

# **Evidence-Based Techniques for Evaluating Cyber Protection Systems for Critical Infrastructures**

**J. Darby, J. Phelan, P. Sholander, B. Smith, A. Walter and G. Wyss**

**October 25, 2006**

**James Phelan  
Distinguished Member of Technical Staff  
Sandia National Laboratories**

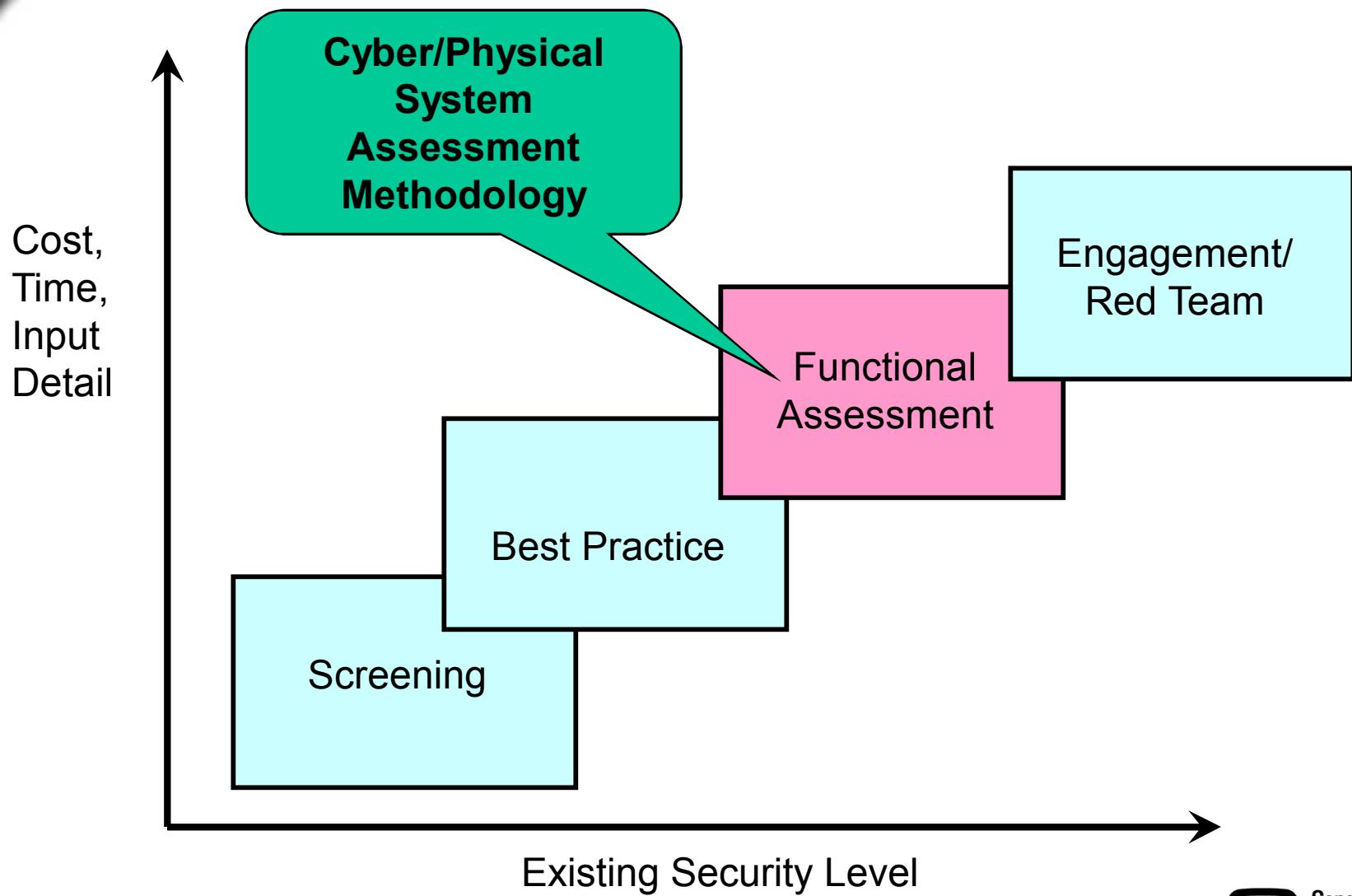


# Technical Overview and Assumptions

## Overall Research goal:

- Develop a risk assessment methodology that supports analysis of integrated physical and cyber security elements within Critical Infrastructure (water, power, gas, etc.) systems

