2001, pp. 291-339.

case '{h(%‘rﬂ/i/']cw_e > [T,S:]ave @nd for the dissipator case therj14] D.S. Scott, Links and Lies International Journal of Hydrogen Energy,

Wlave < [T»Si]ave, respectively. Eventually, given enough__ Vol- 28, 2003, pp. 473-476. .
[ ]I‘“’e b tf[l ;)h iJave tp d )é inat Y 9 il 9 ;15] D. Kondepudi and I. PrigogineModern Thermodynamics: From Heat
cycles bo € generator and dissipator cases Will CORVErg * ppgines to Dissipative Structuredohn Wiley & Sons, N.Y., N.Y., 1999.

to the neutral case. [16] A. Greven, G. Keller, and G. Warneck&ntropy Princeton University
Press, New Jersey, 2003.
VIIl. SUMMARY AND CONCLUSIONS [17] D.S. Scott,Exergy International Journal of Hydrogen Energy, Vol. 28,

, 2003, pp. 369-375.
A novel control system design methodology was deveksg] L. Meirovitch, Methods of Analytical DynamicsMicGraw-Hill, New

oped that uniquely combined: concepts from thermodynamic York, 1970.

. ; ; . o Al 9] R.J. Smith,Circuits, Devices, and Systems: A First Course in Electrica
exergy and entropy; Hamiltonian systems; Lyapunov's direl Engineering John Wiley & Sons, Third Edition, 1976.

method and Lyapunov optimal analysis; electric AC poweso] T.L. Saaty and J. BramNonlinear MathematicsMcGraw-Hill, New
concepts; and power flow analysis. Relationships were eériv_ York, 1964.

between exergy/entropy and Lyapunov optimal functions 6] £.% BE6TRE b0 8 Cae G o A ourmal of
Hamiltonian systems. The methodology is demonstrated with Guidance, Control, and Dynamics, Vol. 20, No. 6, Nov-Dec 7,99p.
two fundamental numerical simulation examples: 1) a Duffin(z; 1083-1088. , _
oscillator/Coulomb friction nonlinear model that empldg® 2 ,\Bﬂ'a‘éansdgrs Plog')';ad'o Revl, 704-754, 1920 and B. van der Péhil.
regulator control and 2) a van der Pol nonlinear oscillator T '

system. The control system performance results and/ooappr

priately identified terms were partitioned and evaluateseda \MN_, e Wour S .
on exergy generation and exergy dissipation terms. TheSe.— & —=0 .
numerical results showed the stability boundaries for eachy — ™1 > mour

nonlinear system. This novel nonlinear control methodplo% .
lted in both necessary and sufficient conditions fdnikita ig. 1. Energy flow control volume (left), second law entropy with
resu . y . flux exchange system (middle), and Duffing oscillator/Coulmb
of nonlinear systems. In the near future, this novel contrg|ction system (right)
system design methodology will be extended to tracking and
adaptive control of multi-input/multi-output nonlinegrséems.
This methodoloy is applicable to a large class of nonlinear
systems.

TABLE |
Duffing oscillator/Coulomb friction model and PID control
system gains
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generate 0.1 —0.1 1.5 1.0 1.0
neutral 1.0 —1.0 1.5 1.0 1.0
dissipate 2.0 —2.0 1.5 1.0 1.0




Duffing Oscillator

Duffing Oscillator Phase Plane §
3 < 15
@ 3
3 == (KK Oxv+K | X7V
2 g 100
3
1] s 99
’a f=4
@ ] i
E O e 0 A
> @ { : At
c N H .
= g -50: : e
s \: e
-2 £ 100 i u
I H ¥
o
_q _1
1 -05 0 0.5 1 5 2 4 6 10
. x (m) Time (sec)
g CASE 2 PID Control Nonlinear System % CASE 2 PID Control Nonlinear System
o 15 6
§ X (Mm-s =3
< n £ 40
- 10 4 == (m) g
S \ —v (m/s) > 20
B --ra(misis)ly 2 P
z 7',’\ _20 St T [L-T S damper
=] % 4 e —W integral
3 3" 0 See, |---T idt(S) dampey
e 2-60 **|- dfdt(W) integral H = 0.5%k*? + 0.5*m*xdof 4
s 5 C— QLAY 7 ---generate
M ——— 2K, R LILEAT g
gt 2 4 6 10 478 2 4 6 10 LS80 2 | heutral
5 Ti Ti e oevecneseecrestass -- dissipate
= ime (sec) * ime (sec) IR LRI LR,
g CASE 3 PID Control Nonlinear System £ CASE 3 PID Control Nonlinear System s ‘Wt{:}@ﬁf&%{:}f‘;@% 2
3 15 = 20 5 RRRRINIRIINE0 % = 0
2 = = 8RRz 5
Wil g . N
& —vV (m/s) > 100 g SN S -2
2 5 --ra(misis)lf 2 =
3 X :
29 oA AL Xdot (mis) Y xm 3
g -5 é --TS damper 3
'§ 8 -100 —W integral T
o -10 > ...Tcdldl(S} damper e, 7 20 _
g e s d/dt(W) integral H g
g” 2 3 6 10 W0 4 6 10 g 10 8
E Time (sec) Time (sec) x 3
< CASE 4 PID Control Nonlinear System % CASE 4 PID Control Nonlinear System 3 Of P— ) e [
3 6 Z 80 g N @
Q | = w : \ \
2 n oo -0 L K -
é 40 f § 609 W Neutral Case 20 Neutral Case tmmneees
2 H
> 20 i B 400 2 4 s O 4 8
S ! § Time (sec) Time (sec)
S i d 209 -
g O N, 7 Fig. 4. Van der Pol responses - 3D Hamiltonian, phase plane plot
§-29 2 o TS damer (top), and exergy-rate and exergy plots (bottom)
K S "Y1 —W integral el
o ~ hs
E» —40; ; 2-400- ..Tod/dt(S) dampef
s ---a (m/sls) 9] d/dt(W) integral
& g £ 6o (W) integ J
2 2 10 2 10

4 6 4 6
Time (sec) Time (sec)

Fig. 2. Cases 1-4: Duffing oscillator/Coulomb friction with PID
control numerical results
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Fig. 3. Cases 2:4 - Duffing oscillator/Coulomb friction numerical
results



