

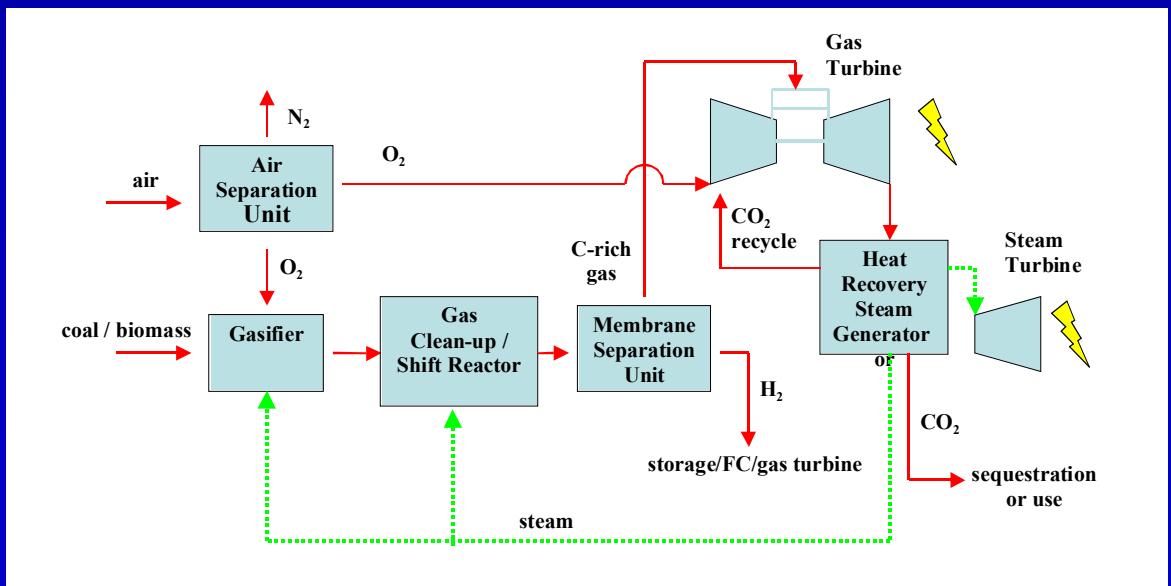
Effect of Syngas Composition on Emissions from a Swirl Burner

Christopher Shaddix, Timothy Williams,
and Robert Schefer

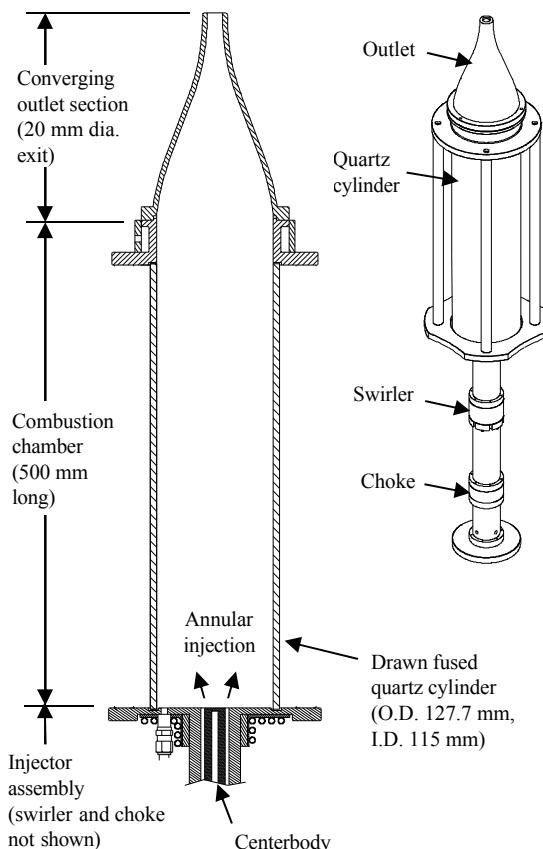
Combustion Research Facility
Sandia National Laboratories
Livermore, CA 94550
USA

*31st International Symposium on Combustion
Heidelberg, Germany
August 6-11, 2006*

Abstract


Co-production of electrical power and gaseous or liquid fuels from the gasification of coal or biomass will likely require gas turbine operation on unusual fuel mixtures. In addition, global climate change concerns may dictate the production of a CO₂ product stream, likely impacting the oxidizer used in the gas turbine. In this study the operation of an optically accessible swirl-stabilized premixed combustor, burning fuels ranging from pure methane to conventional and H₂-rich and H₂-lean syngas mixtures is investigated at 1 atm. Both air and CO₂-diluted oxygen are used as the oxidizers. CO and NO_x emissions for these flames have been determined over the full range of stoichiometries from the lean blow-off limit to slightly rich conditions ($\phi \sim 1.03$).