## Most important outcomes:


- A better understanding of the interrelation between cyber and physical security and its implications for unidentified vulnerabilities
- Provide decision makers with integrated and comprehensive risk results.
  - Cost-effective security upgrades that reduce overall risk

## This talk's focus:

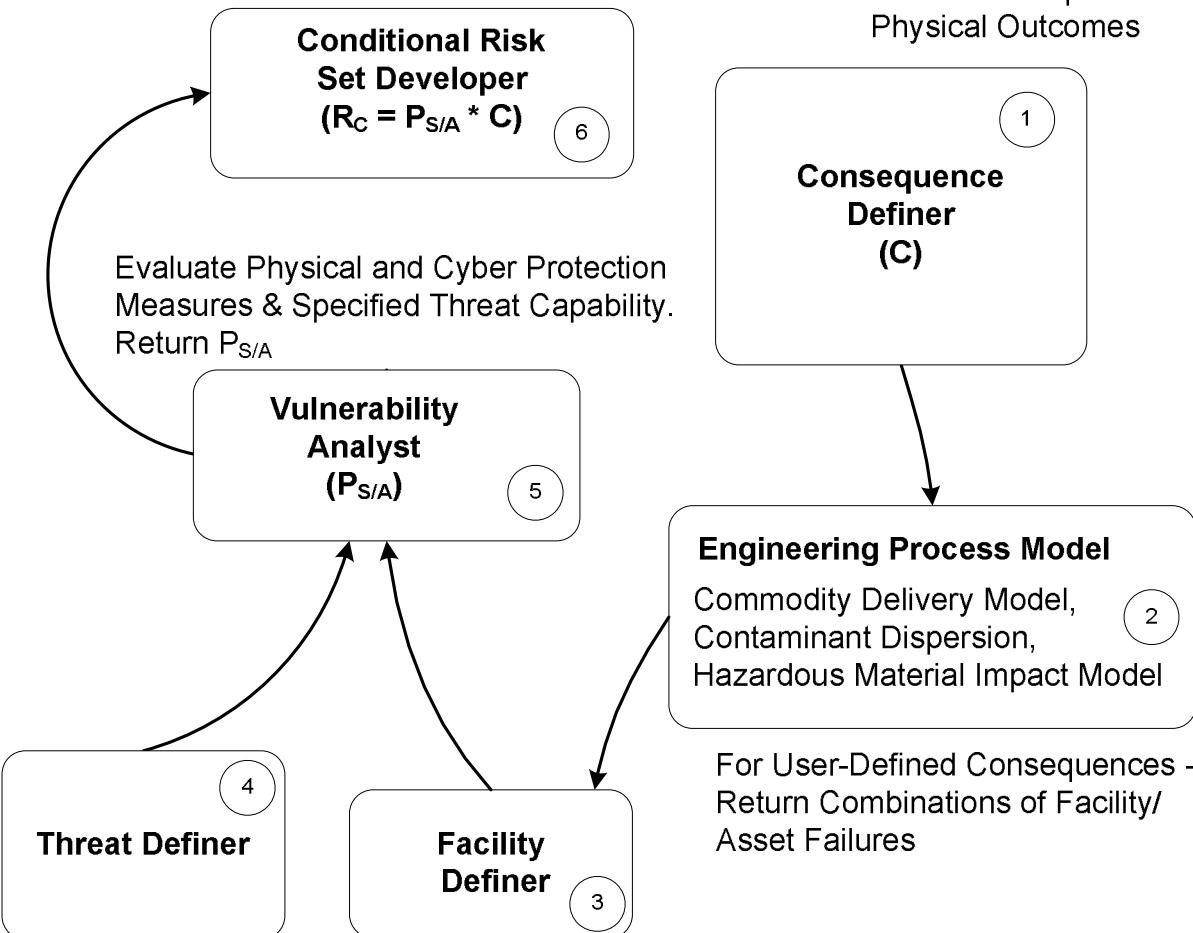
- Evidence-based techniques for evaluating cyber protection system effectiveness



