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ABSTRACT

Risk consists of the likelihood of an event combined
with the consequence of that event. There is uncertainty
associated with an estimate of risk for an event that may
happen in the future. For random, “dumb” events, such as
an earthquake, this uncertainty is aleatory (stochastic) in
nature and can be addressed with the probability measure
of uncertainty.

A terrorist act is not a random event; it is an
intentional act by a thinking malevolent adversary. Much
of the uncertainty in estimating the risk of a terrorist act is
epistemic (state of knowledge); the adversary knows what
acts will be attempted, but we as a defender have
incomplete knowledge to know those acts with certainty.

To capture the epistemic uncertainty in evaluating the
risk from acts of terrorism, we have applied the
belief/plausibility measure of uncertainty from the
Dempster/Shafer Theory of Evidence. Also, to address
how we as a defender evaluate the selection of scenarios
by an adversary, we have applied approximate reasoning
with fuzzy sets. We have developed software to perform
these evaluations.

INTRODUCTION

First, we summarize how risk is typically evaluated
for a random event. Then, we briefly discuss the
belief/plausibility measure of uncertainty and fuzzy sets.
Finally, we discuss how risk from potential acts of
terrorism can be evaluated using belief/plausibility and
fuzzy sets.

RISK FOR A RANDOM EVENT

For a safety analysis, risk is concerned with random
failures, such as an earthquake, and risk can be defined as
the product:

Risk = fxPxC (Eqn. 1)

where f is the frequency of the initiating event (e.g., an
earthquake), P is the response of system of concern (e.g.,
the fragility of a building), and C is the consequence if the
system fails (e.g., the number of people killed). Note that
the initiating event is expressed as a frequency, f. P is
conditional on the initiating event (e.g., the magnitude of
the earthquake), and C is conditional on system failure.
Using Equation 1, Risk has units of consequence per year.

Typically, more than one initiating event is of
concern, and there is risk from each of “i” initiating
events:

Risk, = f,xP xC, (Eqn. 2)

1
The total risk can be expressed as the sum of the risk from
each initiating event:

Total Risk = ZRiskl. (Eqn. 3)

Each initiating event is associated with a scenario, S;,
where a scenario is the combination of the initiating event

and the system response. The frequency of consequence
for scenario “i” is defined as F;= f; x P;. F; is the
frequency at which consequence C; occurs. Equation 2
expresses risk as a product. To provide more information,
we can define the risk from each scenario as a risk triplet:
[Kaplan, Risk]

Risk, = <S§,,F,,C, > (Eqn. 4)
With this formulation we can distinguish among scenarios
that have similar “Risk” as defined using Equation 2, but
that have significantly different frequencies and
consequences. Total Risk is the set of all risk triplets:

Total Risk = {<S,,F,,C, >overalli} (Eqn. 5)

Using the risk triplet approach, for each scenario we
have two values: the frequency of the consequence and
the consequence given the scenario occurs. We can
calculate the “exceedance frequency of consequence” for
the collection of scenarios. Define Pi(C;) as the
probability that consequence C; is exceeded given
scenario S;. In general, for “i” scenarios and “j”
consequences:

Freq(C)) = ZE x B(C)) (Eqn. 6)

where Freq(C;)) is the frequency of exceedance of
consequence value Cj. Uncertainty in F; and C; is
expressed using a probability measure. For analysis of
random events, probability is an appropriate measure of
uncertainty." The variables are random variables with
probability distributions.

Consider a single scenario with uncertainty for each
of the variables f, P, and C. The X operation in Equation
2 represents convolution of probability distributions under
multiplication. For example, assume that based on the
data available, fis modeled with a lognormal probability
distribution with mean 1 x 10 per year and standard
deviation 3 x 10 per year.” P is modeled with a
lognormal probability distribution with mean 0.03 and
standard deviation 0.01. C is modeled with a uniform
probability distribution with minimum 1000 and
maximum 7000 (mean 4000). Using equation 2, the
expected value (mean) of Risk is 0.12 deaths per year.

