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The slow relaxation of high-inertia particles to statistical equilibrium with flow fluctuations in
turbulence is known to affect deposition rates, but satisfactory modeling of this process has
not yet been achieved. A simple analysis of the transient response of high-inertia particles

predicts that the deposition rate in the far field of a turbulent channel flow obeys a -2/3 power-

law dependence on the wall-normalized particle relaxation time z;f. The analysis also

implies a near-field deposition regime that is less sensitive to Tp+, consistent with experiments
and numerical simulations that indicate weaker dependence. The gradual onset of the
asymptotic regime suggests that careful attention to slow transients is important for valid

interpretation of such results.

To illustrate these and other features of high-inertia deposition, a computationally efficient
stochastic model is used to investigate both the near-field and far-field behavior. The model
that is employed is a two-phase flow (one-way coupling) extension of One Dimensional
Turbulence (ODT). The novel features developed for this application of ODT are described

in detail. To broaden the perspective, ODT channel-flow deposition results are presented and

. . + . o .
interpreted for a wide range of 7, values spanning several deposition regimes.
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I. INTRODUCTION

Predicting particle deposition from turbulent flows is essential for industrial and
environmental applications and remains challenging even under idealized assumptions. The
focus here is particle deposition from turbulent channel flow based on one-way coupling and
Stokes drag, in some cases incorporating a particle-Reynolds-number correction. Gravitational
effects are omitted. Although the phenomenology of particle transport and dispersion in
boundary layers is understood,’' predictive modeling of particle deposition based on the governing
conservation laws is the focus of ongoing research.”* Here it is proposed that deposition of high-
inertia particles is governed by a previously unrecognized scaling, although the physical basis for
this scaling is implicit in previous work.>*

The regime of interest (high inertia, downstream of near-field transients) is difficult to
investigate experimentally and is marginally accessible using 3D simulations. It is studied here in
two ways, by heuristic scaling analysis and by developing and applying a two-phase
generalization of a 1D stochastic turbulence simulation model. The scaling analysis identifies the
novel deposition regime. The 1D simulations reproduce the predicted scaling. To relate this
observation to previous work, the model is applied to a wide range of conditions (moderate as
well as high particle inertia, near-field as well as far-field regimes, different Re values) and is
compared to pertinent experimental and 3D simulation results.

Pertinent phenomenology is summarized in Sec. II. The new high-inertia scaling is introduced
in Sec. III. The 1D numerical model is formulated in Sec. IV. Results obtained using the

numerical model are presented and discussed in Secs. V and VI.



II. DEPOSITION REGIMES

The rate of particle deposition from turbulent boundary layers is generally characterized by a
wall-normalized deposition velocity ¥,;*, whose dependence on the particle Stokes number z,",
expressed in wall units, is the main property of interest. The deposition velocity V, is obtained by
dividing particle deposition flux by bulk-averaged particle concentration. Then V, = Vju,
where u, is the friction velocity, and z," = 1, u’/v, where 7, is the particle aerodynamic time
constant and v is the kinematic viscosity.

Measurements of the dependence of ¥, on z,” exhibit three distinct regimes termed the
diffusional-deposition, diffusional-impaction, and inertia-moderated regimes, with transitions at
7," = 0.3 and 30 respectively. The present focus is the high-inertia regime corresponding to 7,
far greater than the latter transition, although the diffusional-impaction regime is also considered
in order to support the conclusions drawn about high-inertia behavior.

+

In the inertia-moderated regime, measurements up to 7, of order 10° suggest a barely
perceptible (relative to experimental uncertainty) decline of ¥,  with increasing Tp+.2’5 The
behavior in this 7z, range (and at small z,") is reproduced by Eulerian closure-type models.>* Tt is
recognized that this decline is due to the decreasing effectiveness of turbulence in inducing lateral
deflections of particles as particle inertia increases.

Large-eddy simulation (LES) of pipe-flow deposition extending to higher z,” values (up to
10%) suggests® an acceleration of the declining trend for 7, > 10°. There does not appear to be
subsequent discussion of this observation in the literature, leaving open the question of whether
the aforementioned models capture this effect.

A physical basis for accelerating decline is identified here using a straightforward scaling

analysis. A computational model is then used to demonstrate the predicted behavior. It is

inferred that this ostensibly large-z,” regime has significant implications with regard to the low-



7," end of the inertia-moderated deposition regime. The reason is that the onset of the asymptotic
behavior occurs only after a long transient relaxation period. Previously reported weak z,"

>7% might be partially the result of observation during the initial

dependence seen at large 7,
transient rather than the ultimate statistically steady evolution. This suggests that further
computational and experimental study might be needed in order to distinguish asymptotic

behavior from initial transients. Previous analysis by Graham® has analogous implications, albeit

without addressing the particular regimes and evolution mechanisms considered here.

I11. ANALYSIS OF HIGH-INERTIA DEPOSITION
A. Scaling analysis

To derive the parameter dependencies of ¥, in the limit of high particle inertia, the turbulent
channel flow is characterized by three velocity scales: the bulk velocity u,, a turbulent fluctuation
amplitude «’, and the friction velocity u,. The other governing quantities are the channel half-
height A, the particle response time 7, and the kinematic viscosity v. A/v times each of the
respective velocity scales defines bulk, turbulent, and friction Reynolds numbers Re;,, Re’, and
Re..

The three velocity scales parameterize the lateral (y) variation of flow structure. In terms of
this parameterization, it will be seen that this lateral structure affects ¥, through parameters that
depend only on fluid flow, and that the dependence of ¥, on z, is insensitive to these details, and
in particular is valid for both channel and pipe flow.

The fluid flow is assumed to be statistically steady. Various particle initial conditions are
considered, but the results for these cases differ only in minor details, so the case considered first
is the one that is simplest to analyze. Namely, it is assumed that particles traveling at streamwise
velocity u, are introduced, with zero lateral or spanwise velocity, at the flow mid-plane.

Accordingly, while a particle is in the core-flow region its streamwise velocity is of order u.



High turbulence intensity (based on any of the defined Reynolds numbers) is assumed, so the
near-wall region where the mean fluid velocity (u(y)) obeys (u(y)) << ki is small compared to 4.
For simplicity, Stokes drag is assumed with no particle-Reynolds-number correction.

For large 7, particle acceleration by individual turbulent eddies is slight, so the streamwise
particle slip Sy = U - u is typically of order u', where u' is taken to be the large-eddy velocity.
The lateral slip Sy = V' - v is of the same order. Spanwise slip is immaterial under the stated
assumptions and therefore is not considered.

The turbulence integral scale is of order #, so the large-eddy time scale is 7 ~ A/u'. Because Sy
is of order u’, the particle eddy-crossing time is also of order 7. Based on Stokes drag, the
particle velocity change in a given direction while crossing an eddy scales as S7/z,, where S is the
corresponding slip component, S or Sy, both scaling as u". The particle velocity change caused
by a large-eddy traversal is then AU ~ AV ~ h/z,.

