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ABSTRACT
Risk consists of the likelihood of an event combined 

with the consequence of that event.  There is uncertainty 
associated with an estimate of risk for an event that may 
happen in the future.  For random, “dumb” events, such as 
an earthquake, this uncertainty is aleatory (stochastic) in 
nature and can be addressed with the probability measure 
of uncertainty.  

A terrorist act is not a random event; it is an 
intentional act by a thinking malevolent adversary.  Much 
of the uncertainty in estimating the risk of a terrorist act is 
epistemic (state of knowledge); the adversary knows what 
acts will be attempted, but we as a defender have 
incomplete knowledge to know those acts with certainty.

To capture the epistemic uncertainty in evaluating the 
risk from acts of terrorism, we have applied the 
belief/plausibility measure of uncertainty from the 
Dempster/Shafer Theory of Evidence.  Also, to address 
how we as a defender evaluate the selection of scenarios 
by an adversary, we have applied approximate reasoning 
with fuzzy sets.  We have developed software to perform 
these evaluations.

INTRODUCTION
First, we summarize how risk is typically evaluated 

for a random event.  Then, we briefly discuss the 
belief/plausibility measure of uncertainty and fuzzy sets.  
Finally, we discuss how risk from potential acts of 
terrorism can be evaluated using belief/plausibility and 
fuzzy sets. 

RISK FOR A RANDOM EVENT
For a safety analysis, risk is concerned with random 

failures, such as an earthquake, and risk can be defined as 
the product:

CPfRisk  (Eqn. 1)

where f is the frequency of the initiating event  (e.g., an 
earthquake), P is the response of system of concern (e.g., 
the fragility of a building), and C is the consequence if the 
system fails (e.g., the number of people killed).  Note that 
the initiating event is expressed as a frequency, f.  P is 
conditional on the initiating event (e.g., the magnitude of 
the earthquake), and C is conditional on system failure.  
Using Equation 1, Risk has units of consequence per year.  

Typically, more than one initiating event is of 
concern, and there is risk from each of “i” initiating 
events:

iiii CPfRisk  (Eqn. 2)

The total risk can be expressed as the sum of the risk from 
each initiating event:


i

iRiskRiskTotal (Eqn. 3)

Each initiating event is associated with a scenario, Si, 
where a scenario is the combination of the initiating event 

and the system response.  The frequency of consequence 
for scenario “i” is defined as Fi ≡ fi x Pi.  Fi is the 
frequency at which consequence Ci occurs.  Equation 2 
expresses risk as a product.  To provide more information, 
we can define the risk from each scenario as a risk triplet: 
[Kaplan, Risk]

 iiii CFSRisk ,, (Eqn. 4)

With this formulation we can distinguish among scenarios 
that have similar “Risk” as defined using Equation 2, but 
that have significantly different frequencies and 
consequences.  Total Risk is the set of all risk triplets:

},,{ ialloverCFSRiskTotal iii    (Eqn. 5)

Using the risk triplet approach, for each scenario we 
have two values: the frequency of the consequence and 
the consequence given the scenario occurs.  We can 
calculate the “exceedance frequency of consequence” for 
the collection of scenarios.  Define Pi(Cj) as the 
probability that consequence Cj is exceeded given 
scenario Si.  In general, for “i” scenarios and “j” 
consequences:
   

i
jiij CPxFCFreq )()(     (Eqn. 6)

where Freq(Cj) is the frequency of exceedance of 
consequence value Cj. Uncertainty in Fi and Ci is
expressed using a probability measure.  For analysis of 
random events, probability is an appropriate measure of 
uncertainty.1  The variables are random variables with 
probability distributions.

Consider a single scenario with uncertainty for each 
of the variables f, P, and C.  The  operation in Equation 
2 represents convolution of probability distributions under 
multiplication.  For example, assume that based on the 
data available, f is modeled with a lognormal probability 
distribution with mean 1 x 10-3 per year and standard 
deviation 3 x 10-4 per year.2  P is modeled with a 
lognormal probability distribution with mean 0.03 and 
standard deviation 0.01.  C is modeled with a uniform
probability distribution with minimum 1000 and 
maximum 7000 (mean 4000).  Using equation 2, the 
expected value (mean) of Risk is 0.12 deaths per year.  