' The name probability is used for two different concepts. The term P is
a probability in the classical, or objective, sense; the number of times an
event occurs divided by the number of trials in the limit as the number of
trials is infinite. The uncertainty in P (due to insufficient information to
calculate the classical probability) is probability in the subjective or
Bayesian sense, and it represents our state of knowledge about the
likelihood of the value P. Both concepts obey the Kolmogorov axioms
that mathematically define a probability measure.

? There are many probability distributions available to model the
uncertainty for a random variable, including: normal, lognormal,
exponential, triangular, and normal. Data and expertise are required to
select the appropriate probability distributions for the variables of
interest.



There is uncertainty in the Risk as represented by the
probability distribution shown in Figure 1.’
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Figure 1. Complementary Cumulative Probability
Distribution for Risk

For example, the probability is 95% that the risk is greater
than 0.03 deaths per year. The probability is 50% that the
risk is greater than 0.10 deaths per year. The probability
is 5% that the risk is greater than 0.27 deaths per year.

The risk for this scenario can also be expressed as an
exceedance frequency of consequence, as shown in Figure
2.* Due to uncertainty, there is a family of curves for
selected percentiles of probability. With 50% probability
the frequency of more than 5000 deaths is not larger than
about 1 x 107 per year. With 95% probability the
frequency of more than 5000 deaths is not larger than
about 2 x 107 per year.

Exceedance Frequency of Consequence
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Figure 2. Exceedance Frequency of Consequence

UNCERTAINTY

Over the last 50 years, mathematicians and logicians have
developed measures of uncertainty that are more general
than probability, and that specifically address epistemic
uncertainty. The general references provide details.

? For the examples in this paper, the Crystal Ball software program,
version 7.2, was used to convolute probability distributions under
algebraic operations.

The curves in Figure 2 are straight lines due to the use of a uniform
probability distribution for consequence for the simple example.

The belief/plausibility measure of uncertainty from
the Dempster/Shafer Theory of Evidence is an extension
of the probability measure of uncertainty that can better
capture epistemic uncertainty. Belief/plausibility is a
superset of probability and under certain conditions belief
and plausibility both become probability. Under other
conditions belief/plausibility become
necessity/possibility, respectively.” Belief/plausibility
addresses a type of uncertainty called ambiguity.
Ambiguity is uncertainty associated with predicting an
event in the future.

A simple example illustrates the difference between
aleatory and epistemic uncertainty, and the use of a
belief/plausibility measure. If I have a fair coin, heads on
one side tails on the other with each side equally likely,
my uncertainty as to the outcome of a toss- heads or tails-
is aleatory. The probability of heads is 'z and the
probability of tails is 2. My uncertainty is due to the
randomness of the toss. Suppose however that I do not
know the coin is fair; the coin could be biased to come up
heads, or the coin could even be two-headed or two-
tailed. Now I have epistemic uncertainty; my state of
knowledge is insufficient to assign a probability to heads
or tails, all I can say is the likelihood of heads (or tails) is
somewhere between 0 and 1. To consider epistemic
uncertainty as well as aleatory uncertainty, a superset of
probability called belief/plausibility can be used as the
measure of uncertainty. Using belief/plausibility, with
total ignorance about the coin, the Belief that the toss will
be heads is 0 and the Plausibility that the toss will be
heads is 1; similarly, the Belief that the toss will be tails is
0 and the Plausibility that the toss will be tails is 1.
Belief/Plausibility form an interval that can be interpreted
as giving the lower and upper bound of probability. IfI
have specific enough information, both belief and
plausibility reduce to a single value, probability. Figure 3
illustrates this concept. Note that epistemic uncertainty
can be reduced with more information; if I toss the coin a
few times and a heads and a tails occur, I know the coin is
two sided; with more tosses I can evaluate the fairness of
the coin. The aleatory uncertainty cannot be reduced with
more information.

