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The slow relaxation of high-inertia particles to statistical equilibrium with flow fluctuations in 

turbulence is known to affect deposition rates, but satisfactory modeling of this process has 

not yet been achieved.  A simple analysis of the transient response of high-inertia particles 

predicts that the deposition rate in the far field of a turbulent channel flow obeys a -2/3 power-

law dependence on the wall-normalized particle relaxation time τp
+.  The analysis also 

implies a near-field deposition regime that is less sensitive to τp
+, consistent with experiments 

and numerical simulations that indicate weaker dependence.  The gradual onset of the 

asymptotic regime suggests that careful attention to slow transients is important for valid 

interpretation of such results. 

To illustrate these and other features of high-inertia deposition, a computationally efficient 

stochastic model is used to investigate both the near-field and far-field behavior.  The model 

that is employed is a two-phase flow (one-way coupling) extension of One Dimensional 

Turbulence (ODT).  The novel features developed for this application of ODT are described 

in detail.  To broaden the perspective, ODT channel-flow deposition results are presented and 

interpreted for a wide range of τp
+ values spanning several deposition regimes. 
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I.  INTRODUCTION 

 

     Predicting particle deposition from turbulent flows is essential for industrial and 

environmental applications and remains challenging even under idealized assumptions.  The 

focus here is particle deposition from turbulent channel flow based on one-way coupling and 

Stokes drag, in some cases incorporating a particle-Reynolds-number correction.  Gravitational 

effects are omitted.  Although the phenomenology of particle transport and dispersion in 

boundary layers is understood,1 predictive modeling of particle deposition based on the governing 

conservation laws is the focus of ongoing research.2-4  Here it is proposed that deposition of high-

inertia particles is governed by a previously unrecognized scaling, although the physical basis for 

this scaling is implicit in previous work.2,4 

     The regime of interest (high inertia, downstream of near-field transients) is difficult to 

investigate experimentally and is marginally accessible using 3D simulations.  It is studied here in 

two ways, by heuristic scaling analysis and by developing and applying a two-phase 

generalization of a 1D stochastic turbulence simulation model.  The scaling analysis identifies the 

novel deposition regime.  The 1D simulations reproduce the predicted scaling.  To relate this 

observation to previous work, the model is applied to a wide range of conditions (moderate as 

well as high particle inertia, near-field as well as far-field regimes, different Re values) and is 

compared to pertinent experimental and 3D simulation results. 

     Pertinent phenomenology is summarized in Sec. II.  The new high-inertia scaling is introduced 

in Sec.  III.  The 1D numerical model is formulated in Sec. IV.  Results obtained using the 

numerical model are presented and discussed in Secs. V and VI. 
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II. DEPOSITION REGIMES 

 

     The rate of particle deposition from turbulent boundary layers is generally characterized by a 

wall-normalized deposition velocity Vd
+, whose dependence on the particle Stokes number τp

+, 

expressed in wall units, is the main property of interest.  The deposition velocity Vd is obtained by 

dividing particle deposition flux by bulk-averaged particle concentration.  Then Vd
+ = Vd/uτ, 

where uτ is the friction velocity, and τp
+ = τp

 uτ
2/ν, where τp is the particle aerodynamic time 

constant and ν is the kinematic viscosity. 

     Measurements of the dependence of Vd
+ on τp

+ exhibit three distinct regimes termed the 

diffusional-deposition, diffusional-impaction, and inertia-moderated regimes, with transitions at 

τp
+ = 0.3 and 30 respectively.  The present focus is the high-inertia regime corresponding to τp

+ 

far greater than the latter transition, although the diffusional-impaction regime is also considered 

in order to support the conclusions drawn about high-inertia behavior. 

     In the inertia-moderated regime, measurements up to τp
+ of order 103 suggest a barely 

perceptible (relative to experimental uncertainty) decline of Vd
+ with increasing τp

+.2,5  The 

behavior in this τp
+ range (and at small τp

+) is reproduced by Eulerian closure-type models.2,4  It is 

recognized that this decline is due to the decreasing effectiveness of turbulence in inducing lateral 

deflections of particles as particle inertia increases. 

     Large-eddy simulation (LES) of pipe-flow deposition extending to higher τp
+ values (up to 

104) suggests6 an acceleration of the declining trend for τp
+ > 103.  There does not appear to be 

subsequent discussion of this observation in the literature, leaving open the question of whether 

the aforementioned models capture this effect. 

     A physical basis for accelerating decline is identified here using a straightforward scaling 

analysis.  A computational model is then used to demonstrate the predicted behavior.  It is 

inferred that this ostensibly large-τp
+ regime has significant implications with regard to the low-
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τp
+ end of the inertia-moderated deposition regime.  The reason is that the onset of the asymptotic 

behavior occurs only after a long transient relaxation period.  Previously reported weak τp
+ 

dependence seen at large τp
+ 2,7,8 might be partially the result of observation during the initial 

transient rather than the ultimate statistically steady evolution.  This suggests that further 

computational and experimental study might be needed in order to distinguish asymptotic 

behavior from initial transients.  Previous analysis by Graham9 has analogous implications, albeit 

without addressing the particular regimes and evolution mechanisms considered here. 