During a time interval ¢ >> T, a particle is subject to order #7 independent velocity increments
due to these eddy effects. This corresponds to diffusive growth in time of the velocity scale V
(and analogously for U, but consideration of U is set aside temporarily), obeying the scaling V(¢)
~ AV (t/T)"* ~ (h/z,) (t/T)'"?. This can be expressed as dV*/dt ~ D, where the velocity diffusion
coefficient D obeys D ~ u'*T/ rpz. This is valid if ¢ is short compared to the time required for V(¢)
to reach statistical equilibrium with respect to the velocity impulses A) that drive the growth of

V. This is verified in Sec. II1.B for the ¢ range of interest.
t
The deposition time ¢, is estimated to be the time ¢ at which J-OV(t') dt'=h/2. This gives

(/)" ~ 7, and thus
ta~(T5,") ", 1)
Assuming that the deposition velocity V; scales as A/t; (which is justified in Sec. II1.B), it then

obeys



Va~ (WTY(T/1)". ()
To express this relation in wall units, it is divided by wu., giving V," = (h/u)(T: tfz) -3 (Tf)'m,
where ¢, = v/u and z," = 7, /t, This identifies the z," dependence of V,". Substitution of 7 ~
h/u' and rearrangement gives
Vi ~(Re.ReN'"” (5,7 3)
The relation u’ ~ u, would reduce this to ¥;* = Re, **(z,")*”, but this is not assumed due to
experimental'® and computational'' evidence of deviations of ' from wall scaling. Wall scaling
of u’ can nevertheless be viewed as a bounding case, another obvious bound being ' ~ u,. The
latter scaling implies V," = (Re, Reb)l/3(z;,+)'2/ . This can be simplified using the Blasius
resistance formula, long regarded as empirical but recently derived from a more fundamental
perspective.'? The Blasius formula, £ ~ Re, ", where the friction factor / scales as (Re/Rey) 2,
implies Re, ~Re”" and thus V," = Re, S/ 7(Tp+)'2/ 3. The situation can be summarized by the relation
Vi ~Re” (5,7, @

where 2/3 < p <5/7 and therefore p = 0.7.

B. Initial conditions, transients, and equilibration

Based on Eq. (1), ti/7, ~ (T/ rp)m, which is much less than unity in the limit of large 7,. The
time required for V to transition from transient growth to equilibration is much longer than this.
This transition occurs when 77 reaches its equilibrium value determined by dV?/dt ~ D - V*/ 7, =
0. Here, the sink term V?/ 7, omitted from the derivation of Eq. (2) is included. This gives the
familiar’ equilibrium result

V2~D z,~u” Tz, 5)
Until the onset of equilibration, V*(f) ~ Dt, showing that the elapsed time until equilibration is T,

which is much larger than the estimated deposition time #;. The particle lateral velocity at time z,



obeys V(ty) ~ (WT) (T/z,) (5,/T)"” ~ u' (T/z,) **, which is smaller than the equilibrium value by the
factor (7/ rp)”(’. These estimates indicate that the transient analysis is self-consistent.
Analogous considerations indicate that, if mean streamwise slip is negligible, then

3 and therefore

perturbations of the particle streamwise velocity U are of likewise order u' (7/1,)
have negligible effect on particle streamwise displacement during the time interval ¢, If the
streamwise slip is nonzero initially, e.g., for the case of particles that are initially motionless
(U(0) = 1(0) = 0), then the particle U velocity relaxes to the mean flow velocity (order u;) during
a time interval 7,. Because #; <<z, this indicates that the particle U velocity remains much
smaller than u, throughout the deposition process.

This raises the question of the dependence of the scaling of ¥, on initial conditions. First, the
dependence of V; on U is considered, retaining the / initial condition /(0) = 0. The assumption
Vy ~ h/ty is examined in this regard. Namely, the Lagrangian perspective of the foregoing
analysis is compared to the Eulerian definition of V; as the particle deposition flux F divided by
the particle number density n. Consider particles in a flow moving downstream at speed U and
depositing on channel walls at a rate that scales as n/f;. Particles contained in a notional control
volume 4 Ax moving downstream at speed U, where A4 is the channel cross-sectional area and Ax
is a given streamwise increment, deposit over a streamwise interval of order X = Ut,, here
assuming Ax << X. Therefore, the number of particles depositing from this control volume per
unit surface area of the channel is of order n 4 Ax/(o X), where sigma is the channel surface area
per unit streamwise distance. During time ¢, the number of such control volumes traversing the
streamwise interval X is X/Ax, so the total number of particles deposited per unit surface area

during time ¢, is of order nd/o. Dividing by t; and n gives V; = F/n ~ A/(ct;). In a channel,

A/ois the half-height 4, yielding the assumed scaling V, ~ h/t,.



The analysis predicated on this scaling involves U only in the determination of the particle
eddy-crossing time 4/Sy, where Sy ~ u' provided that U is no larger than order «". If instead U >>
u', then h/U is substituted for 7 throughout the analysis, corresponding the multiplication of the
right-hand side of Eq. (4) by (UT/h) ' ~ (U/u")"”. Because the change of U is slight during the
time interval z;, U(0) can be substituted for U in this term. The situation is summarized by the
relation

V" ~max(1,[U0)u") Re,”(z,") . (6)

Next, nonzero ¥(0) is considered. Owing to the smallness of the deviations from ballistic
particle trajectories for large z,/7, the deposition time ¢, for (0) # 0 is #/V(0) unless ¥(0) is small
enough so that 4/V(0) is larger than #; given by Eq. (1). Thus, Eq. (1) is an upper bound on the
deposition time, which can be much smaller for nonzero V(0).

More generally, assume a distribution of particle /(0) values. In general, 4/V(0) will be
smaller than #; for most particles, so most of the deposition will be ballistic in character and more
rapid than predicted by Eq. (6). However, the (generally small) fraction of particles for which
V(0) < h/t; deposit by the non-equilibrium mechanism analyzed here, and accordingly their
deposition rate is governed by Eq. (6).

The small fraction of particles obeying Eq. (6) in this scenario indicates that for large z,/T,
deposition is predominantly ballistic and thus is governed primarily by initial conditions. This
indicates that high-inertia deposition for the conditions considered (Stokes drag, zero gravity), is
primarily a transient, case-specific process, and that phenomenology of a more general nature
arises only as a far-field (downstream) asymptote. Implications with regard to the interpretation
of measurements and simulation results are considered in Sec. V.C.

It is assumed in the analysis that particles are introduced at the channel mid-plane, but the far-

field analysis is unchanged if a more general initial spatial distribution is assumed. Only the



small fraction of particles introduced at a distance from the wall that is much less than £ will
deposit more rapidly than the analysis predicts. The near-field transient deposition due to
nonzero V(0) may be strongly affected by the initial spatial distribution. This dependence is
likewise considered in Sec. V.C.

In Eq. (6), the 7, term follows from the diffusive scaling governing the transient evolution of
the magnitude of V(¢). In contrast, the Re, term arises from an idealized picture of turbulent
channel flow structure. For example, u'is taken to be a characteristic velocity scale of the entire
flow, omitting the consideration that turbulent velocity fluctuations are concentrated primarily in
the vicinity of the wall, peaking sharply before falling to zero at the wall. Therefore the Re,
dependence is less firmly established than the z,” dependence.

The analysis highlights the non-equilibrium character of particle response to turbulent
fluctuations in the regime of interest. Nevertheless, the equilibrium condition, Eq. (5), is adopted

? The deficiency of

in closure-type modeling of particle deposition in turbulent channel flow.>
this assumption is recognized and a compensatory modification has been attempted, but the
closure framework does not readily accommodate a fundamentally sound representation of non-
equilibrium.>*  Reflecting this, closure modeling predicts less rapid decrease of V," with
increasing z," than is indicated by Eq. (6). The milder dependence is found to be consistent with
experimental and numerical simulation results. However, these results reflect case-specific near-
field transient phenomena rather than the far-field asymptote, as shown in Sec. V.C. Therefore,

the consistency of these results with closure model predictions is not as clear a validation of

model assumptions as it may appear.



Iv. STOCHASTIC SIMULATION OF INERTIAL PARTICLES IN TURBULENT
FLOW
A. Motivation

The analysis of Sec. III suggests that high-inertia deposition is challenging to investigate both
experimentally and computationally. The slow relaxation of transients requires a large
experimental apparatus in order to observe the far-field asymptote, as emphasized by Graham.’
Likewise, it requires large spatial domains in numerical simulations (or long run times, in the
more usual temporally developing configuration). The non-equilibrium character of high-inertia
deposition is not readily accommodated in closure models. Given these difficulties, the question
arises as to whether there is any practical way to study this regime apart from the heuristic scaling
analysis of Sec. III.