Plausibility
Probability is somewhere in

[Belief, Plausibility] Interval
Belief

Figure 3. Belief/Plausibility as Bounds on Probability

In addition to ambiguity, we have another type of
uncertainty called vagueness. We have vagueness when

3 To be precise, if the focal elements are singletons, belief/plausibility
both become probability. If the focal elements are nested,
belief/plausibility become necessity/possibility, respectively.



we use linguistics (words) to classify events; for example,
yesterday was “sunny”, public confidence in the stock
market is “high”, etc. Vagueness is uncertainty as to how
to classify a known event. For example, assume we know
how tall John is, but instead of saying John is 6 feet 2
inches tall we categorize John as “tall” without a precise
definition of “tall”. The linguistic (word) “tall’ is vague.
Vagueness can be addressed using the mathematics of
fuzzy sets.

A simple example of fuzzy sets is as follows.
Consider a random variable for consequence as “the
number of deaths from a terrorist attack™ for which we
take the range as [0, 5x10°]. For estimating the
consequence from a particular scenario we may choose to
reason at a higher level than the specific number of deaths
for two reasons: (a) there is too much uncertainty to
distinguish between say 1000 and 2000 deaths, and (b)
when comparing scenarios with widely different
consequences, such as blowing up a building to
detonating a nuclear device, we have orders of magnitude
difference in the consequence. Suppose we partition the
range with crisp sets commensurate with the “accuracy”
to which we wish to measure consequence; for example,
[0, 10), [10, 100), [100, 1000), [1000, 1 x 10*), and
[1x10% 5x 10°]. We have defined sets, subsets of the
range, at the “fidelity” to which we wish to reason. We
can also assign names to these sets: “minor” for [0, 10),
“moderate” for [10, 100), “high” for [100, 1000), “major”
for [1000, 1 x 10*], and “catastrophic” for
[1x10% 5x 10°]. We have assigned a linguistic (name)
to the crisp sets of interest. But there is a problem with
our crisp sets. If 999 people die the consequence is
“high” but if 1000 people die the consequence is “major”;
although the crisp sets solve the problem of reasoning at
too fine a level, they suffer from the problem of sharp
boundaries. We really want to consider 999 deaths as
both high and major to some degree, and we can do so by
making our sets fuzzy. Specifically we define “minor” as
“up to about 107, “moderate” as “ between about 10 and
about 1007, “high” for “between about 100 and about
10007, “major” for “between about 1000 and about 1 x
10*?, and “catastrophic” for “greater than about 1 x 10*”.
Degrees of membership can be assigned to these fuzzy
sets as indicated in Figure 4.
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Figure 4. Fuzzy Sets for Consequence (Deaths)

Uncertainty involving both ambiguity and vagueness
can be addressed by extending belief/plausibility to fuzzy
sets. [Yager, 1986] Thus, we can apply the
belief/plausibility measure of uncertainty to fuzzy sets.

For example, given degrees of evidence assigned to
crisp intervals in the range for deaths, such as 0.7 for
[10, 1000] and 0.3 for [1, 50,000], we can calculate the
belief/plausibility for any fuzzy set defined for deaths.’
An example of calculating belief/plausibility for fuzzy
sets is subsequently discussed.

RISK FOR AN ACT OF TERRORISM

Risk from a terrorist act is similar in construct to Risk
from a random event. For a terrorist act, we can define
risk as a combination of: Threat, Vulnerability, and
Consequence.

Threat is the initiating event (the terrorist act),
Vulnerability is the system response (the security system
response to the terrorist act), and Consequence is result of
concern (e.g., deaths). Therefore, for a terrorist act, risk
can be expressed in the same form as
Equation 1:

Risk = f,xPxC (Eqn.7)
where Threat is measured by f4, the frequency of the
terrorist act, Vulnerability is measured by P, the
probability that the act defeats the security system in
place, and C is consequence.’