                                                       
1 The name probability is used for two different concepts.  The term P is 
a probability in the classical, or objective, sense; the number of times an 
event occurs divided by the number of trials in the limit as the number of 
trials is infinite.  The uncertainty in P (due to insufficient information to 
calculate the classical probability) is probability in the subjective or 
Bayesian sense, and it represents our state of knowledge about the 
likelihood of the value P.  Both concepts obey the Kolmogorov axioms 
that mathematically define a probability measure.
2 There are many probability distributions available to model the 
uncertainty for a random variable, including: normal, lognormal, 
exponential, triangular, and normal.  Data and expertise are required to 
select the appropriate probability distributions for the variables of 
interest.
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There is uncertainty in the Risk as represented by the
probability distribution shown in Figure 1.3

Probability for Risk
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Figure 1.  Complementary Cumulative Probability 
Distribution for Risk

For example, the probability is 95% that the risk is greater 
than 0.03 deaths per year.  The probability is 50% that the 
risk is greater than 0.10 deaths per year.  The probability
is 5% that the risk is greater than 0.27 deaths per year.  

The risk for this scenario can also be expressed as an 
exceedance frequency of consequence, as shown in Figure
2.4  Due to uncertainty, there is a family of curves for 
selected percentiles of probability.  With 50% probability
the frequency of more than 5000 deaths is not larger than
about 1 x 10-5 per year.  With 95% probability the 
frequency of more than 5000 deaths is not larger than 
about 2 x 10-5 per year.

Exceedance Frequency of Consequence
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Figure 2.  Exceedance Frequency of Consequence

UNCERTAINTY
Over the last 50 years, mathematicians and logicians have 
developed measures of uncertainty that are more general 
than probability, and that specifically address epistemic 
uncertainty. The general references provide details.  

                                                       
3 For the examples in this paper, the Crystal Ball software program, 
version 7.2, was used to convolute probability distributions under 
algebraic operations.
4

The curves in Figure 2 are straight lines due to the use of a uniform 
probability distribution for consequence for the simple example.

The belief/plausibility measure of uncertainty from 
the Dempster/Shafer Theory of Evidence is an extension 
of the probability measure of uncertainty that can better 
capture epistemic uncertainty.  Belief/plausibility is a 
superset of probability and under certain conditions belief 
and plausibility both become probability. Under other 
conditions belief/plausibility become 
necessity/possibility, respectively.5  Belief/plausibility 
addresses a type of uncertainty called ambiguity.  
Ambiguity is uncertainty associated with predicting an 
event in the future.

A simple example illustrates the difference between 
aleatory and epistemic uncertainty, and the use of a 
belief/plausibility measure.  If I have a fair coin, heads on 
one side tails on the other with each side equally likely, 
my uncertainty as to the outcome of a toss- heads or tails-
is aleatory.  The probability of heads is ½ and the 
probability of tails is ½.  My uncertainty is due to the 
randomness of the toss.  Suppose however that I do not 
know the coin is fair; the coin could be biased to come up 
heads, or the coin could even be two-headed or two-
tailed.  Now I have epistemic uncertainty; my state of 
knowledge is insufficient to assign a probability to heads 
or tails, all I can say is the likelihood of heads (or tails) is 
somewhere between 0 and 1.  To consider epistemic 
uncertainty as well as aleatory uncertainty, a superset of 
probability called belief/plausibility can be used as the 
measure of uncertainty.  Using belief/plausibility, with 
total ignorance about the coin, the Belief that the toss will 
be heads is 0 and the Plausibility that the toss will be 
heads is 1; similarly, the Belief that the toss will be tails is 
0 and the Plausibility that the toss will be tails is 1.  
Belief/Plausibility form an interval that can be interpreted 
as giving the lower and upper bound of probability.  If I 
have specific enough information, both belief and 
plausibility reduce to a single value, probability.  Figure 3 
illustrates this concept.  Note that epistemic uncertainty 
can be reduced with more information; if I toss the coin a 
few times and a heads and a tails occur, I know the coin is 
two sided; with more tosses I can evaluate the fairness of 
the coin.  The aleatory uncertainty cannot be reduced with 
more information.