One of the authors has developed a cost-effective method for simulating turbulence and its
coupling to other processes using a modeling strategy based on reduction of spatial
dimensionality. A 1D spatial representation is employed. It has been shown that a stochastic
simulation model formulated in 1D provides a representation of turbulence phenomenology that
is useful in many respects.'>"*

This approach, denoted One-Dimensional Turbulence (ODT), is generalized here for
simulation of inertial particles in turbulence. It is shown that this formulation not only captures
the relevant physics of turbulent particle deposition, but also provides both the fidelity and
efficiency needed to investigate high-inertia deposition as well as other deposition regimes.
Computed results support the analysis of Sec. III and its implications and provide other relevant

insights.
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B. Turbulence model

The ODT formulation previously used to simulate turbulent channel flow'” is adopted here.
Because it is described and validated in the cited reference and other published work,'* the
description here is brief and is specific to the present application.

It is instructive to introduce for comparison a simple boundary-layer representation of fully

developed channel flow based on eddy-viscosity modeling,

2
6_u:i Ve@_u +Va_u_id_p (7)
o oy\ oy

where ¢ is time (denoted #rin Sec. IV.C to distinguish it from a particle time coordinate), y is the

lateral coordinate, v is kinematic viscosity, v, is the modeled eddy viscosity, p is density, and

dp/dx is an imposed mean pressure gradient in the streamwise direction. 1, is typically assumed

to be a time-invariant function of y, yielding a steady state formulation in which the time

derivative vanishes.
Suppose instead that 1, is time varying. This allows the possibility of unsteady evolution
governed by Eq. (7) rather than the usual steady-state formulation in which u(y) represents the

mean velocity profile. This generalization would require modeling of 1,(y,f). One way to obtain

a closed formulation would be to express v, as some prescribed function of y and u(y'#). Here y'

designates the set of all lateral locations within the channel, 0 < y’ < 2A, corresponding to a
nonlocal closure of v,. This reduces to a more familiar local closure if the argument y’ is

restricted to the value y.
Consideration of the advantages and limitations of such a formulation serves to motivate the

present approach. Equation (7) with the suggested closure is reminiscent of unsteady RANS and

11



in this sense is a qualitative step beyond steady-state modeling. For given y, dependence of 1, on

the flow state at all lateral offsets / = y' - y offers the possibility of dependence of turbulent
transport on a range of structure scales / at each y rather than a unique functional dependence /(y),
as is assumed in mixing-length formulations.

Practical realization of these conceptual advantages would require a closure of the stated form
that drives sustained unsteadiness of Eq. (7) rather than inducing relaxation to steady state.

Moreover, such unsteady feedback through the closure formulation must be demonstrably
physical in its construction and outcome. These requirements are difficult to satisfy because -,

represents an ensemble averaged flux of u divided by an ensemble average of du/dy, even though
the evolution equation is nominally unsteady. Models of advective transport that scale diffusively
represents the cumulative effect of numerous statistically distinct (if not fully independent)
advection motions, and hence do not capture unsteadiness at time scales too short for diffusive
scaling to apply locally.

Accordingly, individual advective motions over a distance / are better represented as fluid
displacements than as gradient-driven fluxes. Indeed, fluid displacement is the primitive element
of Prandtl’s mixing-length phenomenology, although through averaging it ultimately leads to
diffusive representation of turbulent transport.

In 2D or 3D, displacement corresponds to time integration of the advection term u - V().
Except for trivial rigid-body displacement, there is no continuous-in-time 1D representation of
advection that satisfies basic requirements (conservation laws of constant-property flow, no
creation of spontaneous singularities). Accordingly, advection is represented in 1D as a time
sequence of instantaneous displacements, each formulated to represent the outcome of a notional
turbulent eddy motion. Formally, the outcome of simulated evolution from time O to time ¢ can

then be expressed as

u(.t) = Itnt] E(Pn) * =+ Tt tia] E(Pi) TTti1,43] - - *E(P2) TTt1,22] E(P1) T10,41] u(3,0), ®)
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where capital letters represent operators. 77t.1,#] represents time advancement of the operand
u(y,ti.1) from t;1 to t;, governed by Eq. (7) with the eddy-viscosity term omitted. E(p;) is an ‘eddy
event,” an instantaneous transformation of the operand u(y,#;) representing a turbulent eddy
motion. p; represents the set (vector) of randomly sampled quantities determining the exact form
of the ith transformation. » is the number of eddy events during [0,7], # is the time of occurrence
of the ith event for i > 0, and 7o = 0. The epochs #;, the quantities p;, and » are random variables
evaluated during each simulated realization by a sampling procedure. The sampling rules
embody the principal physical content of the model.

In higher dimensions, numerical advancement of the exact governing equations can likewise
be represented by Eq. (8), but with different interpretations. u is replaced by the vector velocity
field u and its spatial argument is a point in d-dimensional space. 7 now represents evolution by
the exact equations, but with the advection operator omitted, and £ represents advancement by
the advection operator. ;- t;1 is now the advancement time step (typically uniform). Equation
(8) then encodes a conventional split-operator advancement scheme, involving no random
sampling and therefore giving a unique final state for a given initial state. If the advection step is
Lagrangian (perhaps followed by remapping to an Eulerian mesh), then it corresponds to a
collection of fluid displacements, analogous to the meaning of the operator £ in 1D.

In ODT, the eddy event represents the outcome of the physical process of eddy turnover, so
epochs # are sampled based on physical modeling considerations rather than numerical
considerations. (In numerical implementation of ODT, the operation 77¢:.1,#] is implemented by
choosing the numerically appropriate time step for advancement from #; to ¢;.)

In Appendix A, details of the specification of an eddy event and the procedures for sampling
event epochs and parameters are presented. Features that are relevant to the incorporation of

inertial particles are as follows. First, the eddy parameters p are a lower boundary y, and a size /,

determining the upper boundary y,+/. Second, event occurrences are random samples from an
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event rate distribution that assigns a time scale Z'(yo,l ; t), analogous to an eddy turnover time, to

each possible event based on the flow state at time z. Third, the operation E specifies
displacements y = {y1', 12", y3'} for y within the interval [y,,y,+{], where each of the three images
y;'is within that interval. In fact, the images occupy successive thirds of the interval, thus filling
the interval. Each image is a threefold compression of the original interval, except that the central
(second) image is inverted (spatially flipped). There is no displacement at y values outside the
interval [y,,1,+/]. Graphical illustrations and extensive discussions of this ‘triplet-map’ operation
are presented elsewhere.'>'® (Also see Appendix A.)

Two other pertinent features of the ODT formulation used here are noted. First, it evolves the
y profiles of all three velocity components u, v, and w, although a version that evolves only the u
profile would suffice for present purposes. (This choice is motivated by prior validation of the
three-component version for channel-flow modeling.) For v and w, the time-advancement
equation (7 process; see Appendix A for details) is the same as for u except that the pressure term
is omitted. Second, different ODT formulations involve different numbers of free parameters; the
version used here involves three. Here, these parameters are fixed at previously determined
values," as explained in Appendix A. Incorporation of inertial particles (Sec. IV.C) introduces

one additional adjustable parameter.

C. Inertial particle submodel

Because the turbulent flow model evolves all three velocity components, an obvious way to
incorporate inertial particles is to evolve particle velocities U, V, and W by substituting the ODT-
specified fluid velocities u(Y,?), v(Y,t), and w(Y,?), into the particle drag law, where Y is the
particle location at time ¢#. Time integration of U, V, and W advances the particle location (X, Y,2).

Because the particle is confined to the ODT domain, the ODT fluid state is deemed to represent

14



the lateral profiles of the fluid velocity components at the (X,Z) location at which the particle
currently resides. Flow time advancement on the ODT domain thus represents the spatial as well
as temporal variability of the fluid velocity seen by the particle. This implies a relationship
between particle and flow advancement that is explained shortly.

This approach has been implemented and results have been compared to measurements and

simulations of various particle statistics in turbulent channel flow."’