For a terrorist act, risk is dependent on the scenario.
Here, scenario is defined to include the adversary
resources, attack plan, and target. Resources include
attributes (equipment, weapons, number of attackers) and
knowledge (perhaps from insiders). P is conditional on
the scenario, since more resources raise the chance of
adversary success, and C is conditional on the target in
the scenario.

Risk must be evaluated for each of “i”” scenarios as:

Risk, = f,xPxC, (Eq.8)

Equation 8 is the basic equation for an evaluation of risk
from acts of terrorism.”

1331
1

% Yager addresses the situation where the evidence is also on fuzzy sets.
7 Sometimes risk for a terrorist act is written Rjgk — P,xPxC where Pa

is the probability of the act. Use of P, can cause problems if f4 is not
small. P, depends on the time of interest. Usually, the time of interest
is a year. P, can be calculated from f,, assuming that f, is the parameter
for an exponential distribution. The probability that the scenario occurs
one or more times within time T is PA(T) = 1 — exp(-foT) which
approaches 1 for large fAT. It is sometimes stated that f, in units of per
year is the probability over a time period of one year; this is true only if
faT << 1, since PA(T) = foT for small f,T, and for T equal to 1 year,
PA(1) is numerically equal to f5. If fs is not small, say 10 per year, the
probability of the event occurring one or more times over a time period
of a year is P5(1) = 1 —exp(-10*1) which is approximately 1. Typically
we want the number of times the consequence can occur which for large
fa is not P,; therefore, the initiating event should be quantified as a
frequency. Also, sometimes P is expressed as (1 —Pg) where Pg
measures the effectiveness of the security system.

¥ In practice, the P and C variables in Equation 8 can be segregated into
constituent variables. For example, P can modeled as the product of two
variables: (a) the probability of not detecting the gathering of resources
for the scenario, and (b) the probability that the adversaries defeat the
security system in place at the target. C can be the sum of many



Evaluation of Equation 8 for an intentional terrorist
act is much harder than evaluation of Equation 2 for a
“dumb” random event. The uncertainty associated with a
terrorist act involves significant epistemic uncertainty
whereas the uncertainty involved with a random event is
mostly aleatory. A terrorist attack is not a random event,
it involves a specific scenario that is selected, planned,
and implemented by the adversary. Consider the failure
of a specific building in response to an earthquake, a
random event. The risk from the earthquake considers the
likelihood of the earthquake, the response of the building
to the earthquake, and the number of people killed if the
building fails. The magnitude of the earthquake is
independent of the fragility of the building. However, for
an intentional terrorist attack against the building, the
adversary estimates the resources required to destroy the
building based on an evaluation of the fragility of the
building, and decides if the potential consequences are
worth the effort to bring the resources to bear necessary to
destroy the building. The adversary has a choice as to
which building to attack, the earthquake does not.

The terrorists have a choice, so the number of
scenarios is enormous (hundreds of millions). Even if we
as a defender focus on a small subset of targets for
evaluation, such as Department of Defense (DoD) nuclear
weapons sites, the terrorists may choose targets outside
our consideration, such as Hoover Dam. A complete
evaluation of f,; must address that choice.

There is significant epistemic uncertainty for the
defender as to the scenario(s) that the adversary will
select. The adversary has epistemic uncertainty as to the
effectiveness of protective measures employed by the
defender, including intelligence gathering efforts to
prevent scenarios from being implemented, security
systems in place to defeat an attack, and the effectiveness
of measures to mitigate consequences.

We have developed an Adversary/Defender model
for evaluating risk from a terrorist act. [Darby, Evaluation
Terrorist Risk] [Snell, Adversary Mission Success]
[Merkle, Grammar] We can use belief/plausibility
together with fuzzy sets and linguistic approximate
reasoning to evaluate Equation 8. The Defender part of
the model solves Equation 8 numerically using
belief/plausibility distributions from degrees of evidence
assigned to each of the variables. The Adversary part of
the model is a fuzzy set linguistic reasoning tool
developed by “thinking like the adversary” and it provides
information for f4;.