Figure 3.  Belief/Plausibility as Bounds on Probability

In addition to ambiguity, we have another type of 
uncertainty called vagueness.  We have vagueness when 

                                                       
5 To be precise, if the focal elements are singletons, belief/plausibility 
both become probability.  If the focal elements are nested, 
belief/plausibility become necessity/possibility, respectively.

        Plausibility

Belief

Probability is somewhere  in 

[Belief, Plausibility] Interval



we use linguistics (words) to classify events; for example, 
yesterday was “sunny”, public confidence in the stock 
market is “high”, etc.  Vagueness is uncertainty as to how 
to classify a known event.  For example, assume we know 
how tall John is, but instead of saying John is 6 feet 2 
inches tall we categorize John as “tall” without a precise 
definition of “tall”.  The linguistic (word) “tall’ is vague.  
Vagueness can be addressed using the mathematics of 
fuzzy sets.

A simple example of fuzzy sets is as follows.  
Consider a random variable for consequence as “the 
number of deaths from a terrorist attack” for which we 
take the range as [0, 5x106]. For estimating the 
consequence from a particular scenario we may choose to 
reason at a higher level than the specific number of deaths 
for two reasons: (a) there is too much uncertainty to 
distinguish between say 1000 and 2000 deaths, and (b) 
when comparing scenarios with widely different 
consequences, such as blowing up a building to 
detonating a nuclear device, we have orders of magnitude 
difference in the consequence.  Suppose we partition the 
range with crisp sets commensurate with the “accuracy” 
to which we wish to measure consequence; for example, 
[0, 10), [10, 100), [100, 1000), [1000, 1 x 104), and 
[1 x 104, 5 x 106].  We have defined sets, subsets of the 
range, at the “fidelity” to which we wish to reason.  We 
can also assign names to these sets: “minor” for [0, 10), 
“moderate” for [10, 100), “high” for [100, 1000), “major” 
for [1000, 1 x 104], and “catastrophic” for 
[1 x 104, 5 x 106].  We have assigned a linguistic (name) 
to the crisp sets of interest.  But there is a problem with 
our crisp sets.  If 999 people die the consequence is 
“high” but if 1000 people die the consequence is “major”; 
although the crisp sets solve the problem of reasoning at 
too fine a level, they suffer from the problem of sharp 
boundaries.  We really want to consider 999 deaths as 
both high and major to some degree, and we can do so by 
making our sets fuzzy.  Specifically we define “minor” as 
“up to about 10”, “moderate” as “ between about 10 and 
about 100”, “high” for “between about 100 and about
1000”, “major” for “between about 1000 and about 1 x 
104”, and “catastrophic” for “greater than about 1 x 104”.  
Degrees of membership can be assigned to these fuzzy 
sets as indicated in Figure 4.

Linguistics for Consequence
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Figure 4.  Fuzzy Sets for Consequence (Deaths)

Uncertainty involving both ambiguity and vagueness 
can be addressed by extending belief/plausibility to fuzzy 
sets. [Yager, 1986]  Thus, we can apply the 
belief/plausibility measure of uncertainty to fuzzy sets.

For example, given degrees of evidence assigned to 
crisp intervals in the range for deaths, such as 0.7 for 
[10, 1000] and 0.3 for [1, 50,000], we can calculate the 
belief/plausibility for any fuzzy set defined for deaths.6

An example of calculating belief/plausibility for fuzzy 
sets is subsequently discussed.

RISK FOR AN ACT OF TERRORISM
Risk from a terrorist act is similar in construct to Risk 

from a random event.  For a terrorist act, we can define 
risk as a combination of: Threat, Vulnerability, and 
Consequence.

Threat is the initiating event (the terrorist act), 
Vulnerability is the system response (the security system 
response to the terrorist act), and Consequence is result of 
concern (e.g., deaths).  Therefore, for a terrorist act, risk 
can be expressed in the same form as 
Equation 1:

CPfRisk A  (Eqn. 7)

where Threat is measured by fA, the frequency of the 
terrorist act, Vulnerability is measured by P, the 
probability that the act defeats the security system in 
place, and C is consequence.7

For a terrorist act, risk is dependent on the scenario.  
Here, scenario is defined to include the adversary 
resources, attack plan, and target.  Resources include 
attributes (equipment, weapons, number of attackers) and 
knowledge (perhaps from insiders).  P is conditional on 
the scenario, since more resources raise the chance of 
adversary success, and C is conditional on the target in 
the scenario.