 

III. ANALYSIS OF HIGH-INERTIA DEPOSITION 

A. Scaling analysis 

     To derive the parameter dependencies of Vd
+ in the limit of high particle inertia, the turbulent 

channel flow is characterized by three velocity scales: the bulk velocity ub, a turbulent fluctuation 

amplitude u′, and the friction velocity uτ.  The other governing quantities are the channel half-

height h, the particle response time τp, and the kinematic viscosity ν.  h/ν times each of the 

respective velocity scales defines bulk, turbulent, and friction Reynolds numbers Reb, Re′, and 

Reτ. 

     The three velocity scales parameterize the lateral (y) variation of flow structure.  In terms of 

this parameterization, it will be seen that this lateral structure affects Vd
+ through parameters that 

depend only on fluid flow, and that the dependence of Vd
+ on τp is insensitive to these details, and 

in particular is valid for both channel and pipe flow. 

     The fluid flow is assumed to be statistically steady.  Various particle initial conditions are 

considered, but the results for these cases differ only in minor details, so the case considered first 

is the one that is simplest to analyze.  Namely, it is assumed that particles traveling at streamwise 

velocity ub are introduced, with zero lateral or spanwise velocity, at the flow mid-plane.  

Accordingly, while a particle is in the core-flow region its streamwise velocity is of order ub.  
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High turbulence intensity (based on any of the defined Reynolds numbers) is assumed, so the 

near-wall region where the mean fluid velocity 〈u(y)〉 obeys 〈u(y)〉 << h is small compared to h.  

For simplicity, Stokes drag is assumed with no particle-Reynolds-number correction. 

     For large τp, particle acceleration by individual turbulent eddies is slight, so the streamwise 

particle slip SU = U - u is typically of order u′, where u′ is taken to be the large-eddy velocity.  

The lateral slip SV = V - v is of the same order.  Spanwise slip is immaterial under the stated 

assumptions and therefore is not considered. 

     The turbulence integral scale is of order h, so the large-eddy time scale is T ~ h/u′.  Because SU 

is of order u′, the particle eddy-crossing time is also of order T.  Based on Stokes drag, the 

particle velocity change in a given direction while crossing an eddy scales as ST/τp, where S is the 

corresponding slip component, SU or SV, both scaling as u′.  The particle velocity change caused 

by a large-eddy traversal is then ΔU ~ ΔV ~  h/τp. 

     During a time interval t >> T, a particle is subject to order t/T independent velocity increments 

due to these eddy effects.  This corresponds to diffusive growth in time of the velocity scale V 

(and analogously for U, but consideration of U is set aside temporarily), obeying the scaling V(t) 

~ ΔV (t/T)1/2 ~ (h/τp) (t/T)1/2.  This can be expressed as dV2/dt ~ D, where the velocity diffusion 

coefficient D obeys D ~ u′ 2T/τp
2.  This is valid if t is short compared to the time required for V(t) 

to reach statistical equilibrium with respect to the velocity impulses ΔV that drive the growth of 

V.  This is verified in Sec. III.B for the t range of interest. 

     The deposition time td is estimated to be the time t at which .2/')'(
0

hdttV
t

=∫   This gives 

(td
3/T)1/2 ~ τp and thus  

td ~ (Tτp
2) 1/3.      (1) 

Assuming that the deposition velocity Vd scales as h/td (which is justified in Sec. III.B), it then 

obeys 
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Vd ~ (h/T)(T/τp)2/3.     (2) 

To express this relation in wall units, it is divided by uτ, giving Vd
+ = (h/uτ)(Ttτ

2) -1/3 (τp
+)-2/3, 

where tτ = ν/uτ
2 and τp

+ = τp /tτ.  This identifies the τp
+ dependence of Vd

+.  Substitution of T ~ 

h/u′ and rearrangement gives  

Vd
+ ~ (Reτ Re′)1/3 (τp

+)-2/3.    (3) 

     The relation u′ ~ uτ would reduce this to Vd
+ = Reτ 2/3(τp

+)-2/3, but this is not assumed due to 

experimental10 and computational11 evidence of deviations of u′ from wall scaling.  Wall scaling 

of u′ can nevertheless be viewed as a bounding case, another obvious bound being u′ ~ ub.  The 

latter scaling implies Vd
+ = (Reτ Reb)1/3(τp

+)-2/3.  This can be simplified using the Blasius 

resistance formula, long regarded as empirical but recently derived from a more fundamental 

perspective.12  The Blasius formula, f ~ Reb
-1/4, where the friction factor f scales as (Reτ/Reb) 2, 

implies Reb ~Reτ
8/7 and thus Vd

+ = Reτ 5/7(τp
+)-2/3.  The situation can be summarized by the relation  

Vd
+ ~ Reτ p (τp

+)-2/3,     (4) 

where 2/3 < p < 5/7 and therefore p ≈ 0.7. 

 

B.  Initial conditions, transients, and equilibration 

 

     Based on Eq. (1), td/τp ~ (T/τp)1/3, which is much less than unity in the limit of large τp.  The 

time required for V to transition from transient growth to equilibration is much longer than this.  