DEFENDER MODEL

The defender model will be explained using a simple
example. Consider Risk for the scenario evaluated
earlier, as summarized in Figures 1 and 2, where
probability was used as the measure of uncertainty. Here,
we address a scenario with the same consequence, but
from an intentional act. We have significant epistemic

different types of consequences: deaths, economic loss, etc. A more
detailed risk equation is discussed in a reference. [Darby, INMM]

uncertainty for the frequency of the attack, f,. Based on
the information available we assign the following
evidence to fs, where f, is per year.

0.1 to the interval [1 x 10, 0.1]

0.9 to the interval[1 x 107, 0.01]

We have significant epistemic uncertainty in the expertise
and knowledge of the adversary, as reflected in our
assignment of the following evidence to P:

0.3 to the interval [0.1, 0.9]

0.7 to the interval[0.3, 0.5]

We assume the consequence, deaths, is as before, a
uniform distribution with minimum 1000 and maximum
7000 (mean 4000).” Using the BeliefConvolution Java
code written by the author, our result for Risk using
Equation 8 is summarized in Figure 5. Our single
probability curve of Figure 1 has been replaced with two
curves, one for belief and the second for plausibility.
These results reflect the large uncertainty in the
information provided for f5 and P. Note that for this
scenario, Belief is essentially zero for all values of Risk;
small belief reflects assignment of evidence to intervals
that are large, and in many applications belief will be
small due to the large uncertainty in the information
available.

Likelihood for Risk
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Figure 5. Complementary Cumulative
Belief/Plausibility Distribution for Risk

The expected value for Risk (deaths per year) is an
interval: [0.87, 47.12].

We can also summarize Risk for this scenario using
fuzzy sets. We implemented Yager’s technique in our
BeliefConvolution code to calculate belief/plausibility for
fuzzy sets. [Yager, 1986] For example, assume the fuzzy
sets of Figure 4 are used, where for this example the units
are deaths per year. Figure 6 expresses the results in
terms of these fuzzy sets.

? For this example, we use a probability distribution for C. In general, C
may be assigned degrees of evidence over intervals and evaluated using
the belief/plausibility measure.
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Figure 6. Risk in terms of Fuzzy Sets

We can also express risk as an exceedance frequency
of consequence using a belief/plausibility measure. The
Pi(C;) term in Equation 6 can be generalized to Li(C;)
where L denotes likelihood. Using belief/plausibility,
Li(G) is an interval [Belief, Plausibility]. An upper bound
for the exceedance frequency of consequence can be
calculated using Plausibility for Li(C;). [Darby,
Evaluation of Terrorist Risk] For the example scenario, C
has a probability distribution, so belief and plausibility for
C are both probability, and L is a single value, the
probability. Figure 7 summarizes the results for the
example scenario.'’ Our belief is 50% that the frequency
of more than 5000 deaths is not larger than about
2.0 x 107 per year. Our belief is 95% that the frequency
of more than 5000 deaths is not larger than about
1.7 x 107 per year.

Exceedance Frequency of Consequence: Upper Bound
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Figure 7. Exceedance Frequency of Consequence

ADVERSARY MODEL

To evaluate Equation 8 numerically using the
defender model, scenarios of concern must be identified.
The process of selecting scenarios requires that the
defender reason from the perspective of the adversary,

' The “percentile” curves in Figure 7 are the Belief that the frequency
will not exceed the indicated value. In general,

Belief(A) = 1 — Plausibility( 4 ) where A is “not A, so the Belief of
“not exceeding consequence C” is one minus the Plausibility of
“exceeding consequence C”. In Figure 7, the curves for 50% and 5%
Belief are the same, due to the interval nature of Belief/Plausibility
intervals. The curves in Figure 7 are straight lines due to the use of a
uniform probability distribution for consequence.

and this process involves a complicated consideration of
many dependent factors each with significant uncertainty.