The presence of hydrogen in the syngas fuel mixtures results in more compact, higher temperature flames, resulting in increased flame stability and higher NO_x emissions. The lean blowoff limit and the lean stoichiometry at which CO emissions become significant both decrease with increasing H₂ content. CO emissions near the stoichiometric point do not become significant until $\phi > 0.95$. At this stoichiometric limit, CO emissions rise more rapidly for combustion in O₂-CO₂ mixtures than for combustion in air.



Background

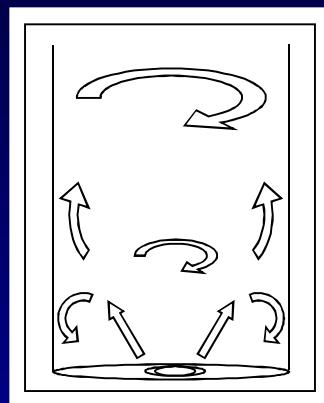
- Abundant reserves of coal in U.S. and in the world (“200-year” supply)
- Extensive biomass production capability
- Production of syngas from oxygen-blown gasifiers allows routes to gaseous and liquid fuel production, potentially with CO_2 capture
- Co-production of electricity and fuels is most energy efficient way to generate fuels
- Details of co-production scheme effect fuel and oxidizer composition used in gas turbine

Experimental Setup: Optically-Accessible Swirl Burner

- 1 atm
- premixed reactants
- choke inlet for acoustic decoupling
- swirler: 45° outlet vanes, $S = 0.87$
- 16 m/s flow inlet, $Re \sim 22,000$
- quartz chimney
- converging outlet section with small exit aperture (prevents 'tornado' effect)
- well-defined boundary conditions (for LES modeling)

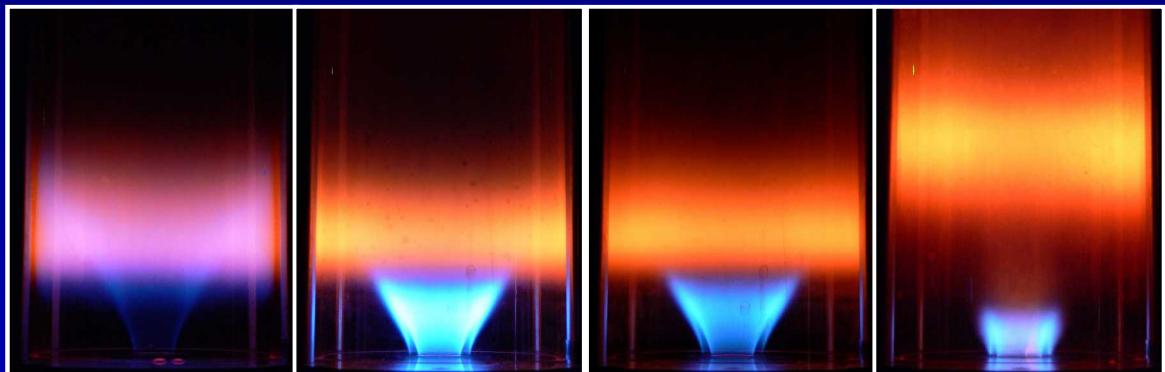
Exhaust Gas Analysis System

- CO -- NDIR
- NO_x – chemiluminescent
- O_2 -- paramagnetic


Gas Compositions Investigated

Fuel	Fuel Composition (% vol.)					H ₂ /CO Ratio	LHV MJ/Nm ³
	CH ₄	H ₂	CO	N ₂	CO ₂		
Methane	100	-	-	-	-	-	32.8
Slurry feed syngas	-	35	50	1	14	0.70	9.2
Dry feed syngas	-	28	64	5	3	0.44	10.2
H ₂ -lean syngas	-	1	76	2	21	0.013	8.9
H ₂ -rich syngas	-	95	1	3	1	95	9.5