This transition occurs when V2 reaches its equilibrium value determined by  dV2/dt ~ D - V2/τp = 

0.  Here, the sink term V2/τp omitted from the derivation of Eq. (2) is included.  This gives the 

familiar3 equilibrium result 

V2 ~ D τp ~ u′2 T/τp.     (5) 

Until the onset of equilibration, V2(t) ~ Dt, showing that the elapsed time until equilibration is τp, 

which is much larger than the estimated deposition time td.  The particle lateral velocity at time td 
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obeys V(td) ~ (h/T) (T/τp) (τp/T)1/3 ~ u′ (T/τp) 2/3, which is smaller than the equilibrium value by the 

factor (T/τp)1/6.  These estimates indicate that the transient analysis is self-consistent. 

     Analogous considerations indicate that, if mean streamwise slip is negligible, then 

perturbations of the particle streamwise velocity U are of likewise order u′ (T/τp)2/3 and therefore 

have negligible effect on particle streamwise displacement during the time interval td.  If the 

streamwise slip is nonzero initially, e.g., for the case of particles that are initially motionless 

(U(0) = V(0) = 0), then the particle U velocity relaxes to the mean flow velocity (order ub) during 

a time interval τp.  Because td <<τp, this indicates that the particle U velocity remains much 

smaller than ub throughout the deposition process. 

     This raises the question of the dependence of the scaling of Vd on initial conditions.  First, the 

dependence of Vd on U is considered, retaining the V initial condition V(0) = 0.  The assumption 

Vd ~ h/td is examined in this regard.  Namely, the Lagrangian perspective of the foregoing 

analysis is compared to the Eulerian definition of Vd as the particle deposition flux F divided by 

the particle number density n.  Consider particles in a flow moving downstream at speed U and 

depositing on channel walls at a rate that scales as n/td.  Particles contained in a notional control 

volume A Δx moving downstream at speed U, where A is the channel cross-sectional area and Δx 

is a given streamwise increment, deposit over a streamwise interval of order X = Utd, here 

assuming Δx << X.  Therefore, the number of particles depositing from this control volume per 

unit surface area of the channel is of order n A Δx/(σ X), where sigma is the channel surface area 

per unit streamwise distance.  During time td, the number of such control volumes traversing the 

streamwise interval X is X/Δx, so the total number of particles deposited per unit surface area 

during time td is of order nA/σ.  Dividing by td and n gives Vd = F/n ~ A/(σ td).  In a channel, 

A/σ is the half-height h, yielding the assumed scaling Vd ~ h/td. 
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     The analysis predicated on this scaling involves U only in the determination of the particle 

eddy-crossing time h/SU, where SU ~ u′ provided that U is no larger than order u′.  If instead U >> 

u′, then h/U is substituted for T throughout the analysis, corresponding the multiplication of the 

right-hand side of Eq. (4) by (UT/h) 1/3 ~ (U/u′)1/3.  Because the change of U is slight during the 

time interval td, U(0) can be substituted for U in this term.  The situation is summarized by the 

relation 

Vd
+ ~ max(1,[U(0)/u′]1/3) Reτ p(τp

+)-2/3.    (6) 

 

     Next, nonzero V(0) is considered.  Owing to the smallness of the deviations from ballistic 

particle trajectories for large τp/T, the deposition time td for V(0) ≠ 0 is h/V(0) unless V(0) is small 

enough so that h/V(0) is larger than td given by Eq. (1).  Thus, Eq. (1) is an upper bound on the 

deposition time, which can be much smaller for nonzero V(0). 

     More generally, assume a distribution of particle V(0) values.  In general, h/V(0) will be 

smaller than td for most particles, so most of the deposition will be ballistic in character and more 

rapid than predicted by Eq. (6).  However, the (generally small) fraction of particles for which 

V(0) < h/td deposit by the non-equilibrium mechanism analyzed here, and accordingly their 

deposition rate is governed by Eq. (6). 

     The small fraction of particles obeying Eq. (6) in this scenario indicates that for large τp/T, 

deposition is predominantly ballistic and thus is governed primarily by initial conditions.  This 

indicates that high-inertia deposition for the conditions considered (Stokes drag, zero gravity), is 

primarily a transient, case-specific process, and that phenomenology of a more general nature 

arises only as a far-field (downstream) asymptote.  Implications with regard to the interpretation 

of measurements and simulation results are considered in Sec. V.C. 

     It is assumed in the analysis that particles are introduced at the channel mid-plane, but the far-

field analysis is unchanged if a more general initial spatial distribution is assumed.  Only the 
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small fraction of particles introduced at a distance from the wall that is much less than h will 

deposit more rapidly than the analysis predicts.  The near-field transient deposition due to 

nonzero V(0) may be strongly affected by the initial spatial distribution.  This dependence is 

likewise considered in Sec. V.C. 

     In Eq. (6), the τp
+ term follows from the diffusive scaling governing the transient evolution of 

the magnitude of V(t).  In contrast, the Reτ term arises from an idealized picture of turbulent 

channel flow structure.  For example, u′ is taken to be a characteristic velocity scale of the entire 

flow, omitting the consideration that turbulent velocity fluctuations are concentrated primarily in 

the vicinity of the wall, peaking sharply before falling to zero at the wall.  Therefore the Reτ 

dependence is less firmly established than the τp
+ dependence. 