Although this approach is
found to be successful in some respects, it is not pursued here because it violates a key property
of particle advection; namely, that in the zero-inertia (marker particle) limit, a particle should
remain co-located with the fluid element that contains it initially.

Ostensibly, a marker particle advected by a specified fluid velocity satisfies this requirement,
but in ODT the evolving velocity component v does not advect fluid. In fact, as noted at the end
of Sec. IV.B, for channel-flow simulation it suffices to evolve only the streamwise component u.
This reflects the fact that eddy events rather than the usual advective operator are the mechanism
of fluid advection along the ODT domain.

For consistency with the marker particle limit, the particle-fluid coupling must therefore allow
the instantaneous displacement of particles by eddy events. Because this coupling is based on a
drag law that must be time integrated to obtain its effect on particle displacement, it is evident
that some method must be devised to account for the finite time duration of turbulent motions.

The needed ingredients are available within ODT. The specific goal is to interpret a fluid
displacement y = y;" as fluid motion at some specified velocity that is constant (for simplicity)
for some specified time interval that is here termed the eddy lifetime. In Sec. IV.B it is noted that
eddy event selection involves the specification of an eddy time scale z. Because this is the only

time scale available in ODT to represent eddy properties, the eddy lifetime ¢z is modeled as fr,

where £ is an adjustable parameter, the only new parameter required in the ODT particle
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representation. To obtain the specified lateral displacement from motion at constant lateral
velocity during the time interval ¢z, the velocity must then be
ve ="~ y) / L. )

It is now straightforward in principle to specify the particle-eddy interaction, although some
details require care. The present approach has much in common with particle-eddy interaction
sub-models that have been used in RANS formulations,'® although the implementation is different
in several respects. To keep the development general, it is not specialized to a particular form of
the drag law until Sec. IV.D.

Assume that a particle is located at (X, Y,Z) and has velocity components (U, V, W) at the time
t= t; when the ith eddy event occurs and assume that y = Y is within the eddy interval [y,, y,+/].
Then the particle location Y is mapped by the eddy event to each of three locations y;". Unlike a
fluid element, which is divisible, a particle can be displaced to only one location. Therefore one
of the locations y;" is selected by randomly sampling one of the three, each with probability 1/3.
The selected location is denoted y’, here dropping the subscript. Each sampling is independent
for each particle within the eddy event and for each eddy event encountered by a particle during
the simulation. It has been shown that this procedure yields a physically sound representation of
the evolution of a particle ensemble in turbulence."

Note that while y' is the location to which fluid at Y is mapped, the particle is not necessarily
mapped to y' unless it is a marker particle. The procedure determining the final location Y, as
well as the other descriptors of the particle state at the conclusion of the particle-eddy interaction,
is now considered.

During the particle-eddy interaction, whose time duration is denoted #;, the lateral velocity of
the fluid initially at y = Y is modeled according to Eq. (9). It is not strictly accurate to infer that
the particle initially at y = Y is subject to this fluid velocity throughout the interaction period

because the trajectory of an inertial particle will deviate from the trajectory of the fluid initially at
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Y. Nevertheless, the modeling assumption is adopted that vz is the fluid velocity seen by the
particle throughout the interaction period. Alternate assumptions introduce additional complexity
with no clear gain in physical fidelity.

The duration of the interaction is denoted ¢ rather than ¢z because the particle may cease to
interact with the eddy before the eddy reaches the end of its life. This cessation is due to the
emergence of the particle from the spatial region occupied by the eddy. In ODT, the y interval
occupied by the eddy, denoted [y, y,+!], is specified by the eddy sampling procedure. The
parameter / can be used to infer the streamwise and spanwise as well as lateral extent of the eddy,
and the streamwise velocity profile # within the eddy interval at the time of eddy occurrence can
be used to infer its rate of streamwise displacement. These geometrical properties, in conjunction
with the particle trajectory solution described shortly, are used to determine the first occurrence,
if any, of particle emergence from the spatial region occupied by the eddy. If this occurs before
elapsed time 7, then #;is set equal to the time of this first occurrence, otherwise #;is set equal to
tg. This feature of the model is important when particle-eddy interaction is dominated by
trajectory-crossing effects, as in the case of high-inertia particles subject to gravitation. However,
these effects are not important for the cases considered here, so details of the determination of #;,
reported elsewhere,” are not repeated here.

Based on the foregoing considerations, the particle drag law is time integrated, based on the
fluid state (u(Y,t),ve,w(Y,t;)), to advance the particle from its initial state (X, Y,Z U,V,W) to its
state (X, Y, Z, U V', W' at time t;, where this advancement contributes to the determination of #;
as noted. Note that the streamwise and spanwise, as well as lateral, fluid velocity components are
evaluated at the initial particle location, again because there is no straightforward alternate
assumption.

Although this advancement specifies new values of all particle coordinates and velocity

components, only the lateral particle location and velocity are modified by the particle-eddy
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interaction. This is because evolution of the other coordinates and components are adequately
represented by particle advancement during the time intervals between eddy events. (Recall that
the special treatment of lateral advancement is for the specific purpose of assuring that eddy
events result in appropriate marker-particle behavior in the zero-inertia limit.) Thus, the updated
state variables (X', Z', U’ W') obtained from drag-law integration play no role in subsequent
advancement. These variables are time advanced during particle-eddy interaction for the sole
purpose of evaluating # by following the particle trajectory to determine whether emergence from
the eddy occurs during the eddy lifetime, and if so when.

The nominal particle state at the end of particle-eddy interaction is thus (X, Y, Z,U, V", W). The
primed variables reflect advancement for a time interval ¢; starting from the state at time #;, but the
unprimed variables correspond to the state at ¢

ODT eddies are instantaneous, so the state immediately after an eddy corresponds to time ¢;.
Time advancement subsequent to particle-eddy interaction (particle T process) thus begins at time
t;, implying a period of advancement in physical time that overlaps the time advancement
implemented during particle-eddy interaction.

The duplication of particle advancement implied by this overlap is corrected as follows.
Particle-eddy interaction as described thus far determines new values (Y, V") of the particle lateral
location and velocity by integrating the drag law for a time interval #; starting from the initial state
(Y,7) and holding the fluid velocity fixed at (u(Y,t;),ve,w(Y,t;)). A second drag-law integration is
introduced, over the same time interval and starting from the same initial state, except that the
fluid velocity is held fixed at (u(Y,#),0,w(Y,t;)). The values of the particle lateral variables upon
completion of this integration are denoted (Yo',Vo’). The physical state of the particle upon
completion of particle-eddy interaction is then taken to be (X, Y",Z, U, V", W), where Y" = Y + Y'-

Yo'and V"=V + V'-Vy'
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The rationale for this procedure is illustrated by considering the limiting cases of infinite-
inertia and zero-inertia particles. For infinite particle inertia, the value of vg has no effect on
particle advancement, so Y' = Yy', giving Y = Y. Likewise, V" = V. Thus, the eddy interaction
has no effect on the particle and it continues on its ballistic (linear) trajectory during subsequent
advancement. (Particle evolution between eddy interactions is explained shortly.) This is the
physically correct result. For zero particle inertia, Y’ =y, Yo' = Y, and thus Y = y". Likewise, V'
=vg, Vo' =0, so V" = vg. The result for Y" is the physically correct marker-particle behavior.
The result for V"' is immaterial because the marker particle immediately relaxes to zero velocity.

It is seen that the subtraction procedure is suitable for the limiting cases and can be expected to
provide a reasonable interpolation between these cases for finite-inertia particles. Representative
case studies verify this.”® Conceptually, the procedure evaluates the net effect of the interaction
on the particle relative to particle evolution if the eddy had not occurred. By defining the
particle-eddy interaction based on this difference, it is consistent to implement the outcome of the
interaction instantaneously at time # despite the fact that it is computed by means of time
integration from ¢ to #;+ ;.