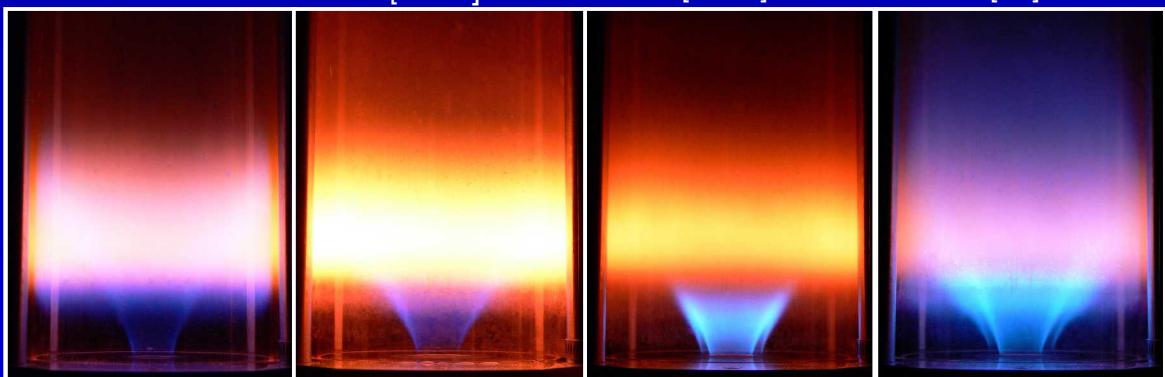
Fuel	Oxidizer (% vol.)				φ range	Power (kW) @ φ = 0.7	T _{adiab} (K) @ φ = 0.7
	Air	O ₂	N ₂	CO ₂			
Methane	100	-	-	-	0.64 → 1.03	10.5	1839
Slurry feed syngas	100	-	-	-	0.36 → 1.05	11.1	1998
Dry feed syngas	100	-	-	-	0.35 → 1.05	11.5	2063
H ₂ -rich syngas	100	-	-	-	0.25 → 0.70	10.4	1999
Methane	-	30	1	69	0.58 → 1.06	14.6	1839
Methane	-	34	1	65	0.50 → 1.05	16.3	1996
Slurry feed syngas	-	30	1	69	0.35 → 1.02	14.3	1990
Slurry feed syngas	-	34	1	65	0.31 → 1.03	15.5	2118
H ₂ -lean syngas	-	30	1	69	0.44 → 1.02	14.6	1983
H ₂ -lean syngas	-	34	1	65	0.38 → 1.03	15.9	2105


Flame Photographs

$(\phi = 0.70)$

flow patterns in
combustion
chamber

glowing
quartz
wall



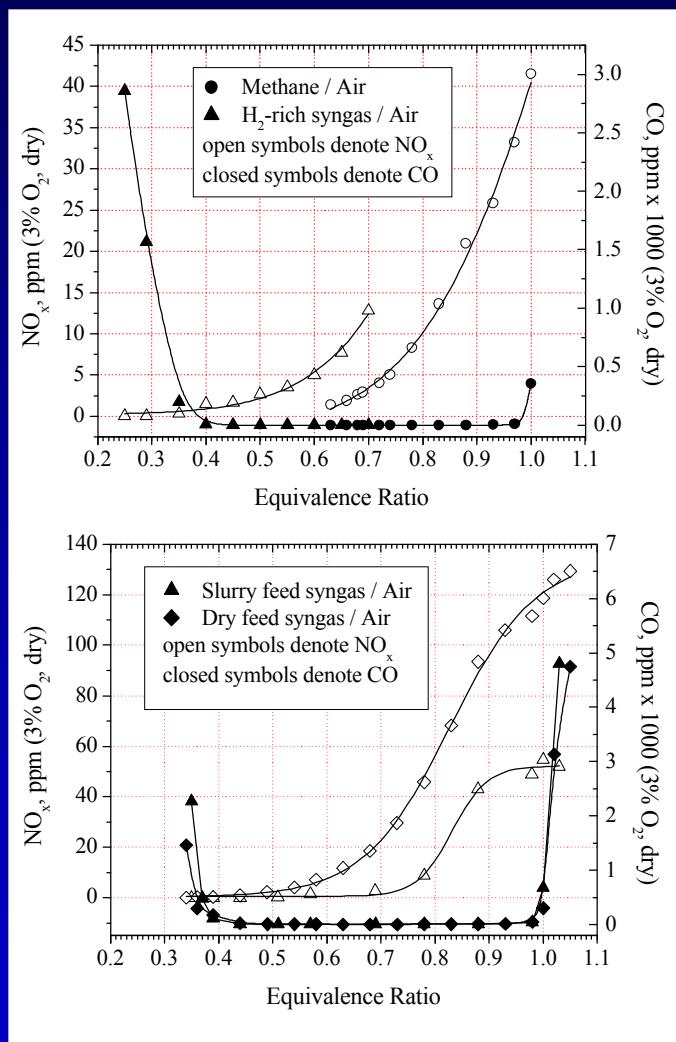
Methane/Air
[1 s]