     The analysis highlights the non-equilibrium character of particle response to turbulent 

fluctuations in the regime of interest.  Nevertheless, the equilibrium condition, Eq. (5), is adopted 

in closure-type modeling of particle deposition in turbulent channel flow.2,3  The deficiency of 

this assumption is recognized and a compensatory modification has been attempted, but the 

closure framework does not readily accommodate a fundamentally sound representation of non-

equilibrium.3,4  Reflecting this, closure modeling predicts less rapid decrease of Vd
+ with 

increasing τp
+ than is indicated by Eq. (6).  The milder dependence is found to be consistent with 

experimental and numerical simulation results.  However, these results reflect case-specific near-

field transient phenomena rather than the far-field asymptote, as shown in Sec. V.C.  Therefore, 

the consistency of these results with closure model predictions is not as clear a validation of 

model assumptions as it may appear. 
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IV. STOCHASTIC SIMULATION OF INERTIAL PARTICLES IN TURBULENT 

FLOW 

A. Motivation 

     The analysis of Sec. III suggests that high-inertia deposition is challenging to investigate both 

experimentally and computationally.  The slow relaxation of transients requires a large 

experimental apparatus in order to observe the far-field asymptote, as emphasized by Graham.9  

Likewise, it requires large spatial domains in numerical simulations (or long run times, in the 

more usual temporally developing configuration).  The non-equilibrium character of high-inertia 

deposition is not readily accommodated in closure models.  Given these difficulties, the question 

arises as to whether there is any practical way to study this regime apart from the heuristic scaling 

analysis of Sec. III. 

     One of the authors has developed a cost-effective method for simulating turbulence and its 

coupling to other processes using a modeling strategy based on reduction of spatial 

dimensionality.  A 1D spatial representation is employed.  It has been shown that a stochastic 

simulation model formulated in 1D provides a representation of turbulence phenomenology that 

is useful in many respects.13,14 

     This approach, denoted One-Dimensional Turbulence (ODT), is generalized here for 

simulation of inertial particles in turbulence.  It is shown that this formulation not only captures 

the relevant physics of turbulent particle deposition, but also provides both the fidelity and 

efficiency needed to investigate high-inertia deposition as well as other deposition regimes.  

Computed results support the analysis of Sec. III and its implications and provide other relevant 

insights. 
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B. Turbulence model 

 

     The ODT formulation previously used to simulate turbulent channel flow15 is adopted here.  

Because it is described and validated in the cited reference and other published work,14 the 

description here is brief and is specific to the present application. 

     It is instructive to introduce for comparison a simple boundary-layer representation of fully 

developed channel flow based on eddy-viscosity modeling, 

dx
dp

y
u

y
u

yt
u

e ρ
νν 1

2

2

−
∂
∂

+⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂

∂
∂

=
∂
∂    (7) 

where t is time (denoted tf in Sec. IV.C to distinguish it from a particle time coordinate), y is the 

lateral coordinate, ν is kinematic viscosity, νe is the modeled eddy viscosity, ρ is density, and 

dp/dx is an imposed mean pressure gradient in the streamwise direction.  νe is typically assumed 

to be a time-invariant function of y, yielding a steady state formulation in which the time 

derivative vanishes. 

     Suppose instead that νe is time varying.  This allows the possibility of unsteady evolution 

governed by Eq. (7) rather than the usual steady-state formulation in which u(y) represents the 

mean velocity profile.  This generalization would require modeling of νe(y,t).  One way to obtain 

a closed formulation would be to express νe as some prescribed function of y and u(y′,t).  Here y′ 

designates the set of all lateral locations within the channel, 0 < y′ < 2h, corresponding to a 

nonlocal closure of νe.  This reduces to a more familiar local closure if the argument y′ is 

restricted to the value y. 

     Consideration of the advantages and limitations of such a formulation serves to motivate the 

present approach.  Equation (7) with the suggested closure is reminiscent of unsteady RANS and 
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in this sense is a qualitative step beyond steady-state modeling.  For given y, dependence of νe on 

the flow state at all lateral offsets l = y′ - y offers the possibility of dependence of turbulent 

transport on a range of structure scales l at each y rather than a unique functional dependence l(y), 

as is assumed in mixing-length formulations. 

     Practical realization of these conceptual advantages would require a closure of the stated form 

that drives sustained unsteadiness of Eq. (7) rather than inducing relaxation to steady state.  

Moreover, such unsteady feedback through the closure formulation must be demonstrably 

physical in its construction and outcome.  These requirements are difficult to satisfy because -νe 

represents an ensemble averaged flux of u divided by an ensemble average of du/dy, even though 

the evolution equation is nominally unsteady.  Models of advective transport that scale diffusively 

represents the cumulative effect of numerous statistically distinct (if not fully independent) 

advection motions, and hence do not capture unsteadiness at time scales too short for diffusive 

scaling to apply locally. 

     Accordingly, individual advective motions over a distance l are better represented as fluid 

displacements than as gradient-driven fluxes.  Indeed, fluid displacement is the primitive element 

of Prandtl’s mixing-length phenomenology, although through averaging it ultimately leads to 

diffusive representation of turbulent transport. 

     In 2D or 3D, displacement corresponds to time integration of the advection term u · ∇( ).  