For some configurations, e.g., particles moving rapidly in the ODT domain direction y, the
instantaneous nature of eddy events might cause particles to encounter eddy events much less
often than they would encounter physical eddies of finite time duration. Accurate modeling of
such configurations requires eddy events as perceived by particles to have finite durations in the
physical time coordinate as well as in the internal time coordinate introduced to model particle-
eddy interactions. A formulation of this type has been developed® but it is not used here because
it is considerably more elaborate than the present formulation, which is suitable for the flow
regimes considered here.

The evolution of a particle within an ODT simulation can be represented schematically by Eq.

(8), but with different interpretation of symbols than for fluid evolution. In Eq. (8), u is replaced
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by the particle state (X,Y,Z,U,V,W), evaluated at time ¢ on the left-hand side and at time 0 on the
right-hand side. E is now interpreted as a particle-eddy interaction. Description of the model is
now completed by specifying the particle advancement 7 that occurs during the time intervals
between these interactions.

This process consists of time advancement of the particle state (X, Y,Z, U, V,W), evaluated at
time ¢, based on the drag law with fluid velocity (u[Y(¢),7],0,w[Y(¢),f]). In the drag law used for
this advancement, the lateral component of fluid velocity is set equal to zero in order to maintain
consistency with the marker-particle limit. In ODT as implemented here, fluid is advected
laterally only by eddy events. As noted earlier, the ODT v velocity profile is an auxiliary variable
that does not directly govern lateral fluid advection.

One consequence of this formulation is that V' converges toward zero during the T process.
This is an artifact of the separation of the time coordinate into finite intervals with zero lateral
motion, alternating with instantaneous lateral displacements. As a result, the particle V value
upon the initiation of a particle-eddy interaction may be unrealistically low, and tests indicate that
this is indeed typical at moderate 7,". Therefore the initial ¥ value in the time integration
performed to evaluate the particle-eddy interaction is taken to be not the current value, but the
value V"' obtained as the outcome of the most recent eddy interaction involving the given particle.

Through the evaluation of 7, the particle-eddy interaction has been formulated to take account
of trajectory-crossing effects, although these effects are unimportant in the flow regimes
considered here. Trajectory-crossing effects are likewise incorporated into the 7 process.
Explicit treatment of these effects during the 7 process is needed because the particle streamwise
advancement dX = U dt implies trajectory crossing if dX # dx where dx is the streamwise fluid
advancement u(Y,?) dt at the particle location. Particle advancement from ¢ to ¢ + dt subject to
drag influence should reflect both flow temporal evolution from ¢ to ¢ + dt and particle traversal

of a streamwise interval |dX — dx| of the flow. The contribution of streamwise traversal is
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modeled by interpreting the simulated flow evolution on the 1D domain as spatial evolution based
on the relation dx = uy, dt;, where t; denotes the time coordinate of the simulated flow evolution.
Advancement df of the particle time coordinate ¢ then corresponds to flow temporal advancement
by the same increment df plus an additional advancement |dX — dx| / u; intended to represent the

difference between the flow states on lateral lines of sight separated by a streamwise distance |dX
—dx|. This gives

U(£)—u(Y,t)

u,

dt, =1+

; dt (10)

The second term in the square brackets is a contribution to flow temporal evolution that is
adopted here as a model of the difference between flow states at locations separated by a
streamwise distance |dX — dx| at a given instant. This model is subject to verification, but present
results do not test this model because the contribution of the second term is minor for the flow
regimes considered here. Future applications of this formulation to cases involving more
consequential streamwise trajectory-crossing effects will test Eq. (10), which for present purposes

1s an incidental feature of the model.

D. Simulation of deposition in channel flow

Because one-way coupling of particles to the flow is assumed here, the flow simulation is
unaffected by the introduction of particles if # is taken to be the time variable for system
advancement, with Eq. (10) then determining the particle advancement in terms of its time
variable ¢, which is distinct for each particle. On this basis, turbulent channel flow simulation is
implemented as in Schmidt et al."” using the same ODT parameter values (Appendix A) as in that

study. The flow configuration is fully specified by the quantity Re..
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Before particles are introduced, the flow simulation is run until it is statistically steady. At a
given instant, particles are introduced. In some cases, the initial velocity of each particle is
chosen to match the local fluid velocity. The initial lateral distribution of particles is spatially
uniform unless noted otherwise. Specifically, the flow evolves on a uniform mesh, and one
particle is introduced in the center of each mesh cell. The coarsest meshes have order 10° cells;
much finer meshes are also used.

Particles are assumed to be spherical. When a particle reaches a lateral location Y that is
within one radius of a wall, it is deemed to deposit on the wall and disappears from the
simulation. Although particle radii are finite for consistency with comparison cases, they are
small enough in all instances so that finite-size effects (relative to the limit of zero radius with z,"
fixed) are negligible. Particles can overlap and pass through each other, i.e., there is no particle-
particle interaction, so the simulation can be run at arbitrary particle volume fraction and still
represent dilute conditions.

The number of simulated realizations and run time per realization were chosen for various
cases so that the number of steady-state particle depositions per plotted V" value ranged from a
minimum of order 10” at low inertia to order 10° in the vicinity of 7, = 100, then declining to
order 10* at high inertia. In the log-log plots of ¥, versus z," that are shown in Sec. V, the
uncertainty of the results is in all instances smaller than the symbol size.

Not all deposition events are included in the determination of ¥;". Time-resolved deposition
statistics, discussed in Sec. V.C, indicate transient relaxation that is especially significant at large
7,". Therefore ¥, is determined on the basis of depositions during the period of statistically
steady deposition following transient relaxation. The duration of data gathering was
predetermined to keep enough particles in the flow to keep the simulation cost-effective.

The model can accommodate drag laws of various degrees of complexity. Here, particle

motion is governed by
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where p is the fluid viscosity, o is density (subscript indicates particle or fluid), » is particle
radius, and S and S are fluid and particle velocities, respectively. f= 1 corresponds to Stokes drag
and the lower expression for f incorporates an empirical correction.”'

As explained in Sec. IV.C, the model quantities corresponding to the components of s in Eq.
(11) depend on whether the particle is being advanced during particle-eddy interaction or during
the T process, and if the former, on whether it is the first or second drag-law integration during
the interaction. This explains the use of a notation in Egs. (11)-(15) that does not indicate how S
and S are defined in terms of model variables. When the corrected f'is used, Eq. (15) is evaluated
based on S = (u,v,w) and S = (U,V, W) in all instances. Thus, the ODT v velocity contributes to
particle advancement when Eq. (15) is used, but not otherwise (see Sec. IV.C).

During flow evolution, triplet maps are applied to velocity profiles discretized on the mesh, so
the maps are implemented numerically as permutations of the discrete values, thus automatically
satisfying the conservation properties of the model, which is defined mathematically as spatially
continuous. Particle kinematics requires finer spatial resolution near walls than flow evolution.

Therefore it is advantageous to exploit the Lagrangian representation of particles by using the
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continuum definition of the triplet map, Eq. (A3), to evaluate the fluid displacements that

determine fluid velocities seen by particles during particle evolution.

V. RESULTS
A. Parameter assignment

The relation ¢z = fr that defines the eddy lifetime in the particle-eddy interaction submodel
introduces the free parameter f. It is adjusted to give the best agreement between ODT
deposition simulations and a direct numerical simulation (DNS) of channel-flow deposition.”” As
in the DNS, Stokes drag is used in the ODT simulation. Re, = 125 in the DNS, but the ODT
comparison case is Re; = 180 because the high-Re phenomenology implicit in ODT model
assumptions becomes marginally valid at Re. = 180 and problematic at lower Re.."” Re.
sensitivities presented in Sec. V.B indicate that the difference between the DNS and ODT Re;,
values should not noticeably impact the comparison.