# Capability-Based Structured Analysis Methodology






# CPSAM Methodology Highlights

- **Conditional risk**
  - Risk, given a defined attack
- **Consequence based**
  - Loss of fire fighting, loss of potable water, ...
  - Consequence common measure (i.e., willingness to pay)
- **Physical security**
  - Detect, delay, and respond approach
- **Cyber security**
  - Category-based approach for comparing cyber threat against security primitives
  - Cyber protective system effectiveness quantified for joint evaluation of cyber/physical system effectiveness
- **Evidence-based techniques**
  - Belief/plausibility methods generalize probabilistic uncertainty using degree of evidence
    - Cyber vulnerability
    - Consequence

# CPSAM User Modules

**User Evaluates** Conditional Risks for Various Threats upon the System to Identify Risk Mitigation Measures

**User Defines**  
Consequences of Concern & Metrics for Specific Physical Outcomes



**User Creates** the Capabilities & Constraints of the Adversary

**User Creates** the Detect, Delay, and Response features for each Facility/Asset



# Blended Attack Types

- **Physical Attack**

- Physical only
- Cyber-enabled physical

- Adversary must gain physical access to asset
  - Asset failure induced at asset location

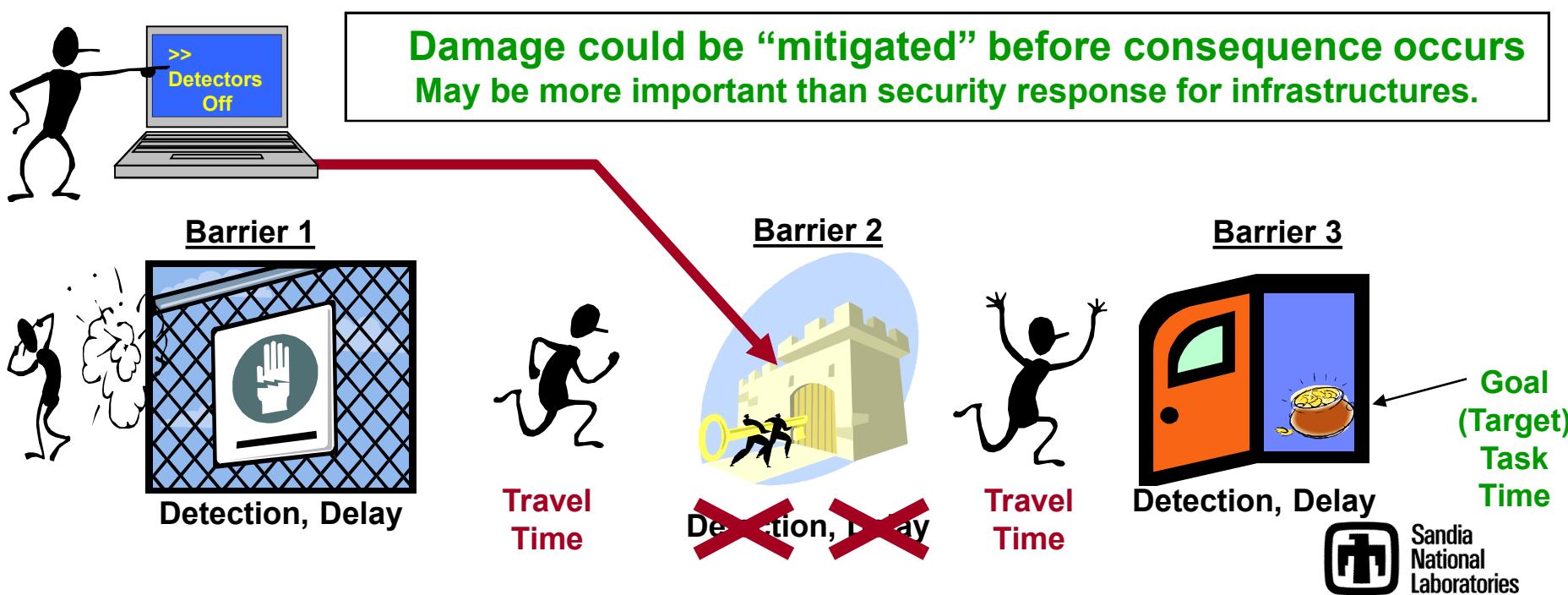
- Includes cyber-enabled physical attack
  - Cyber-controlled PPS elements disabled by cyber means
  - Can occur only if PPS elements are cyber-controlled