Except for trivial rigid-body displacement, there is no continuous-in-time 1D representation of 

advection that satisfies basic requirements (conservation laws of constant-property flow, no 

creation of spontaneous singularities).  Accordingly, advection is represented in 1D as a time 

sequence of instantaneous displacements, each formulated to represent the outcome of a notional 

turbulent eddy motion.  Formally, the outcome of simulated evolution from time 0 to time t can 

then be expressed as  

u(y,t) = T[tn,t] E(pn) · · · T[ti,ti+1] E(pi) T[ti-1,ti] · · ·E(p2) T[t1,t2] E(p1) T[0,t1] u(y,0), (8) 
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where capital letters represent operators.  T[ti-1,ti] represents time advancement of the operand 

u(y,ti-1) from ti-1 to ti, governed by Eq. (7) with the eddy-viscosity term omitted.  E(pi) is an ‘eddy 

event,’ an instantaneous transformation of the operand u(y,ti) representing a turbulent eddy 

motion.  pi represents the set (vector) of randomly sampled quantities determining the exact form 

of the ith transformation. n is the number of eddy events during [0,t], ti is the time of occurrence 

of the ith event for i > 0, and t0 = 0.  The epochs ti, the quantities pi, and n are random variables 

evaluated during each simulated realization by a sampling procedure.  The sampling rules 

embody the principal physical content of the model. 

     In higher dimensions, numerical advancement of the exact governing equations can likewise 

be represented by Eq. (8), but with different interpretations.  u is replaced by the vector velocity 

field u and its spatial argument is a point in d-dimensional space.  T now represents evolution by 

the exact equations, but with the advection operator omitted, and E represents advancement by 

the advection operator.  ti - ti-1 is now the advancement time step (typically uniform).  Equation 

(8) then encodes a conventional split-operator advancement scheme, involving no random 

sampling and therefore giving a unique final state for a given initial state.  If the advection step is 

Lagrangian (perhaps followed by remapping to an Eulerian mesh), then it corresponds to a 

collection of fluid displacements, analogous to the meaning of the operator E in 1D. 

     In ODT, the eddy event represents the outcome of the physical process of eddy turnover, so 

epochs ti are sampled based on physical modeling considerations rather than numerical 

considerations.  (In numerical implementation of ODT, the operation T[ti-1,ti] is implemented by 

choosing the numerically appropriate time step for advancement from ti-1 to ti.) 

     In Appendix A, details of the specification of an eddy event and the procedures for sampling 

event epochs and parameters are presented.  Features that are relevant to the incorporation of 

inertial particles are as follows.  First, the eddy parameters p are a lower boundary yo and a size l, 

determining the upper boundary yo+l.  Second, event occurrences are random samples from an 
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event rate distribution that assigns a time scale ( )tlyo ;,τ , analogous to an eddy turnover time, to 

each possible event based on the flow state at time t.  Third, the operation E specifies 

displacements y  {y1′, y2′, y3′} for y within the interval [yo,yo+l], where each of the three images 

yj′ is within that interval.  In fact, the images occupy successive thirds of the interval, thus filling 

the interval.  Each image is a threefold compression of the original interval, except that the central 

(second) image is inverted (spatially flipped).  There is no displacement at y values outside the 

interval [yo,yo+l].  Graphical illustrations and extensive discussions of this ‘triplet-map’ operation 

are presented elsewhere.13,16  (Also see Appendix A.) 

     Two other pertinent features of the ODT formulation used here are noted.  First, it evolves the 

y profiles of all three velocity components u, v, and w, although a version that evolves only the u 

profile would suffice for present purposes.  (This choice is motivated by prior validation of the 

three-component version for channel-flow modeling.)  For v and w, the time-advancement 

equation (T process; see Appendix A for details) is the same as for u except that the pressure term 

is omitted.  Second, different ODT formulations involve different numbers of free parameters; the 

version used here involves three.  Here, these parameters are fixed at previously determined 

values,15 as explained in Appendix A.  Incorporation of inertial particles (Sec. IV.C) introduces 

one additional adjustable parameter. 

 

C. Inertial particle submodel 

 

     Because the turbulent flow model evolves all three velocity components, an obvious way to 

incorporate inertial particles is to evolve particle velocities U, V, and W by substituting the ODT-

specified fluid velocities u(Y,t), v(Y,t), and w(Y,t), into the particle drag law, where Y is the 

particle location at time t.  Time integration of U, V, and W advances the particle location (X,Y,Z).  

Because the particle is confined to the ODT domain, the ODT fluid state is deemed to represent 
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the lateral profiles of the fluid velocity components at the (X,Z) location at which the particle 

currently resides.  Flow time advancement on the ODT domain thus represents the spatial as well 

as temporal variability of the fluid velocity seen by the particle.  This implies a relationship 

between particle and flow advancement that is explained shortly. 

     This approach has been implemented and results have been compared to measurements and 

simulations of various particle statistics in turbulent channel flow.17  Although this approach is 

found to be successful in some respects, it is not pursued here because it violates a key property 

of particle advection; namely, that in the zero-inertia (marker particle) limit, a particle should 

remain co-located with the fluid element that contains it initially. 

     Ostensibly, a marker particle advected by a specified fluid velocity satisfies this requirement, 

but in ODT the evolving velocity component v does not advect fluid.  In fact, as noted at the end 

of Sec. IV.B, for channel-flow simulation it suffices to evolve only the streamwise component u.  

This reflects the fact that eddy events rather than the usual advective operator are the mechanism 

of fluid advection along the ODT domain. 