The best agreement is obtained for = 0.3, which is used in all subsequent ODT simulations.
For this B value, the comparison to the DNS data is shown in Fig. 1. It should be noted that the
DNS results are subject to considerable statistical uncertainty; in particular, the lowest data point

is based on a single deposition event.

B. Stokes-number dependence of deposition

Although the present focus is deposition at large z,", it is useful to consider smaller z,” values
as well, both for parameter evaluation (as in Sec. V.A) and to provide a general context for
interpretation of model results. Model results for the complete range of z,” values considered

here are shown in Fig. 2 for the same conditions (Stokes drag, Re, = 180, = 0.3) as in Fig. 1.
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Also shown are selected comparison cases, although only qualitative comparison is possible due
to the differences between model assumptions and the physics governing these cases.

At small z,", model results suggest an approach to quadratic dependence of Vi on 7, A
heuristic interpretation of this dependence is presented in Appendix B.

Low-inertia deposition based on Stokes drag is considered here solely for comparison of
model processes and other physical pictures of deposition (see Appendix B). Stokes drag is
inaccurate at low inertia, as indicated by the comparison between low-inertia model results and
DNS results’ for Re; = 125 in Fig. 2. The drag law used in this DNS study includes the
Cunningham slip factor, Brownian motion force, Saffman lift, and wall effects on both drag and
lift, none of which are included in the present model formulation (although they can be
incorporated and will be included in future work).

In this regard, it is fortuitous that the low-inertia measurements® shown in Fig. 2 approach the
quadratic dependence. The experiment, involving droplet deposition in tubes, was subject to the
effects represented in the DNS plus other complications, such as droplet shape distortion and
polydispersity, which can plausibly account for the differences between the DNS and
experimental results.’

Nevertheless, the overall increase of V" with increasing inertia, followed by leveling (not
seen in the DNS data, but an eventual necessity due to the boundedness of Vd+) is well
understood.” The low-inertia trend reflects the role of inertia in enabling particles to cross fluid
streamlines, as is required for deposition when effects of finite particle radius are negligible. The
resulting increase of deposition with increasing inertia saturates when the deposition becomes
nearly ballistic and hence relatively insensitive to further increase of inertia.

In Sec. III, analysis of high-inertia deposition indicates that the ballistic mechanism is a near-

field transient that is followed by relaxation to a less effective mechanism, resulting in (z,") 23

dependence of Vs The high-inertia results in Fig. 2 are consistent with the interpretation that the
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measurements reported in Liu and Agarwal’ correspond to the near-field ballistic regime and
model results correspond to the far-field regime. Additional evidence supporting this
interpretation is examined in Sec. V.C.

Also shown in Fig. 2 are measurements™ that have been interpreted” as a decreasing trend
following an empirical -1/2 power law. It is noted in passing that the predicted -2/3 high-inertia
far-field scaling is an equally good statistical inference, but the aforementioned experimental
complications preclude physical inference based on this observation. A mild decreasing trend can
also be discerned in the measurements of Liu and Agarwal.5 As noted in Sec. 1I1.B, models based
on lateral equilibration of particle motions, or small corrections thereto, reproduce this trend but
not on the basis of a physically sound representation of high-inertia deposition.

The model results in Fig. 2 correspond to a single, moderate value of Re,. Sensitivity to Re; is
shown in Fig. 3. There is noticeable sensitivity at moderate inertia, though not enough either to
alter the physical picture or to raise concern about the applicability of the results for Re, = 180.
The only other apparent sensitivity is at very high inertia. There, the results suggest that Re, =
180 may be below the onset of strong turbulence limiting behavior. The results at higher Re;
show better overall conformance with the -2/3 scaling, but in contrast to the Re, dependence in
Eq. (4), they indicate at most slight Re, dependence at high inertia. As noted in Sec. III, the Re;
dependence in Eq. (4) relies on stronger assumptions than are required to derive the 7,

dependence.

C. High-inertia deposition

Additional results are presented that elucidate the transient features of high-inertia deposition.
In Fig. 4, LES results® for Re. = 180 are plotted along with results shown in Fig. 2. The LES

results exhibit decreasing z,” sensitivity, consistent with measurements, suggesting eventual
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leveling or possible decline. Also shown are model results for cases configured to be
quantitatively comparable to the LES cases.

The drag law used in the LES includes the drag correction shown in Eq. (14), so it is included
in the corresponding model cases. Also, for these comparisons, the particle initial conditions are
the same as in the LES (uniform spatial distribution, particle velocities equal to fluid velocities),
and the model is run for the same duration in wall time as the LES, with all particle depositions
counted in the determination of ¥,;". In the LES and in the corresponding model cases, Re, =
180. (Both the model and LES results indicate insensitivity of deposition to Re. at the z," values
of interest.) This model configuration is also run at z,” = 50 for comparison to the plotted DNS
result at this z," value.

Figure 4 shows that the two changes (the drag law and the time interval of data collection)
relative to the baseline model results account for almost all of the discrepancy between the LES
and baseline model results, and likewise improve the agreement with DNS at z,” = 50. The effect
of the data collection period is further elaborated in Fig. 5, in which the DNS and LES V" values
are compared to model results for time-resolved deposition. Model results indicate that the time
variation of ¥,  during the data-collection period for each comparison case exceeds the
differences between the model results and the comparison LES or DNS results that are shown in
Fig. 4.

Beyond the LES data-collection period, the model results indicate relaxation to statistically
steady deposition with ¥, values slightly higher than the baseline (Stokes-drag) values,
confirming that the departure from baseline results that is evident in Fig. 4 is mostly due to the
difference between near-field transient and far-field statistically steady deposition. Figure 5
indicates the reversal from deposition increasing to deposition decreasing with increasing inertia

as the transient relaxes. This behavior is likewise obtained for higher z," values.
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Recall that statistical steadiness does not necessarily imply equilibration of particle velocities
relative to turbulent motions. In fact, the analysis of Sec. III indicates that such equilibration does
not occur during the deposition process at very large z,".

Further illustrations of the distinction between transient and statistically steady deposition are
provided in Figs. 5 and 6. For a case that is identical to the z,” = 200 model case of Fig. 5 except
that particles initially have zero velocity and are uniformly distributed within a y interval [-0.64,
0.64] relative to the channel mid-plane, Fig. 5 shows an early period of negligible deposition
followed by convergence to the z," = 200 model case with zero initial slip and spatially uniform
initial conditions. This convergence occurs before statistically steady deposition is attained, but
beyond the DNS and LES time intervals. For the zero-initial-velocity case, the deposition
averaged over the time interval of the LES comparison case (z,” = 200) is seen to be much lower
than for the other (zero-initial-slip) cases, emphasizing that this time interval corresponds to a
regime governed primarily by initial conditions.

The convergence of the two model cases is consistent with the predicted (Sec. IIL.B)
insensitivity to initial U values provided that they are not large compared to u’. The two cases
converge when both reach a state that is insensitive to initial conditions.

Figure 6 shows a measure of transient relaxation for the model analog of the DNS case (7, =
50). Ballistic time is the time until deposition based on a ballistic trajectory, i.e., infinite particle
inertia. Inertia can increase or decrease the actual time relative to the ballistic time, but a net
decrease occurs only at very early times when deposition is promoted by ‘favorable’ eddy
motions acting on particles initially near a wall. (To simplify the interpretation of this metric,
particles that deposit on the wall opposite to the wall encountered ballistically are disregarded.)
The relatively slow change of ballistic relative to actual time prior to =150, corresponding to 3
particle time constants, reflects the deposition of particles whose trajectories retain memory of the

initial orientation of the particle velocity vector. The subsequent rapid growth and increased
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scatter of this ratio reflects the transition to particle evolution that is insensitive to initial
conditions. Fig. 5 indicates that this onset coincides with the attainment of statistically steady
deposition for this case. In contrast, the apparent convergence of the two z,” = 200 cases in Fig. 5
prior to their attainment of statistical steadiness suggests that memory loss precedes the
completion of transient relaxation. The overlap of these cases during the late transient is
imperfect and may be fortuitous; they unambiguously coincide only when statistical steadiness is
attained.