- **Cyber Attack**

- Cyber only
- Physically enabled cyber

- Adversary causes asset failure without gaining physical access to it
  - Asset failure induced at asset location

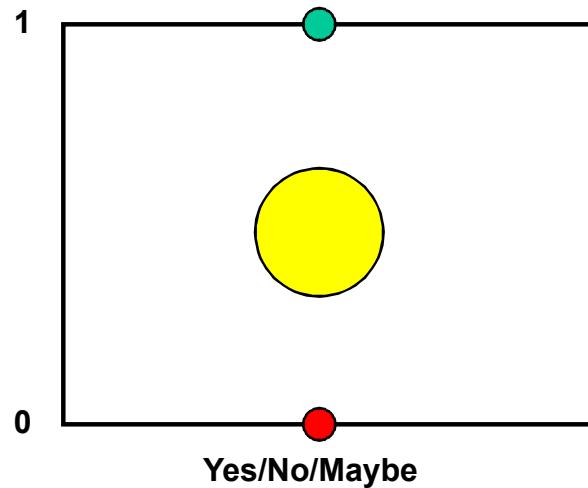
- Occurs only if asset is cyber-controlled and can be caused to fail by cyber means
  - Asset failure induced at asset location


- Includes physically enabled cyber attack
  - Launched from on-site location
  - Physical attack to gain access to location from which cyber attack occurs

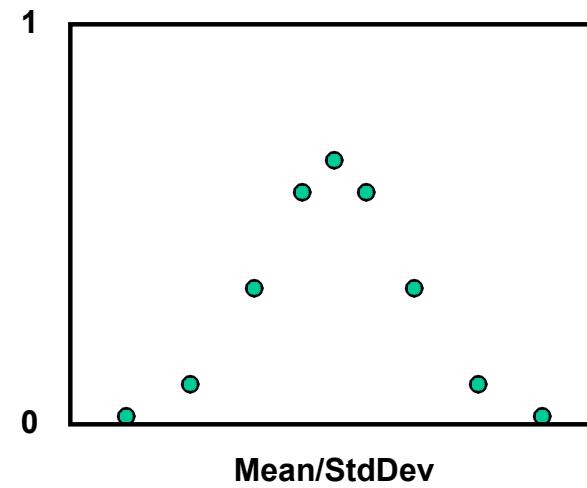


Sandia  
National  
Laboratories

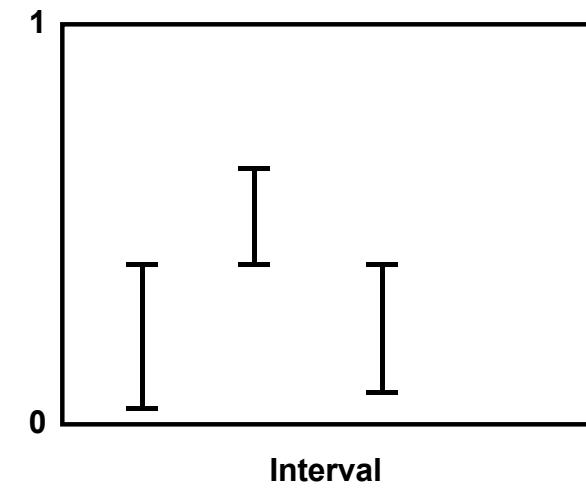
# Assessment of Blended Security Systems


- Evaluation is based on “timely detection”: Can the good guys respond before the bad guys accomplish their goal?
  - Each barrier has a task or delay time and a probability of detection
  - Cyber attacks can shut off security delay or detection elements
    - Cyber attacks can disable security elements before physical attack starts
    - Bad guys’ optimal path depends on which elements can be defeated, given their cyber and physical attack skills