     For consistency with the marker particle limit, the particle-fluid coupling must therefore allow 

the instantaneous displacement of particles by eddy events.  Because this coupling is based on a 

drag law that must be time integrated to obtain its effect on particle displacement, it is evident 

that some method must be devised to account for the finite time duration of turbulent motions. 

     The needed ingredients are available within ODT.  The specific goal is to interpret a fluid 

displacement y  yj′ as fluid motion at some specified velocity that is constant (for simplicity) 

for some specified time interval that is here termed the eddy lifetime.  In Sec. IV.B it is noted that 

eddy event selection involves the specification of an eddy time scale τ.  Because this is the only 

time scale available in ODT to represent eddy properties, the eddy lifetime tE is modeled as βτ, 

where β is an adjustable parameter, the only new parameter required in the ODT particle 
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representation. To obtain the specified lateral displacement from motion at constant lateral 

velocity during the time interval tE, the velocity must then be  

vE = (yj′ - y) /  tE.     (9) 

     It is now straightforward in principle to specify the particle-eddy interaction, although some 

details require care.  The present approach has much in common with particle-eddy interaction 

sub-models that have been used in RANS formulations,18 although the implementation is different 

in several respects.  To keep the development general, it is not specialized to a particular form of 

the drag law until Sec. IV.D. 

     Assume that a particle is located at (X,Y,Z) and has velocity components (U,V,W) at the time 

t= ti when the ith eddy event occurs and assume that y = Y is within the eddy interval [yo, yo+l].  

Then the particle location Y is mapped by the eddy event to each of three locations yj′.  Unlike a 

fluid element, which is divisible, a particle can be displaced to only one location.  Therefore one 

of the locations yj′ is selected by randomly sampling one of the three, each with probability 1/3.  

The selected location is denoted y′, here dropping the subscript.  Each sampling is independent 

for each particle within the eddy event and for each eddy event encountered by a particle during 

the simulation.  It has been shown that this procedure yields a physically sound representation of 

the evolution of a particle ensemble in turbulence.19 

     Note that while y′ is the location to which fluid at Y is mapped, the particle is not necessarily 

mapped to y′ unless it is a marker particle.  The procedure determining the final location Y′, as 

well as the other descriptors of the particle state at the conclusion of the particle-eddy interaction, 

is now considered. 

    During the particle-eddy interaction, whose time duration is denoted tI, the lateral velocity of 

the fluid initially at y = Y is modeled according to Eq. (9).  It is not strictly accurate to infer that 

the particle initially at y = Y is subject to this fluid velocity throughout the interaction period 

because the trajectory of an inertial particle will deviate from the trajectory of the fluid initially at 
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Y.  Nevertheless, the modeling assumption is adopted that vE is the fluid velocity seen by the 

particle throughout the interaction period.  Alternate assumptions introduce additional complexity 

with no clear gain in physical fidelity. 

     The duration of the interaction is denoted tI rather than tE because the particle may cease to 

interact with the eddy before the eddy reaches the end of its life.  This cessation is due to the 

emergence of the particle from the spatial region occupied by the eddy.  In ODT, the y interval 

occupied by the eddy, denoted [yo,yo+l], is specified by the eddy sampling procedure.  The 

parameter l can be used to infer the streamwise and spanwise as well as lateral extent of the eddy, 

and the streamwise velocity profile u within the eddy interval at the time of eddy occurrence can 

be used to infer its rate of streamwise displacement.  These geometrical properties, in conjunction 

with the particle trajectory solution described shortly, are used to determine the first occurrence, 

if any, of particle emergence from the spatial region occupied by the eddy.  If this occurs before 

elapsed time tE, then tI is set equal to the time of this first occurrence, otherwise tI is set equal to 

tE.  This feature of the model is important when particle-eddy interaction is dominated by 

trajectory-crossing effects, as in the case of high-inertia particles subject to gravitation.  However, 

these effects are not important for the cases considered here, so details of the determination of tI , 

reported elsewhere,20 are not repeated here. 

     Based on the foregoing considerations, the particle drag law is time integrated, based on the 

fluid state (u(Y,ti),vE,w(Y,ti)), to advance the particle from its initial state (X,Y,Z,U,V,W) to its 

state (X′,Y′,Z′,U′,V′,W′) at time tI , where this advancement contributes to the determination of tI  

as noted.  Note that the streamwise and spanwise, as well as lateral, fluid velocity components are 

evaluated at the initial particle location, again because there is no straightforward alternate 

assumption. 

     Although this advancement specifies new values of all particle coordinates and velocity 

components, only the lateral particle location and velocity are modified by the particle-eddy 
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interaction.  This is because evolution of the other coordinates and components are adequately 

represented by particle advancement during the time intervals between eddy events.  (Recall that 

the special treatment of lateral advancement is for the specific purpose of assuring that eddy 

events result in appropriate marker-particle behavior in the zero-inertia limit.)  Thus, the updated 

state variables (X′,Z′,U′,W′) obtained from drag-law integration play no role in subsequent 

advancement.  These variables are time advanced during particle-eddy interaction for the sole 

purpose of evaluating tI by following the particle trajectory to determine whether emergence from 

the eddy occurs during the eddy lifetime, and if so when. 