Further detailed investigation would be required to form a complete picture of the process of
transition from initial condition sensitivity to insensitivity and the related but distinct process of
transient relaxation. The foregoing observations are suggestive of the rich phenomenology of

non-equilibrium deposition that remains to be explored.

VI. DISCUSSION

Although the influence of non-equilibration of particle-flow interactions on high-inertia
deposition is recognized, experimental methods, models, and numerical simulation tools
heretofore applied to this problem have lacked the capability to probe this regime and discern the
underlying physics. The heuristic scaling analysis presented here indicates power-law decay of
the deposition rate as a function of particle Stokes number z,” for large 7,". A stochastic model
that captures the relevant physics of particle-flow coupling and simulates turbulent channel flow
accurately, yet is economical enough for simulation of deposition at very high z,", is formulated
and applied to channel-flow deposition over a wide range 7,". Based on adjustment of one
parameter governing particle-flow coupling (in addition to prior adjustment of parameters
governing the flow simulation), the model reproduces much of the phenomenology of channel-

flow deposition and elucidates the predicted high-inertia scaling.
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Specifically, is it shown that the predicted scaling is a far-field asymptote preceded by a
transient regime during which deposition is nearly ballistic and therefore insensitive to z,". The
deposition rate during this transient may far exceed the rate during the subsequent statistically
steady deposition, so a large majority of particles may deposit during the transient. Typically, the
particles that survive the transient are those whose initial trajectories are nearly streamwise so that
ballistic motion does not cause early deposition.

The relative contributions of transient and far-field deposition are sensitive to initial
conditions. Particles with negligible initial lateral velocity are not subject to the ballistic
mechanism, so the deposition rate for particles initialized in this matter is lower during the
transient than subsequently.

In published 3D numerical simulations of deposition in the vicinity of the onset of the inertia-
moderated regime, the initial particle slip velocity is set equal to zero, a scenario in which the
transient deposition rate exceeds the far-field rate and the transient deposition exhibits ballistic
scaling (insensitivity to z,”). These simulations are costly, which may be the reason they were
not run long enough to reach the far-field regime beyond the initial transient. In addition to this
consideration, valid interpretation of the results requires examination of the time-resolved
deposition rate, as demonstrated here. The increase of computer capabilities subsequent to the
published 3D simulation studies provides the wherewithal for future 3D numerical exploration of
the time domain as well as a relevant range of 7,” values. The model results presented here may
provide useful guidance for planning these studies and interpreting the results.

Experimental investigation of time-resolved (more precisely, streamwise-resolved because the
flow development in experiments is spatial rather than temporal) high-inertia deposition may be
more problematic. It is difficult to design an experiment in a confined flow (e.g., a pipe) that is
long enough to allow transient relaxation yet is not subject to complications that obscure the

quantitative signatures of convergence to statistically steady deposition. The main implication of
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the present study with regard to measurements is that the well-known inconsistencies among
various reported measurements of high-inertia deposition®** can perhaps be attributed to the
sensitivity to initial conditions during the near-field transient, although other contributing factors
may be equally if not more significant. The present study indicates that collimation of injected
particles would tend to prevent the obscuration of statistically steady deposition by the initial
transient.

It is emphasized here that statistically steady deposition does not imply equilibration of
particle motions relative to turbulent fluid motions. In fact, it is found that the particle motions
are far from equilibrium in the statistically steady deposition regime. It is noted in Sec. III.B that
non-equilibrium presents a challenge to closure-type deposition modeling that has not yet been
satisfactorily addressed. The present results may aid further developments in this regard by
providing guidance concerning the behaviors that should be captured by closure models of
deposition.

Graham addresses initial-condition sensitivity, slow relaxation of transients, non-equilibrium
effects, and implications concerning the design and interpretation of experiments and numerical
simulations, in the context of dispersion in isotropic turbulence.” This context allows more
precise and detailed analysis than is presented in Sec. III and Appendix B. The present
contribution may be viewed as a demonstration, using heuristic analysis and modeling, of the
impact of these considerations in the context of deposition in turbulent channel flow.

Thus, the issues addressed here are broader than this particular application. It is anticipated
that future application of the analytical and numerical modeling approaches introduced here to
other multiphase turbulent flow regimes may provide further useful insight. In this regard,
generalization of the present two-phase-flow formulation of ODT to include more elaborate drag
laws and multiple scalars, allowing inter-phase couplings such as thermophoresis, should be
straightforward. The modeling framework should also accommodate other generalizations such

as two-way coupling.
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APPENDIX A: DETAILS OF THE CHANNEL-FLOW SIMULATION

To supplement the turbulence model description in Sec. IV.B, some details of the channel-

flow formulation are presented here. Motivation is minimal because it is discussed extensively

elsewhere,'¥1%2°

During the T process, the fluid state evolves according to

ouy(y.t) _ 0'u(y.t) 6. dp

ot oy’ p, dx

; (A1)

where (u1,us,u3) corresponds to (u,v,w) in Sec. IV. The boundary conditions are u;(y,f) =0 aty =
0 and 24.

Apart from particle-eddy interaction (Sec. IV.C), each eddy event consists of two
mathematical operations. One is a measure-preserving map representing the fluid displacements.
The other is a modification of the velocity profiles in order to account for energy transfers. The

combined effect of these operations is denoted

ui(y)_)ui(f(y))+ciK(y)' (A2)
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The fluid at location f{y) is moved to location y by the mapping operation, taken to be the
triplet map (see below). This mapping is applied to all fluid properties, including scalars in
variable-property flows (not considered here). The additional term ¢;K(y), which is only applied
to the velocity components, is the ODT analog of pressure-induced energy redistribution among
the velocity components, and also accommodates energy exchange with sources and sinks such as
gravitational potential energy.

The mapping rule y = y’ for a triplet map applied to the interval [y,,y,+/] is

v+ K=») v <y<y,+ Yl
e o+ %1 Y(y-y,) v+ Wl<y<y,+21 A3)

v+ %1+ Vi=v,) v+ i< y<y, 4
y otherwise,

where y'is the post-map y profile. The expressions on the successive lines of Eq. (A3) define the
map images denoted y1’, y»', and y3’, respectively, in Sec. IV.B. f{y") corresponds to the inverse
map y(y') implied by Eq. (A3).

In the energy-redistribution term of Eq. (A2), K(y) denotes y — f(y), the displacement of the
fluid element mapped to y. It is non-zero only within the eddy interval / and it integrates to zero
so that the eddy event does not change the total (y-integrated) momentum of individual velocity
components.

The remaining ingredient in the specification of the eddy event is the expression for ¢;,

¢ = 577[_ u, o +sgn(u, )\/(;j(u”(z + ”2,1<2 + u3,1<2 )} (A4)

where

=17 [u,(FONK () dy. (A5)
This is obtained by requiring that the maximum kinetic energy extractable from the post-map

profiles of the respective velocity components should be the same for all velocity components
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(equalization of ‘available kinetic energy,” the model analog of ‘return to isotropy’). The

available kinetic energy of u, is determined by finding the value of b that minimizes the kinetic

energy of the profile u; + bK(y). The difference between the kinetic energies of the u, and u, +

bK(y) profiles is the available kinetic energy.

Eddy sampling is based on the eddy rate distribution

C C 1\ (w1 R A ST AS
/I(yo’l;t) - = 4V (j LS I e WS I ¥ -Z, (A6)
PPe(y,,l;t) 1 3 v v 1%

where ﬁ(yo,l;t) dy,dldt is the probability of an event with parameters in the ranges

[VoVotdy,] and [[[+dl], respectively, during [¢¢+df]. If the radical in Eq. (A6) has a negative
argument, the event rate is taken to be zero. Physically, this represents viscous suppression of the
eddy, governed by the parameter Z. C (which scales the rate distribution) and Z are two
adjustable parameters of the present ODT formulation. Following Schmidt et al.,' they are
assigned the values C = 12.73 and Z = 98 and the constraint / < / (a third empirical assignment) is
applied.