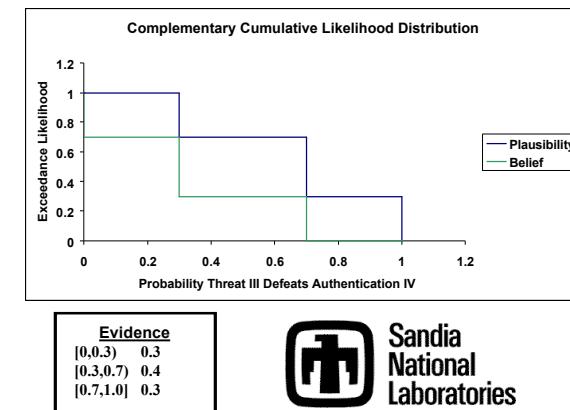
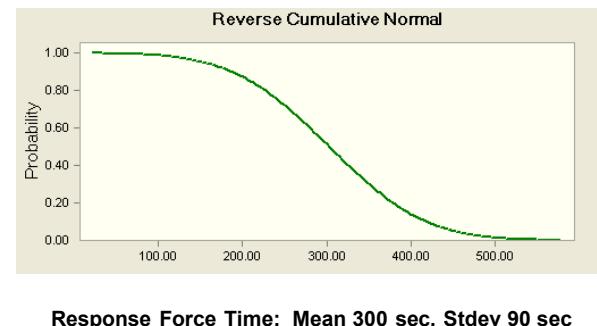
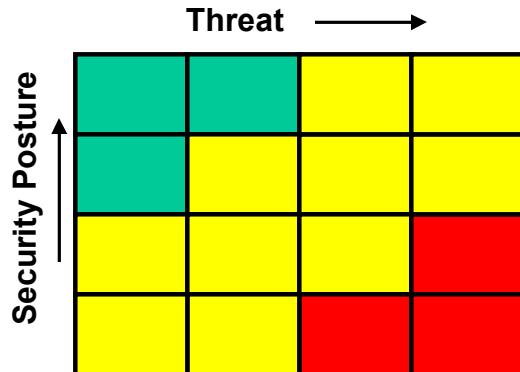





# Estimating Security System Effectiveness


**Certainty**






**Probability**



**Belief/Plausibility**



## Likelihood that Threat Beats Cyber or Physical Protective System



Sandia  
National  
Laboratories



# Why Use Evidence-Based Techniques?

- Risk from a random event, such as an earthquake is “aleatory” (stochastic or random)
  - Probability is well suited for analyzing aleatory uncertainty
- Terrorist acts are not a random event
  - Intentional act by a thinking, malevolent adversary who carefully selects, plans and executes the attack.
  - Uncertainty of the risk of a terrorist act is “epistemic” (state of knowledge).
  - Act is not a random event but we have significant uncertainty as to what the adversary will do.
- Belief captures the uncertainty in the inputs to the risk analysis process and propagates that uncertainty through to the outputs
- Research Goal
  - Combine evidence-based math techniques with attack graph techniques for evaluating CPS
  - Make attack graphs applicable to conditional risk calculations for blended security systems



# Threat Definer

- **Specify specific adversary capabilities**
  - Based on perceived threat level
- **Physical-attack capabilities**
  - Examples are hand-tools, power-tools, explosives and vehicles
- **Cyber-attack capability attributes**
  - Funding
  - Goal Intensity Commitment
  - Stealth
  - Physical Access
  - Cyber Skills
  - Implementation Time
  - Cyber Organization Size



# Cyber Adversary Model

| Category | Funding | Goal Intensity | Stealth | Physical Access | Cyber Skills | Implementation Time | Cyber Org Size |
|----------|---------|----------------|---------|-----------------|--------------|---------------------|----------------|
| I        | H       | H              | H       | H               | H            | Decades/Years       | Hundreds       |
| II       | H       | H              | H       | M               | M            | Years               | Tens of Tens   |
| III      | M       | H              | M       | M               | M            | Months              | Tens           |
| IV       | L       | M              | H       | L               | H            | Months              | Tens           |
| V        | L       | M              | M       | L               | M            | Months              | Ones           |
| VI       | L       | L              | L       | L               | L            | Weeks               | One            |

- Based on seven adversary characteristics
- Purposefully avoids labels such as “hacker”
- Adversary types should “well-cover” the range of possible values for the seven attributes



# Authentication (A) Security Primitive

| Category | Cyber Security Posture                                                                                                                                 |
|----------|--------------------------------------------------------------------------------------------------------------------------------------------------------|
| I        | No Passwords                                                                                                                                           |
| II       | Weak passwords. No periodic changes.                                                                                                                   |
| III      | Strong passwords. No periodic changes.                                                                                                                 |
| IV       | Strong passwords. Periodic Changes.                                                                                                                    |
| V        | Strong passwords. Periodic Changes. Limits on failed password attempts. Passwords are cracked every month to find users with easily guessed passwords. |