Since the adversary has a choice of scenarios, unless
all the factors of importance to the adversary are “good”
the adversary will discard a scenario and consider other
scenarios. The adversary uses more of a “yes/no”
decision process for such factors as:

1. Are the consequences of the type desired?

2. Are the potential consequences highly likely to
be of sufficient magnitude?

3. Given the perceived magnitude of the
consequences and the perceived level of
protection, is it worth with gathering the
resources needed to have a high assurance of
success?

4. What are other scenarios that require fewer
resources and have acceptable consequences?

That is, the adversary selects scenarios that are highly
likely to succeed and maximize consequences while
making effective use of resources within the constraint of
the pool of resources available. The adversary spends
more effort in designing the scenario for a high likelihood
of success rather than estimating a precise numerical
value for the likelihood of success. "'

The adversary model evaluates scenarios using an
approximate reasoning rule base for how the adversary
selects a scenario. Each variable in the rule base is
segregated into fuzzy sets. The fuzzy sets represent
purely linguistic terms; there is no numeric definition of
the fuzzy sets as in Figure 4."* To capture the significant
uncertainty inherent in the defender thinking like the
adversary, the model allows evidence to be assigned to
combinations of fuzzy sets for each variable, and
uncertainty is propagated up the rule base using the
belief/plausibility measure of uncertainty. A Java code,
LinguisticBelief, was written by the author to automate
the evaluation. The adversary model is best explained by
a simple example.

From the perspective of the adversary, the “Expected
Consequence” for a particular scenario is defined as the
consequence- as perceived by the adversary- weighted by
the likelihood that the scenario can be successfully
accomplished- as perceived by the adversary. It is
assumed that the goal of the adversary is to maximize

" That is, the adversary is not concerned with the precise likelihood of
each variable of concern, such as the probability of being detected being
less than 0.01. They focus on “we believe we are not likely to be
detected” where not likely is ill-defined (a fuzzy set) but is understood to
mean a low value (below on the order of 0.01). The decision is based on
all variables of concern being acceptable to the adversary. The emphasis
is on the variables of concern and how they interact rather than a precise
numerical evaluation of these variables. Since the adversary has a
choice, if all variables of concern are not acceptable for a particular
scenario, the adversary will select another scenario.

'2 Since both the evidence and the rules are at the fuzzy set level, and we
do not have the fuzzy sets defined in terms of degrees of membership,
the convolution is as if the fuzzy sets were crisp. The fuzziness of the
sets is considered in the assignment of evidence, not in the convolution
process.

' The rule base is a form of approximate reasoning since it uses fuzzy
sets. A simple rule base is used in this paper to illustrate the technique.



Expected Consequence. Assume the following
approximate reasoning process on the part of the
adversary, where “x” indicates convolution per the rule
base:
e Expected Consequence = Probability Of
(Adversary) Success x Consequence
e  Probability Of Success = Probability Resources
Required Gathered Without Detection x
Probability Information Required can be
Obtained x Probability Physical Security System
can be Defeated
e Consequence = Deaths x Damage To National
Security
Assume the following linguistics (fuzzy sets) for each
variable:
Expected Consequence = {No, Maybe, Yes}
Probability Of Success = {Low, Medium, High}
Consequence = {Small, Medium, Large}
Probability Resources Required Gathered
Without Detection =
{Low, Medium, High}
e  Probability Information Required can be
Obtained = {Low, Medium, High}
e Probability Physical Security System can be
Defeated = {Low, Medium, High}
e Deaths = {Minor, Moderate, Major,
Catastrophic}
e Damage To National Security = {Insignificant,
Significant, Very Significant}
Portions of the approximate reasoning rule base are:

Probability Of Success | Low Medium High
Expected
Consequence
Consequence
Small No No No
Medium No No Maybe
Large No Maybe Yes
Damage To Insignificant | Significant Very
National Security Significant
Consequence
Deaths
Minor Small Medium Large
Moderate Medium Medium Large
Major Large Large Large
Catastrophic Large Large Large
Probability Physical Security System can be Defeated = High
Probability Resources Low | Medium High
Required Gathered
Without Detection
Probability Of Success
Probability Information
Required can be Obtained
Low Low | Low Low
Medium Low | Medium Medium

High Low | Medium High

The rule base reflects the following. Expected
Consequence “Yes” indicates an attractive scenario for
the adversary and requires that Probability Of Success
(for the adversary) be “High” and Consequence be
“Large”. Probability of Success “High” requires a “High”
value for each of the three constituent probabilities.
Consequence “Large” is from Deaths and/or Damage To
National Security being severe enough from the
viewpoint of the adversary.

The rule base is evaluated for each scenario of
concern. Assume the following evidence assigned for a
particular scenario:

e Deaths: 0.8 for {Major, Catastrophic} and 0.2 for
{Moderate, Major}

e Damage To National Security: 0.1 to
{Insignificant, Significant} and 0.9 to
{Significant, Very Significant}

e  Probability Resources Required Obtained
Without Detection: 0.7 to {Medium} and 0.3 to
{Medium, High}

e  Probability Information Required can be
Obtained: 0.15 to {Medium} and 0.85 to
{Medium, High}

e  Probability Physical Security System can be
Defeated: 1.0 to {Medium, High}

Using the LinguisticBelief code, the following results
were obtained for [Belief, Plausibility]:

e  Probability of Success: [0, 0] for Low,
[0.7, 1] for Medium, [0, 0.3] for High
e Consequence: [0, 0] for Small, [0, 0.1] for
Medium, [0.8, 1] for Large
e Expected Consequence: [0, 0.2] for No,
[0.6, 1] for Maybe, [0, 0.3] for Yes
The results can be presented graphically; Figure 8
summarizes Expected Consequence for the scenario.
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Figure 8. Expected Consequence for One Scenario

The results for this scenario indicate that although the
adversary (defender thinking like the adversary) estimates
a “Large” consequence to be likely (belief/plausibility of
0.8/1.0), the adversary expects Probability of Success to
only be “Medium” (belief/plausibility of 0.7/1.0),
resulting in an overall estimate that Expected
Consequence will be “Maybe” (belief/plausibility of
0.6/1.0). Since the adversary has a choice of scenarios,



the adversary will examine other scenarios until ones with
a high likelihood of “Yes” for Expected Consequence are
identified.

There are many scenarios of concern. Scenarios can
be ranked by decreasing expected consequence based on
the plausibility for the worst fuzzy set for expected
consequence: “Yes” in the prior example, sub-ranked
iteratively by the plausibility of the next-worst fuzzy sets,
“Maybe” and “No”."*

SUMMARY

Evaluation of risk from acts of terrorism involves
considerable epistemic uncertainty which can be captured
and propagated using the belief/plausibility measure of
uncertainty from the Dempster/Shafer Theory of
Evidence. The risk from an act of terrorism depends on
the scenario employed by the adversary and on the
likelihood that the adversary selects that scenario. For a
given scenario, the risk can be evaluated numerically with
a defender model.

The process of selecting scenarios can be modeled
linguistically with an adversary model using approximate
reasoning on fuzzy sets defined for each variable.
Uncertainty in the evaluation due to the defender
“thinking like the adversary” is captured using the
belief/plausibility measure based on evidence assigned to
fuzzy sets.

' As the defender thinking like the adversary, we rank by plausibility.
If the actually adversary used this linguist evaluation tool to assist in the
selection of scenarios, the adversary would rank by belief. This is
evident in exercises conducted by members of military special forces
acting as a surrogate adversary; unless they “believe” that a scenario has
high certainty of success, they will discard this scenario and chose
another one with less uncertainty.
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