Risk must be evaluated for each of “i” scenarios as:

iiiAi CPfRisk  (Eqn. 8)

Equation 8 is the basic equation for an evaluation of risk 
from acts of terrorism.8  

                                                       
6 Yager addresses the situation where the evidence is also on fuzzy sets.
7 Sometimes risk for a terrorist act is written CxPxPRisk A where PA

is the probability of the act.  Use of PA can cause problems if fA is not 
small.  PA depends on the time of interest.  Usually, the time of interest 
is a year.  PA can be calculated from fA, assuming that fA is the parameter 
for an exponential distribution.  The probability that the scenario occurs 
one or more times within time T is PA(T) =  1 – exp(-fAT) which 
approaches 1 for large fAT.   It is sometimes stated that fA in units of per 
year is the probability over a time period of one year; this is true only if 
fAT << 1, since PA(T) ≈ fAT for small fAT, and for T equal to 1 year, 
PA(1) is numerically equal to fA.  If  fA is not small, say 10 per year, the 
probability of the event occurring one or more times over a time period 
of a year is PA(1) =  1 – exp(-10*1) which is approximately 1.  Typically 
we want the number of times the consequence can occur which for large 
fA is not PA; therefore, the initiating event should be quantified as a 
frequency.  Also, sometimes P is expressed as (1 –PE) where PE

measures the effectiveness of the security system.
8 In practice, the P and C variables in Equation 8 can be segregated into 
constituent variables.  For example, P can modeled as the product of two 
variables: (a) the probability of not detecting the gathering of resources 
for the scenario, and (b) the probability that the adversaries defeat the 
security system in place at the target.  C can be the sum of many 



Evaluation of Equation 8 for an intentional terrorist 
act is much harder than evaluation of Equation 2 for a 
“dumb” random event.  The uncertainty associated with a 
terrorist act involves significant epistemic uncertainty 
whereas the uncertainty involved with a random event is 
mostly aleatory.  A terrorist attack is not a random event, 
it involves a specific scenario that is selected, planned, 
and implemented by the adversary.  Consider the failure 
of a specific building in response to an earthquake, a 
random event.  The risk from the earthquake considers the 
likelihood of the earthquake, the response of the building 
to the earthquake, and the number of people killed if the 
building fails.  The magnitude of the earthquake is 
independent of the fragility of the building.  However, for 
an intentional terrorist attack against the building, the 
adversary estimates the resources required to destroy the 
building based on an evaluation of the fragility of the 
building, and decides if the potential consequences are 
worth the effort to bring the resources to bear necessary to 
destroy the building.  The adversary has a choice as to 
which building to attack, the earthquake does not.

  The terrorists have a choice, so the number of 
scenarios is enormous (hundreds of millions).  Even if we 
as a defender focus on a small subset of targets for 
evaluation, such as Department of Defense (DoD) nuclear 
weapons sites, the terrorists may choose targets outside 
our consideration, such as Hoover Dam.  A complete 
evaluation of fAi must address that choice. 

There is significant epistemic uncertainty for the 
defender as to the scenario(s) that the adversary will 
select.  The adversary has epistemic uncertainty as to the 
effectiveness of protective measures employed by the 
defender, including intelligence gathering efforts to 
prevent scenarios from being implemented, security 
systems in place to defeat an attack, and the effectiveness 
of measures to mitigate consequences.

We have developed an Adversary/Defender model
for evaluating risk from a terrorist act. [Darby, Evaluation 
Terrorist Risk]  [Snell, Adversary Mission Success] 
[Merkle, Grammar]   We can use belief/plausibility 
together with fuzzy sets and linguistic approximate 
reasoning to evaluate Equation 8.   The Defender part of 
the model solves Equation 8 numerically using 
belief/plausibility distributions from degrees of evidence 
assigned to each of the variables. The Adversary part of 
the model is a fuzzy set linguistic reasoning tool 
developed by “thinking like the adversary” and it provides 
information for fAi.  