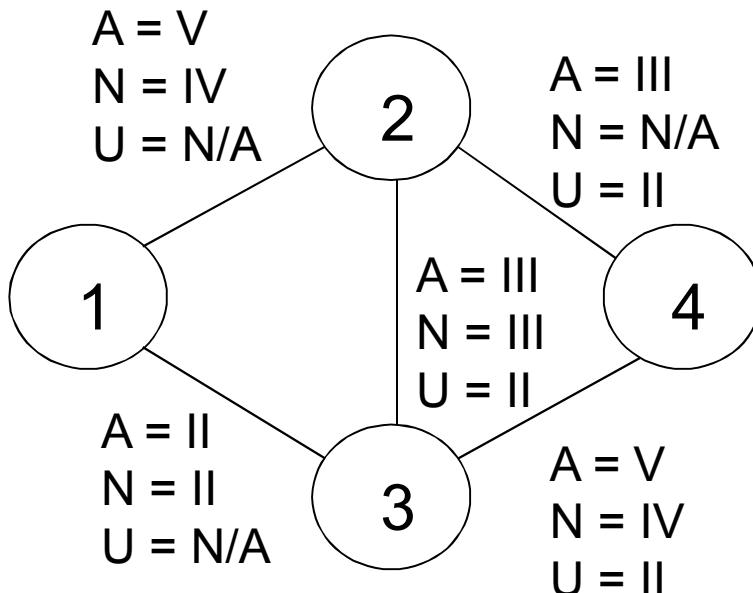
|                                                                             | Threat Category |                          |                                               |                         |                         |                                               |
|-----------------------------------------------------------------------------|-----------------|--------------------------|-----------------------------------------------|-------------------------|-------------------------|-----------------------------------------------|
| Authentication Category                                                     | I               | II                       | III                                           | IV                      | V                       | VI                                            |
| I (No Passwords)                                                            | [1] 1           | [1] 1                    | [1] 1                                         | [1] 1                   | [1] 1                   | [1] 1                                         |
| II (Weak passwords. No periodic changes.)                                   | [1] 1           | [1] 1                    | [1] 1                                         | [1] 1                   | [0.9,1] 1               | [0.8,1] 1                                     |
| III (Strong passwords. No periodic changes.)                                | [1] 1           | [0.7, 1) 0.1<br>[1] 0.9  | [0.7, 1) 0.2<br>[1] 0.8                       | [0.7, 1) 0.2<br>[1] 0.8 | [0.7, 1) 0.4<br>[1] 0.6 | [0,0.3) 0.8<br>[0.3,0.7) 0.1<br>[0.7,1.0] 0.1 |
| IV (Strong passwords. Periodic changes.)                                    | [1] 1           | [0.7, 1) 0.3<br>[1] 0.7  | [0,0.3) 0.3<br>[0.3,0.7) 0.4<br>[0.7,1.0] 0.3 | [0] 0.5<br>(0,0.3] 0.5  | [0] 0.7<br>(0,0.3] 0.3  | [0] 0.9<br>(0,0.3] 0.1                        |
| V (Strong passwords. Periodic changes. Limits on failed password attempts.) | [1] 1           | [0.7,1.0) 0.5<br>[1] 0.5 | [0,0.3) 0.6<br>[0.3,0.7] 0.4                  | [0] 0.9<br>(0, 0.3] 0.1 | [0] 0.9<br>(0, 0.3] 0.1 | [0] 1                                         |



# Network Access Control (N) Security Primitive

| Category | Cyber Security Posture                                                       |
|----------|------------------------------------------------------------------------------|
| I        | Remote login via password-protected dial-up connections. No Firewall.        |
| II       | Remote logins allowed from Internet. IP Address Filtering and Port Blocking. |
| III      | Remote logins allowed via VPN connection                                     |
| IV       | No remote logins. SCADA Controls accessible only from LAN terminals.         |
| V        | No remote logins. SCADA LAN is physically separate from other LANs.          |

