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RF MEMS Switches
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« 2 Types of switch contact mechanisms

* Mechanical action of the switch “shorts” the
circuit
— DC switch
« Ohmic contact across the switch
— Capacitive switch
» Capacitive susceptance of dielectric sandwich

Circuit Metal Switch Bridge \ Output port
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Why use MEMS switches?

Dielectric  gjje view: Up-State

* MEMS switches show superior Bridge\ | |
performance compared to solid- \ ?VA
state devices (PIN or FET) in
virtually every aspect

— Low Insertion Loss (~0.1 dB)

— Very High Isolation (~20 to 60
dB)

— Low Power Consumption

— Wide Frequency Band (DC to
40 GHz, Capacitive to 100 -
GHz ) Dielectric

Transmission Line
Side View: Down-State

Transmission

Line \

Bridge

MEMS switches pair the performance of
electromechanical switches with low cost
and size of solid state switches.
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#Issues with MEMS switches?

* Primary disadvantages are
— Voltage requirements (electrostatic actuation)
— Switching time
* Microseconds compared with nano- to picoseconds
— Low power handling capability
*Lessthan1 W
— Issues with reliability
 Mechanical fatigue

« Stiction of components
* Trapped charge
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# Origins of trapped charge

* Trapped charge arises from:

— Device actuation
* High pull-down fields

— Tribocharging
* Transfer of electrons from one surface to another
during contact

— Dielectric processing
* Bulk charges
» Surface (interface) charges
* Plasma processing
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MEMS C-V curves — Previous Work

» Shallow slope
indicates interface
states

 Shift of curves due to
dielectric damage

— Plasma-induced
damage
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il ' Nanoindentation Setup
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Schematic of I-V setup

« Experiments performed in
dry N2
— Relative humidity below
0.1% (Dew point of ~ -40°C)

» Applied load of 1 mN
— Contact area ~ 13 pm?

* Use Keithley 6517A
— High resistance sourcemeter

0.8 mm dia. 24k
Au sphere

holder

o-

insulator
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SiON sample coupons
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* (100) Si substrate
* 2 um electroplated Au

* SiON deposited with 13MHz
glow-discharge

— ~300 nm thick

« “Wet” release (Solvent)

— 80°C NMP, Methanol, Au

supercritical CO, -Si

* “Dry” release (Plasma)
— Same as “wet”
— 90 min, 250W ashing plasma
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Wet SiON Breakdown Behavior

 Wet etch shows no
degradation before
breakdown

* Plasma treated film
shows drop in
resistance with time

— Increase in charge
conduction

— Likely arising from
chemical or physical

modification of the
dielectric
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250 °C - Wet 375V

0 50 100 150 200 250
Time (seconds)

250 °C - Plasma 395V

SE+15
4E+15
3E+15
2E+15 |,

. N
‘w"' ‘0t o2t Q‘M“
16415 SRR e
T T T -

0

Resistance (Ohms)

0 20 40 60 80 100

Time (seconds)
Sandia
National
Laboratories



'
#‘ Plasma SiON Breakdown Behavior

350 °C - Wet 360V

e Wet etch shows no-
minimal drop in
resistance

 Plasma treated film

Shows SIight apparent 0 160 260 3(30 460 500
drop in resistance with Time (seconds)

time 350 °C - Plasma 350V

— Much less pronounced
than with 250 °C SiON
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}' SiON breakdown

« All films show a decrease in the measured
resistance immediately before breakdown

— Formation of a conducting path?

350 °C - Wet 350 °C - Plasma
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SiON Breakdown Fields

 Electrical inhomogeneities

— Dielectric breakdown over
a range of voltages

* Processing temperature
and method
— Unexpected behavior of

plasma treatment on
breakdown field
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Chemical Analysis (XPS)
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Summary and Conclusions

F

« Changes in behavior from plasma processing
consistent with previous MEMS-scale work

— Plasma-treated films show increase in leakage
current with time

— Leakage current in wet-etched films is stable
 Electrical inhomogeneity across all samples
— Possibly due to chemical variation across film

* Breakdown of SiON immediately proceeded by
drop in resistance

 Variation of chemistry across the sample
— Possibly due to impurities (SiO,)
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