DEFENDER MODEL
The defender model will be explained using a simple 

example.  Consider Risk for the scenario evaluated 
earlier, as summarized in Figures 1 and 2, where 
probability was used as the measure of uncertainty.  Here, 
we address a scenario with the same consequence, but 
from an intentional act.  We have significant epistemic 

                                                                                         
different types of consequences: deaths, economic loss, etc.  A more 
detailed risk equation is discussed in a reference. [Darby, INMM]

uncertainty for the frequency of the attack, fA.  Based on 
the information available we assign the following 
evidence to fA, where fA is per year.

0.1 to the interval [1 x 10-4, 0.1]
0.9 to the interval[1 x 10-3, 0.01]  

We have significant epistemic uncertainty in the expertise 
and knowledge of the adversary, as reflected in our
assignment of the following evidence to P:

0.3 to the interval [0.1, 0.9]
0.7 to the interval[0.3, 0.5]  
We assume the consequence, deaths, is as before, a 

uniform distribution with minimum 1000 and maximum 
7000 (mean 4000).9  Using the BeliefConvolution Java 
code written by the author, our result for Risk using 
Equation 8 is summarized in Figure 5.  Our single 
probability curve of Figure 1 has been replaced with two 
curves, one for belief and the second for plausibility.
These results reflect the large uncertainty in the 
information provided for fA and P.  Note that for this 
scenario, Belief is essentially zero for all values of Risk; 
small belief reflects assignment of evidence to intervals 
that are large, and in many applications belief will be 
small due to the large uncertainty in the information 
available.

Likelihood for Risk
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Figure 5.  Complementary Cumulative 
Belief/Plausibility Distribution for Risk

The expected value for Risk (deaths per year) is an 
interval: [0.87, 47.12].  

We can also summarize Risk for this scenario using 
fuzzy sets.  We implemented Yager’s technique in our
BeliefConvolution code to calculate belief/plausibility for 
fuzzy sets. [Yager, 1986]  For example, assume the fuzzy 
sets of Figure 4 are used, where for this example the units 
are deaths per year.  Figure 6 expresses the results in 
terms of these fuzzy sets.

                                                       
9 For this example, we use a probability distribution for C.  In general, C 
may be assigned degrees of evidence over intervals and evaluated using 
the belief/plausibility measure.



Risk as Fuzzy Sets
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Figure 6.  Risk in terms of Fuzzy Sets
  
We can also express risk as an exceedance frequency 

of consequence using a belief/plausibility measure. The 
Pi(Cj) term in Equation 6 can be generalized to Li(Cj) 
where L denotes likelihood.  Using belief/plausibility, 
Li(Cj) is an interval [Belief, Plausibility].  An upper bound 
for the exceedance frequency of consequence can be 
calculated using Plausibility for Li(Cj).  [Darby, 
Evaluation of Terrorist Risk]  For the example scenario, C 
has a probability distribution, so belief and plausibility for 
C are both probability, and L is a single value, the 
probability.  Figure 7 summarizes the results for the 
example scenario.10  Our belief is 50% that the frequency 
of more than 5000 deaths is not larger than about 
2.0 x 10-3 per year.  Our belief is 95% that the frequency 
of more than 5000 deaths is not larger than about 
1.7 x 10-2 per year.

Exceedance Frequency of Consequence: Upper Bound
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Figure 7.  Exceedance Frequency of Consequence

ADVERSARY MODEL
To evaluate Equation 8 numerically using the 

defender model, scenarios of concern must be identified.  
The process of selecting scenarios requires that the 
defender reason from the perspective of the adversary, 

                                                       
10 The “percentile” curves in Figure 7 are the Belief that the frequency 
will not exceed the indicated value.  In general, 

Belief(A) = 1 – Plausibility(
__

A )  where A is “not A”, so the Belief of 
“not exceeding consequence C” is one minus the Plausibility of 
“exceeding consequence C”.  In Figure 7, the curves for 50% and 5% 
Belief are the same, due to the interval nature of Belief/Plausibility 
intervals.  The curves in Figure 7 are straight lines due to the use of a 
uniform probability distribution for consequence.