|                                                                           | Threat Category |                                  |                                  |                                  |                                  |                                |
|---------------------------------------------------------------------------|-----------------|----------------------------------|----------------------------------|----------------------------------|----------------------------------|--------------------------------|
| Network Access Control (N) Category                                       | I               | II                               | III                              | IV                               | V                                | VI                             |
| I (Password-protected dial-up. No firewall.)                              | [1] 1           | [1] 1                            | [1] 1                            | [1] 1                            | [0.7,1] 1                        | [0.3, 0.7) 0.5<br>[0.7,1] 0.5  |
| II (Remote login from Internet. Firewall.)                                | [1] 1           | [0.3, 0.7) 0.2<br>[0.7, 1.0] 0.8 | [0.3, 0.7) 0.5<br>[0.7, 1.0] 0.5 | [0.3, 0.7) 0.2<br>[0.7, 1.0] 0.8 | [0.3, 0.7) 0.5<br>[0.7, 1.0] 0.5 | [0, 0.3) 0.8<br>[0.3, 0.7] 0.2 |
| III (Remote logins via VPN.)                                              | [1] 1           | [0, 0.3) 0.5<br>[0.3, 0.7] 0.5   | [0, 0.3) 0.8<br>[0.3, 0.7] 0.2   | [0.3, 0.7) 0.8<br>[0.7, 1.0] 0.2 | [0, 0.3) 0.8<br>[0.3, 0.7] 0.2   | [0] 1                          |
| IV (No remote logins. SCADA net not physically isolated from other LANs.) | [1] 1           | [0.3, 0.7) 0.2<br>[0.7, 1.0] 0.8 | [0.3, 0.7) 0.8<br>[0.7, 1.0] 0.2 | [0] 0.6<br>(0, 0.3] 0.4          | [0] 0.8<br>(0, 0.3] 0.2          | [0] 1                          |
| V (No remote logins. SCADA LAN physically isolated from other LANs.)      | [1] 1           | [0, 0.3) 0.5<br>[0.3, 0.7] 0.5   | [0, 0.3) 0.8<br>[0.3, 0.7] 0.2   | [0] 0.8<br>(0, 0.3] 0.2          | [0] 0.9<br>(0, 0.3] 0.1          | [0] 1                          |