Slurry feed syngas/Air
[0.25 s]

Dry feed syngas/Air
[0.05 s]

H₂-rich syngas/Air
[2 s]

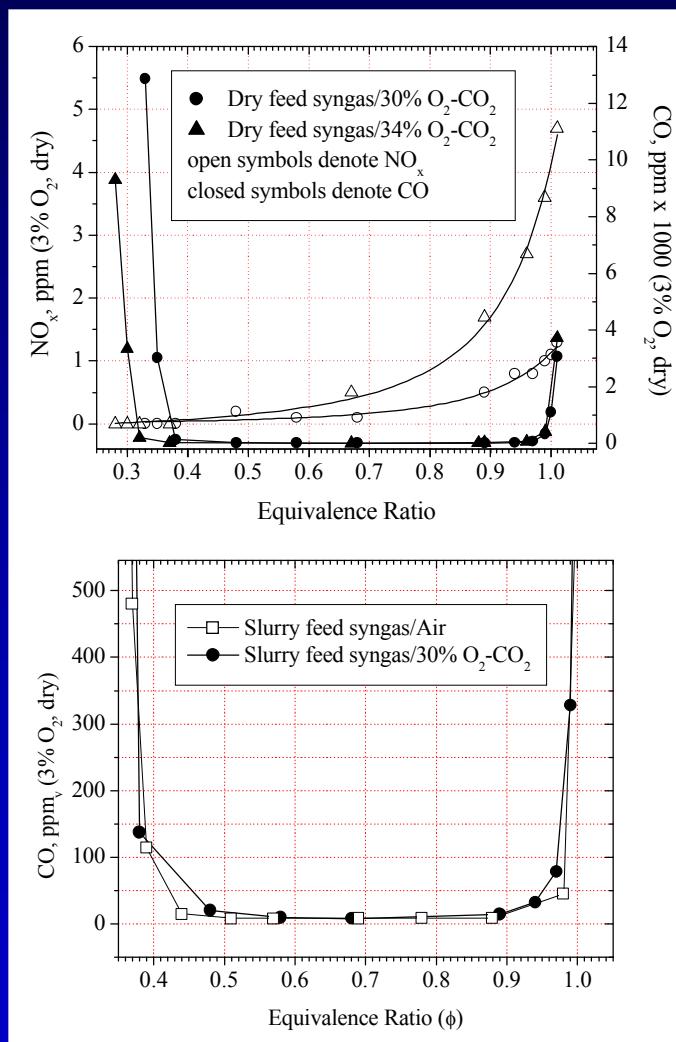
Methane/30% O₂-CO₂
[1 s]


Methane/34% O₂-CO₂
[0.25 s]

Slurry feed syngas/
30% O₂-CO₂
[0.05 s]

H₂-lean syngas/
30% O₂-CO₂
[0.05 s]

Emission Trends for Combustion in Air


NO_x and CO versus Equivalence Ratio

- Presence of H₂ increases stability (allowing leaner operation) and increases NO_x emissions for a given ϕ

Emission Trends for Combustion in O_2/CO_2

NO_x and CO versus Equivalence Ratio

- Low NO_x emissions for all stoichiometries
- CO emissions rise at lean blowoff and for $\phi > 0.95$, where one would like to operate (to minimize oxygen use)

Conclusions

- Trends in lean blowoff and CO and NO_x emissions have been measured in swirl burner for wide range of fuel and oxidizer mixtures
- Increasing H_2 content in syngas increases flame speed (compactness), stability, and NO_x emissions
- In O_2/CO_2 combustion system, NO_x emissions are very low and CO emissions are negligible until equivalence ratio exceeds 0.95

Acknowledgments

This research was sponsored by Sandia National Laboratories' Laboratory Directed Research and Development (LDRD) program