Equation (A6) embodies the core physical content of ODT. Its derivation and features are
discussed extensively elsewhere,'* so they are not explained here, but some implications of Eq.

(A6) are noted in Appendix B.

APPENDIX B: LOW-INERTIA DEPOSITION

Here, the quadratic dependence of ¥, on z," indicated by model results at small z,” values is
interpreted. For small z,", it is assumed that there is a distance y, << & at which the typical

particle velocity V,, is directed toward the wall and is large enough so that V,,z, > y,. This
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identifies a wall layer [0, y,,] in which particle inertia is sufficient for the particle to deposit before

it comes to rest. (Recall that the lateral fluid velocity is taken to be zero during the 7 process.)

It is assumed that the particle arrives in the wall layer with velocity V,, through displacement

by a particle-eddy interaction. The frequency of such arrivals is estimated.

Equation (A6) implies a lower bound on eddy sizes. The sum of the terms preceding Z in the
radical must exceed Z in order for occurrence of the eddy to be allowable. These terms are
squares of Reynolds numbers based on a measure of velocity fluctuations; in Eq. (AS), note that a
uniform velocity, multiplied by K(y), integrates to zero. For a given level of velocity fluctuations
near the wall, this implies that / cannot be arbitrarily small, reflecting viscous dominance near the

wall (i.e., the absence of eddies of size y, or smaller).

Suppose then that y,, << [,, where /, is the scale of the smallest eddy events in the vicinity of
the wall. This assumption will be verified self-consistently; y,, is found to vanish for vanishing
inertia. An eddy that displaces particles to [0, y,,] corresponds to a triplet-mapped interval whose
lower bound y, is in [0, y,,]. Therefore particles mapped into this interval arrive at a location that
is a distance of at most y,, from y,. The triplet-map definition then implies that the y range of
particles fluxed across y = y,, by the triplet map is of order y,,. This gives a particle flux across y,,
that is of order nwy,,, where n is the particle number density above the wall layer and ay,,) is the
frequency of eddies for which y, < y,. nr does not depend on y, because bulk properties are
applicable beyond the wall layer. This is because particles beyond the wall layer require
additional eddy interactions before they can deposit, so they are deemed to be spatially
homogenized within the bulk flow.

To determine an eddy frequency from the rate distribution given by Eq. (A6), A is multiplied
by an eddy size range and by a y interval corresponding to a range of possible eddy locations. In
this case, the range of locations corresponds to the interval [0, y,] that contains the lower bound

v, of the eddies that contribute to the particle flux across y,. This contributes a factor y,
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multiplying A. A itself is independent of y, because the variables determining A vary only on
scales much larger than y, (provided that y, vanishes with vanishing inertia, as demonstrated

shortly). Therefore ax(y,) ~ y., so the particle flux across y,, scales as ywz.

Vw18 estimated using the relation y,, ~ V,,z,. If V,, depends solely on the imputed fluid velocity
during the most recent particle-eddy interaction, then it scales as y,, so this relation is inconsistent
because 7, is the independent variable and therefore cannot be uniquely determined by the
analysis.

This inconsistency is analogous to the well-known low-inertia inconsistency of the free-flight
model of deposition.”> Namely, low-inertia deposition cannot be explained based on statistical
estimates of fluid motion. This motivates the formulation of models based on idealizations of
individual fluid motions, hence a fluctuation picture.”

The analog of this consideration in ODT is the particle-eddy-interaction history, which affects
particle trajectories because the particle velocity at the inception of each particle-eddy interaction
is taken to be its velocity upon completion of its last prior interaction. In ODT, the analog of
intense downsweeps deemed to transport particles to the immediate vicinity of the wall® is the
occurrence of intense bursts of eddy events.'"* Each triplet map increases velocity gradients,
thereby intensifying local fluctuations that influence the occurrence of subsequent eddies in that
vicinity, as governed by Eq. (A6). This analog of local self-acceleration of the turbulent cascade
(i.e., intermittent bursts) reduces eddy time scales and thus increases their imputed velocities
during particle-eddy interaction. In conjunction with the history effect, the effect of these bursts
on particle motion is analogous to the effect of downsweeps.

Cleaver and Yates used a simple analytical model of downsweeps to estimate deposition
rates.”> There is no obvious method for analyzing burst statistics in ODT other than to collect and

analyze simulation data. Nevertheless, the low-inertia deposition results can be interpreted
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straightforwardly by making a simple assumption and comparing the predicted outcome to the
ODT deposition results.

In the limit of vanishing inertia, it is reasonable to suppose that the non-vanishing history
contribution to V), depends neither on y,, nor z,. Then the relation y,, ~ V), 7, implies y,, ~ 7, in this
limit, so the particle flux across y, scales as rpz. Expressed in wall normalization, this yields
quadratic dependence of V,” on z,’, consistent with the model tendency at low inertia. The
absence of Re sensitivity at low inertia (Fig. 3) indicates that there is no discernible dependence
of V,, on outer variables such as u;.

In the simulations for z," < 50, particle diameter is based on particle density 713 times the
fluid density. To verify that finite particle size does not explain the observed quadratic scaling,
note that particle radius r scales as (z’,f)” ? according to Eq. (13). Assume that deposition occurs
when y,, = r. The particle flux across y,, = r scales as +* and therefore as z,". This yields linear
rather than quadratic dependence of V" on z,’, so it does not explain the computed model
behavior. As z,” is reduced with particle density held fixed, an eventual crossover to this linear
dependence is anticipated.

The model of Cleaver and Yates predicts a different functional dependence at low inertia than
indicated by ODT. Neither model is expected to provide a quantitatively accurate representation
of the flow fluctuations that govern this regime. ODT has the advantage that it can incorporate
more realistic drag laws than considered here, so a quantitative test of its accuracy in comparison

to the low-inertia DNS results in Fig. 2 can be performed in the future.
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LIST OF CAPTIONS
FIG. 1. Dependence of normalized particle deposition rate ¥, on normalized Stokes number z,"
in turbulent channel flow, using Stokes drag. o, ODT for = 0.3, Re.= 180; e, DNS? for Re, =

125.

FIG. 2. (Color online) Comparison of ODT deposition rates, for the same conditions as Fig. 1
data, to simulations and measurements. Stars, ODT; o, DNS;’ + and x, measurements’ for flow
Reynolds numbers 10,000 and 50,000, respectively; ®, measurements.” Line slopes: — — — —, +2;

— - —, 2/3; ——, -1/2.

FIG. 3. (Color online) ODT results of Fig. 2 in the format of that figure, and additional ODT
results for Re; = 640 (0) and 1200 (©). Line slopes: — — — —, +2; — - - —, -2/3. Otherwise, the

same symbol definitions as in Fig. 2.

FIG. 4. (Color online) A portion of the data of Fig. 2, and additional results: Filled stars, transient

ODT; A, LES.** Otherwise, the same symbol definitions as in Fig. 2.

FIG. 5. (Color online) For ODT at Re, = 180 using corrected drag, dependence of deposition rate
on elapsed time in wall units for rp+ =50 (+), 100 (%), and 200 (0). o, same as the ODT z})+ =

200 case but with zero-particle-velocity initial condition and particle initial spatial distribution as

described in the main text; — - —, average for this case over the time interval spanned by the

line. Other lines are also averages over the spanned time interval:

, DNS’ for Tp+ =50; ——

——and — - - —, LES for zf =100 and 200, respectively.®
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FIG. 6. For the ODT case denoted by + in Fig. 5, ratio of actual to ballistic (infinite-inertia)
particle deposition time, conditioned on both depositions occurring on the same wall. This ratio

is shown as a function of actual deposition time in wall units.
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