     The nominal particle state at the end of particle-eddy interaction is thus (X,Y′,Z,U,V′,W).  The 

primed variables reflect advancement for a time interval tI starting from the state at time ti, but the 

unprimed variables correspond to the state at ti. 

     ODT eddies are instantaneous, so the state immediately after an eddy corresponds to time ti.  

Time advancement subsequent to particle-eddy interaction (particle T process) thus begins at time 

ti, implying a period of advancement in physical time that overlaps the time advancement 

implemented during particle-eddy interaction. 

     The duplication of particle advancement implied by this overlap is corrected as follows.  

Particle-eddy interaction as described thus far determines new values (Y′,V′) of the particle lateral 

location and velocity by integrating the drag law for a time interval tI starting from the initial state 

(Y,V) and holding the fluid velocity fixed at (u(Y,ti),vE,w(Y,ti)).  A second drag-law integration is 

introduced, over the same time interval and starting from the same initial state, except that the 

fluid velocity is held fixed at (u(Y,ti),0,w(Y,ti)).  The values of the particle lateral variables upon 

completion of this integration are denoted (Y0′,V0′).  The physical state of the particle upon 

completion of particle-eddy interaction is then taken to be (X,Y′′,Z,U,V′′,W), where Y′′ =  Y + Y′ - 

Y0′ and V′′ = V + V′ - V0′. 
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     The rationale for this procedure is illustrated by considering the limiting cases of infinite-

inertia and zero-inertia particles.  For infinite particle inertia, the value of vE has no effect on 

particle advancement, so Y′ = Y0′, giving Y′′ =  Y.  Likewise, V′′ = V.  Thus, the eddy interaction 

has no effect on the particle and it continues on its ballistic (linear) trajectory during subsequent 

advancement.  (Particle evolution between eddy interactions is explained shortly.)  This is the 

physically correct result.  For zero particle inertia, Y′ = y′, Y0′ = Y, and thus Y′′ = y′.  Likewise, V′ 

= vE, V0′ = 0, so V′′ = vE.  The result for Y′′ is the physically correct marker-particle behavior.  

The result for V′′ is immaterial because the marker particle immediately relaxes to zero velocity. 

     It is seen that the subtraction procedure is suitable for the limiting cases and can be expected to 

provide a reasonable interpolation between these cases for finite-inertia particles.  Representative 

case studies verify this.20  Conceptually, the procedure evaluates the net effect of the interaction 

on the particle relative to particle evolution if the eddy had not occurred.  By defining the 

particle-eddy interaction based on this difference, it is consistent to implement the outcome of the 

interaction instantaneously at time ti despite the fact that it is computed by means of time 

integration from ti to ti+ tI. 

     For some configurations, e.g., particles moving rapidly in the ODT domain direction y, the 

instantaneous nature of eddy events might cause particles to encounter eddy events much less 

often than they would encounter physical eddies of finite time duration.  Accurate modeling of 

such configurations requires eddy events as perceived by particles to have finite durations in the 

physical time coordinate as well as in the internal time coordinate introduced to model particle-

eddy interactions.  A formulation of this type has been developed20 but it is not used here because 

it is considerably more elaborate than the present formulation, which is suitable for the flow 

regimes considered here. 

   The evolution of a particle within an ODT simulation can be represented schematically by Eq. 

(8), but with different interpretation of symbols than for fluid evolution.  In Eq. (8), u is replaced 
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by the particle state (X,Y,Z,U,V,W), evaluated at time t on the left-hand side and at time 0 on the 

right-hand side.  E is now interpreted as a particle-eddy interaction.  Description of the model is 

now completed by specifying the particle advancement T that occurs during the time intervals 

between these interactions. 

     This process consists of time advancement of the particle state (X,Y,Z,U,V,W), evaluated at 

time t, based on the drag law with fluid velocity (u[Y(t),t],0,w[Y(t),t]).  In the drag law used for 

this advancement, the lateral component of fluid velocity is set equal to zero in order to maintain 

consistency with the marker-particle limit.  In ODT as implemented here, fluid is advected 

laterally only by eddy events.  As noted earlier, the ODT v velocity profile is an auxiliary variable 

that does not directly govern lateral fluid advection. 

     One consequence of this formulation is that V converges toward zero during the T process. 

This is an artifact of the separation of the time coordinate into finite intervals with zero lateral 

motion, alternating with instantaneous lateral displacements.  As a result, the particle V value 

upon the initiation of a particle-eddy interaction may be unrealistically low, and tests indicate that 

this is indeed typical at moderate τp
+.  Therefore the initial V value in the time integration 

performed to evaluate the particle-eddy interaction is taken to be not the current value, but the 

value V′′ obtained as the outcome of the most recent eddy interaction involving the given particle. 

     Through the evaluation of tI, the particle-eddy interaction has been formulated to take account 

of trajectory-crossing effects, although these effects are unimportant in the flow regimes 

considered here.  Trajectory-crossing effects are likewise incorporated into the T process.  

Explicit treatment of these effects during the T process is needed because the particle streamwise 

advancement dX = U dt implies trajectory crossing if dX ≠ dx where dx is the streamwise fluid 

advancement u(Y,t) dt at the particle location.  Particle advancement from t to t + dt subject to 

drag influence should reflect both flow temporal evolution from t to t + dt and particle traversal 

of a streamwise interval |dX – dx| of the flow.  The contribution of streamwise traversal is 
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modeled by interpreting the simulated flow evolution on the 1D domain as spatial evolution based 

on the relation dx = ub dtf, where tf denotes the time coordinate of the simulated flow evolution.  