and this process involves a complicated consideration of 
many dependent factors each with significant uncertainty.  
     Since the adversary has a choice of scenarios, unless 
all the factors of importance to the adversary are “good”
the adversary will discard a scenario and consider other 
scenarios.  The adversary uses more of a “yes/no” 
decision process for such factors as:

1. Are the consequences of the type desired?
2. Are the potential consequences highly likely to 

be of sufficient magnitude?
3. Given the perceived magnitude of the 

consequences and the perceived level of 
protection, is it worth with gathering the 
resources needed to have a high assurance of 
success?

4. What are other scenarios that require fewer 
resources and have acceptable consequences?

That is, the adversary selects scenarios that are highly 
likely to succeed and maximize consequences while 
making effective use of resources within the constraint of 
the pool of resources available.  The adversary spends 
more effort in designing the scenario for a high likelihood 
of success rather than estimating a precise numerical 
value for the likelihood of success.11  
     The adversary model evaluates scenarios using an 
approximate reasoning rule base for how the adversary 
selects a scenario.  Each variable in the rule base is 
segregated into fuzzy sets.  The fuzzy sets represent 
purely linguistic terms; there is no numeric definition of 
the fuzzy sets as in Figure 4.12  To capture the significant 
uncertainty inherent in the defender thinking like the 
adversary, the model allows evidence to be assigned to 
combinations of fuzzy sets for each variable, and 
uncertainty is propagated up the rule base using the 
belief/plausibility measure of uncertainty. A Java code, 
LinguisticBelief, was written by the author to automate 
the evaluation.  The adversary model is best explained by 
a simple example. 13   
     From the perspective of the adversary, the “Expected 
Consequence” for a particular scenario is defined as the 
consequence- as perceived by the adversary- weighted by 
the likelihood that the scenario can be successfully 
accomplished- as perceived by the adversary.  It is 
assumed that the goal of the adversary is to maximize 

                                                       
11 That is, the adversary is not concerned with the precise likelihood of 
each variable of concern, such as the probability of being detected being 
less than 0.01.  They focus on “we believe we are not likely to be 
detected” where not likely is ill-defined (a fuzzy set) but is understood to 
mean a low value (below on the order of 0.01).  The decision is based on 
all variables of concern being acceptable to the adversary.  The emphasis 
is on the variables of concern and how they interact rather than a precise 
numerical evaluation of these variables.  Since the adversary has a 
choice, if all variables of concern are not acceptable for a particular 
scenario, the adversary will select another scenario.  
12 Since both the evidence and the rules are at the fuzzy set level, and we 
do not have the fuzzy sets defined in terms of degrees of membership, 
the convolution is as if the fuzzy sets were crisp.  The fuzziness of the 
sets is considered in the assignment of evidence, not in the convolution 
process.
13 The rule base is a form of approximate reasoning since it uses fuzzy 
sets.  A simple rule base is used in this paper to illustrate the technique.



Expected Consequence.  Assume the following 
approximate reasoning process on the part of the 
adversary, where “x” indicates convolution per the rule 
base:

 Expected Consequence = Probability Of  
(Adversary) Success x Consequence

 Probability Of Success = Probability Resources 
Required Gathered Without Detection x 
Probability Information Required can be 
Obtained x Probability Physical Security System 
can be Defeated

 Consequence = Deaths x Damage To National 
Security 

Assume the following linguistics (fuzzy sets) for each
variable:

 Expected Consequence = {No, Maybe, Yes}
 Probability Of Success = {Low, Medium, High}
 Consequence = {Small, Medium, Large}
 Probability Resources Required Gathered 

Without Detection = 
{Low, Medium, High}

 Probability Information Required can be 
Obtained  = {Low, Medium, High}

 Probability Physical Security System can be 
Defeated = {Low, Medium, High}

 Deaths = {Minor, Moderate, Major, 
Catastrophic}

 Damage To National Security  = {Insignificant, 
Significant, Very Significant}

Portions of the approximate reasoning rule base are:

Probability Of Success

Expected 
Consequence

Consequence

Low Medium High

  Small No No No
  Medium No No Maybe
  Large No Maybe Yes

Damage To 
National Security

Consequence

Deaths

Insignificant Significant Very 
Significant

  Minor Small Medium Large
  Moderate Medium Medium Large
  Major Large Large Large
  Catastrophic Large Large Large

Probability Physical Security System can be Defeated = High
Probability Resources 
Required Gathered 
Without Detection

Probability Of Success

Probability Information 
Required can be Obtained

Low Medium High

  Low Low Low Low
  Medium Low Medium Medium
  High Low Medium High

The rule base reflects the following.  Expected 
Consequence “Yes” indicates an attractive scenario for 
the adversary and requires that Probability Of Success 
(for the adversary) be “High” and Consequence be 
“Large”.  Probability of Success “High” requires a “High” 
value for each of the three constituent probabilities.  
Consequence “Large” is from Deaths and/or Damage To 
National Security being severe enough from the 
viewpoint of the adversary.
     The rule base is evaluated for each scenario of 
concern.  Assume the following evidence assigned for a 
particular scenario:

 Deaths: 0.8 for {Major, Catastrophic} and 0.2 for 
{Moderate, Major}

 Damage To National Security: 0.1 to 
{Insignificant, Significant} and 0.9 to 
{Significant, Very Significant}

 Probability Resources Required Obtained 
Without Detection: 0.7 to {Medium} and 0.3 to 
{Medium, High}

 Probability Information Required can be 
Obtained: 0.15 to {Medium} and 0.85 to 
{Medium, High}

 Probability Physical Security System can be 
Defeated: 1.0 to {Medium, High}

     Using the LinguisticBelief code, the following results
were obtained for [Belief, Plausibility]:

 Probability of Success: [0, 0] for Low, 
[0.7, 1] for Medium, [0, 0.3] for High

 Consequence: [0, 0] for Small, [0, 0.1] for 
Medium, [0.8, 1] for Large

 Expected Consequence: [0, 0.2] for No,
[0.6, 1] for Maybe, [0, 0.3] for Yes

The results can be presented graphically; Figure 8 
summarizes Expected Consequence for the scenario.
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Figure 8.  Expected Consequence for One Scenario

The results for this scenario indicate that although the 
adversary (defender thinking like the adversary) estimates 
a “Large” consequence to be likely (belief/plausibility of 
0.8/1.0), the adversary expects Probability of Success to 
only be “Medium” (belief/plausibility of 0.7/1.0), 
resulting in an overall estimate that Expected 
Consequence will be “Maybe” (belief/plausibility of 
0.6/1.0).  Since the adversary has a choice of scenarios, 



the adversary will examine other scenarios until ones with 
a high likelihood of “Yes” for Expected Consequence are 
identified.
     There are many scenarios of concern.  Scenarios can 
be ranked by decreasing expected consequence based on 
the plausibility for the worst fuzzy set for expected 
consequence: “Yes” in the prior example, sub-ranked 
iteratively by the plausibility of the next-worst fuzzy sets, 
“Maybe” and “No”.14  

SUMMARY
Evaluation of risk from acts of terrorism involves 
considerable epistemic uncertainty which can be captured 
and propagated using the belief/plausibility measure of 
uncertainty from the Dempster/Shafer Theory of 
Evidence.  The risk from an act of terrorism depends on 
the scenario employed by the adversary and on the 
likelihood that the adversary selects that scenario. For a 
given scenario, the risk can be evaluated numerically with 
a defender model.  
     The process of selecting scenarios can be modeled 
linguistically with an adversary model using approximate 
reasoning on fuzzy sets defined for each variable. 
Uncertainty in the evaluation due to the defender 
“thinking like the adversary” is captured using the 
belief/plausibility measure based on evidence assigned to 
fuzzy sets.

                                                       
14 As the defender thinking like the adversary, we rank by plausibility.  
If the actually adversary used this linguist evaluation tool to assist in the 
selection of scenarios, the adversary would rank by belief.  This is 
evident in exercises conducted by members of military special forces
acting as a surrogate adversary; unless they “believe” that a scenario has 
high certainty of success, they will discard this scenario and chose 
another one with less uncertainty.
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