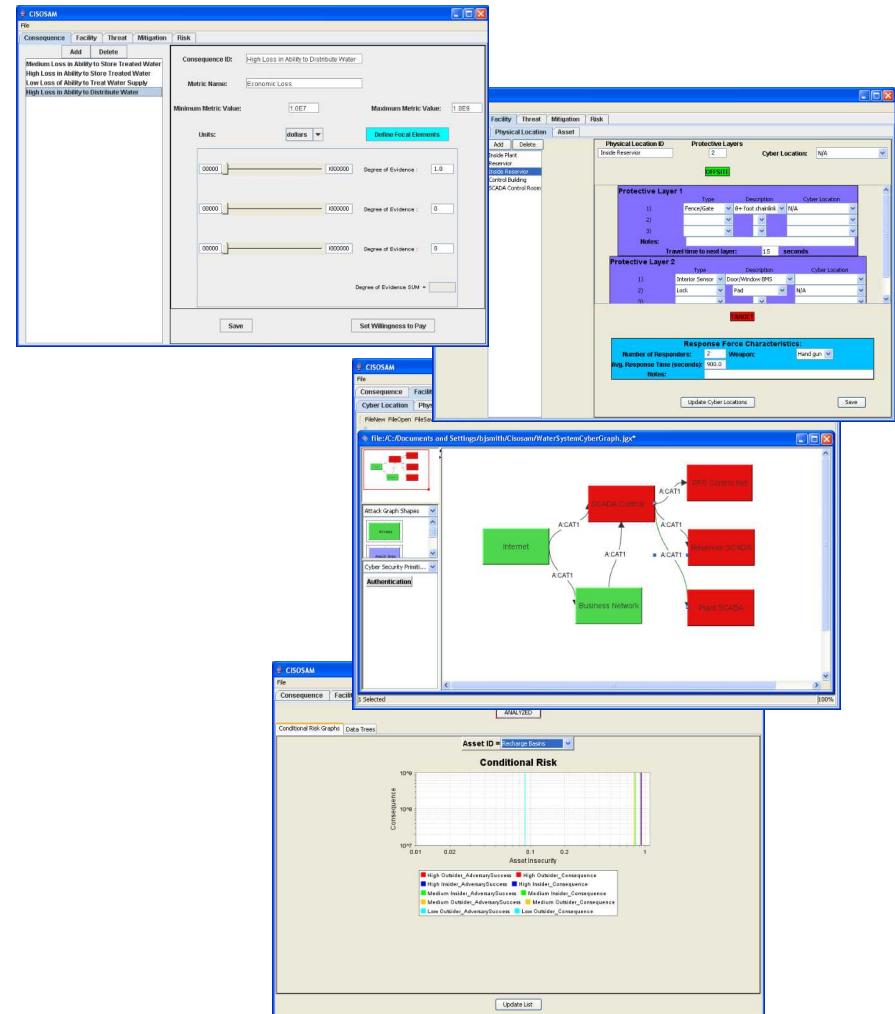



# User Access Control (U) Security Primitive

| Category | Cyber Security Posture                                                |
|----------|-----------------------------------------------------------------------|
| I        | Physical Access unmonitored. Rights given to everyone.                |
| II       | Physical Access monitored. Rights assigned to individual users.       |
| III      | Rights assigned to groups. All cyber equipment is physically secured. |

| User Access Control (U)<br>Category                                | Threat Category |                                  |                                  |                                  |                                  |                                |
|--------------------------------------------------------------------|-----------------|----------------------------------|----------------------------------|----------------------------------|----------------------------------|--------------------------------|
|                                                                    | I               | II                               | III                              | IV                               | V                                | VI                             |
| I (Physical access unmonitored. Rights given to everyone.)         | [1] 1           | [0.7,1] 1                        | [0.3, 0.7) 0.2<br>[0.7, 1.0] 0.8 | [0.3, 0.7) 0.5<br>[0.7, 1.0] 0.5 | [0.3, 0.7) 0.8<br>[0.7, 1.0] 0.2 | [0, 0.3) 0.8<br>[0.3, 0.7] 0.2 |
| II (Physical access monitored. Rights given to individuals.)       | [1] 1           | [0.3, 0.7) 0.2<br>[0.7, 1.0] 0.8 | [0.3, 0.7) 0.5<br>[0.7, 1.0] 0.5 | [0, 0.3) 0.8<br>[0.3, 0.7] 0.2   | [0, 0.3] 1                       | [0] 0.8<br>(0,0.3] 0.2         |
| III (Rights given to groups. All equipment is physically secured.) | [1] 1           | [0.3, 0.7) 0.5<br>[0.7, 1.0] 0.5 | [0, 0.3) 0.8<br>[0.3, 0.7] 0.2   | [0] 0.8<br>(0,0.3] 0.2           | [0] 0.9<br>(0,0.3] 0.1           | [0] 1                          |

# Example Cyber Network




| Cyber Threat Category | CPS Effectiveness Interval | Easiest Attack Path |
|-----------------------|----------------------------|---------------------|
| I                     | [0]                        | (1,3,4)             |
| II                    | [0.12, 0.68]               | (1,2,4)             |
| III                   | [0.7, 0.98]                | (1,2,4)             |
| IV                    | [0.9, 1.0]                 | (1,3,2,4)           |
| V                     | [0.97, 1.0]                | (1,3,2,4)           |
| VI                    | [1]                        | No Possible Path    |

- Example Network
  - 1 = Internet
  - 2 = Business Network
  - 3 = Business Partner's Network
  - 4 = PCS Control Network
- Results
  - Threat Category V never wins
  - Threat Category I always wins
  - Some uncertainty for the other threat categories
  - Easiest path makes qualitative sense

# Key Features of Cy/Phy Security Assessment Methodology

- Generate risk index based on:
  - Consequences of Concern (CoC)
  - Asset failures that lead to a CoC
  - Adversary capabilities
  - Physical and cyber protective measures for each asset
- Evaluates physical protection systems (PPS) and cyber protection systems (CPS) as part of an integrated analysis
  - Explicit linkage of PPS and CPS models
- Initial focus on Critical Infrastructure, but concepts are also applicable to high-security facilities
  - See MILCOM 2005 Paper and SAND Report for more details





# Future/Ongoing Work

- Enhanced user interfaces that better elicit data needed to apply the model
- Enhanced visualization of risk values for different CoCs, asset classes and threat levels.
- Cut sets that include multiple assets / targets
- Integration with Engineering Process Models (EPMs) for various infrastructures
  - Power distribution and generation
  - EPANET for water distribution
- Better assessment of mitigation effectiveness
- Improved techniques for evaluating CPS effectiveness
  - Attack paths that include both physical and cyber steps
  - Applications to large graphs
- Integration with network and process control simulation tools
  - Joint evaluation of system performance and blended security posture