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RF MEMS Switches

• 2 Types of switch contact mechanisms

• Mechanical action of the switch “shorts” the 
circuit

– DC switch

• Ohmic contact across the switch

– Capacitive switch

• Capacitive susceptance of dielectric sandwich

DC Contact
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Pull-down 
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Input port

Output port
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Why use MEMS switches?

• MEMS switches show superior 
performance compared to solid-
state devices (PIN or FET) in 
virtually every aspect

– Low Insertion Loss (~0.1 dB)

– Very High Isolation (~20 to 60 
dB)

– Low Power Consumption

– Wide Frequency Band (DC to 
40 GHz, Capacitive to 100 
GHz )

MEMS switches pair the performance of 
electromechanical switches with low cost 
and size of solid state switches.
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Issues with MEMS switches?

• Primary disadvantages are

– Voltage requirements (electrostatic actuation)

– Switching time

• Microseconds compared with nano- to picoseconds

– Low power handling capability

• Less than 1 W

– Issues with reliability

• Mechanical fatigue 

• Stiction of components

• Trapped charge
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Origins of trapped charge

• Trapped charge arises from:

– Device actuation

• High pull-down fields

– Tribocharging

• Transfer of electrons from one surface to another 
during contact

– Dielectric processing

• Bulk charges

• Surface (interface) charges

• Plasma processing



6

MEMS C-V curves – Previous Work

• Shallow slope 
indicates interface 
states

• Shift of curves due to 
dielectric damage

– Plasma-induced 
damage

C/V data courtesy of J. Webster
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Nanoindentation Setup

holder for flat sample 
or MEMS switch

spherical sample or 
MEMS probe
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Schematic of I-V setup

• Experiments performed in 
dry N2

– Relative humidity below 
0.1% (Dew point of ~ -40°C) 

• Applied load of 1 mN

– Contact area ~ 13 μm2

• Use Keithley 6517A

– High resistance sourcemeter

Vs

Imeas

0.8 mm dia. 24k 
Au sphere

holder
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SiON sample coupons

• (100) Si substrate

• 2 μm electroplated Au

• SiON deposited with 13MHz 
glow-discharge

– ~300 nm thick

• “Wet” release (Solvent)

– 80°C NMP, Methanol, 
supercritical CO2

• “Dry” release (Plasma)

– Same as “wet”

– 90 min, 250W ashing plasma

Si

Au

SiON
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Wet SiON Breakdown Behavior

• Wet etch shows no 
degradation before 
breakdown

• Plasma treated film 
shows drop in 
resistance with time

– Increase in charge 
conduction

– Likely arising from 
chemical or physical 
modification of the 
dielectric
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350 °C - Wet
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Plasma SiON Breakdown Behavior

350 °C - Plasma
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• Wet etch shows no-
minimal drop in 
resistance 

• Plasma treated film 
shows slight apparent 
drop in resistance with 
time

– Much less pronounced 
than with 250 °C SiON

360V

350V
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SiON breakdown

• All films show a decrease in the measured 
resistance immediately before breakdown 

– Formation of a conducting path?
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SiON Breakdown Fields
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• Electrical inhomogeneities

– Dielectric breakdown over 
a range of voltages

• Processing temperature 
and method

– Unexpected behavior of 
plasma treatment on 
breakdown field
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Chemical Analysis (XPS)
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Summary and Conclusions

• Changes in behavior from plasma processing 
consistent with previous MEMS-scale work 

– Plasma-treated films show increase in leakage 
current with time

– Leakage current in wet-etched films is stable

• Electrical inhomogeneity across all samples

– Possibly due to chemical variation across film

• Breakdown of SiON immediately proceeded by 
drop in resistance  

• Variation of chemistry across the sample

– Possibly due to impurities (SiOx)
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