Advancement dt of the particle time coordinate t then corresponds to flow temporal advancement 

by the same increment dt plus an additional advancement |dX – dx| / ub intended to represent the 

difference between the flow states on lateral lines of sight separated by a streamwise distance |dX 

– dx|.  This gives  

( ) ( )
dt
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⎡ −
+=
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The second term in the square brackets is a contribution to flow temporal evolution that is 

adopted here as a model of the difference between flow states at locations separated by a 

streamwise distance |dX – dx| at a given instant.  This model is subject to verification, but present 

results do not test this model because the contribution of the second term is minor for the flow 

regimes considered here.  Future applications of this formulation to cases involving more 

consequential streamwise trajectory-crossing effects will test Eq. (10), which for present purposes 

is an incidental feature of the model. 

 

D. Simulation of deposition in channel flow 

 

     Because one-way coupling of particles to the flow is assumed here, the flow simulation is 

unaffected by the introduction of particles if tf is taken to be the time variable for system 

advancement, with Eq. (10) then determining the particle advancement in terms of its time 

variable t, which is distinct for each particle.  On this basis, turbulent channel flow simulation is 

implemented as in Schmidt et al.15 using the same ODT parameter values (Appendix A) as in that 

study.  The flow configuration is fully specified by the quantity Reτ. 
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     Before particles are introduced, the flow simulation is run until it is statistically steady.  At a 

given instant, particles are introduced.  In some cases, the initial velocity of each particle is 

chosen to match the local fluid velocity.  The initial lateral distribution of particles is spatially 

uniform unless noted otherwise.  Specifically, the flow evolves on a uniform mesh, and one 

particle is introduced in the center of each mesh cell.  The coarsest meshes have order 103 cells; 

much finer meshes are also used. 

     Particles are assumed to be spherical.  When a particle reaches a lateral location Y that is 

within one radius of a wall, it is deemed to deposit on the wall and disappears from the 

simulation.  Although particle radii are finite for consistency with comparison cases, they are 

small enough in all instances so that finite-size effects (relative to the limit of zero radius with τp
+ 

fixed) are negligible.  Particles can overlap and pass through each other, i.e., there is no particle-

particle interaction, so the simulation can be run at arbitrary particle volume fraction and still 

represent dilute conditions. 

     The number of simulated realizations and run time per realization were chosen for various 

cases so that the number of steady-state particle depositions per plotted Vd
+ value ranged from a 

minimum of order 102 at low inertia to order 106 in the vicinity of τp
+ = 100, then declining to 

order 104 at high inertia.  In the log-log plots of Vd
+ versus τp

+ that are shown in Sec. V, the 

uncertainty of the results is in all instances smaller than the symbol size. 

     Not all deposition events are included in the determination of Vd
+.  Time-resolved deposition 

statistics, discussed in Sec. V.C, indicate transient relaxation that is especially significant at large 

τp
+.  Therefore Vd

+ is determined on the basis of depositions during the period of statistically 

steady deposition following transient relaxation.  The duration of data gathering was 

predetermined to keep enough particles in the flow to keep the simulation cost-effective. 

     The model can accommodate drag laws of various degrees of complexity.  Here, particle 

motion is governed by 
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where μ is the fluid viscosity, ρ is density (subscript indicates particle or fluid), r is particle 

radius, and s and S are fluid and particle velocities, respectively.  f = 1 corresponds to Stokes drag 

and the lower expression for f incorporates an empirical correction.21 

     As explained in Sec. IV.C, the model quantities corresponding to the components of s in Eq. 

(11) depend on whether the particle is being advanced during particle-eddy interaction or during 

the T process, and if the former, on whether it is the first or second drag-law integration during 

the interaction.  This explains the use of a notation in Eqs. (11)-(15) that does not indicate how s 

and S are defined in terms of model variables.  When the corrected f is used, Eq. (15) is evaluated 

based on s = (u,v,w) and S = (U,V,W) in all instances.  Thus, the ODT v velocity contributes to 

particle advancement when Eq. (15) is used, but not otherwise (see Sec. IV.C). 

     During flow evolution, triplet maps are applied to velocity profiles discretized on the mesh, so 

the maps are implemented numerically as permutations of the discrete values, thus automatically 

satisfying the conservation properties of the model, which is defined mathematically as spatially 

continuous.  Particle kinematics requires finer spatial resolution near walls than flow evolution.  

Therefore it is advantageous to exploit the Lagrangian representation of particles by using the 
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continuum definition of the triplet map, Eq. (A3), to evaluate the fluid displacements that 

determine fluid velocities seen by particles during particle evolution. 

 

V.  RESULTS 

A. Parameter assignment 

     The relation tE = βτ that defines the eddy lifetime in the particle-eddy interaction submodel 

introduces the free parameter β.  It is adjusted to give the best agreement between ODT 

deposition simulations and a direct numerical simulation (DNS) of channel-flow deposition.22  As 

in the DNS, Stokes drag is used in the ODT simulation.  Reτ = 125 in the DNS, but the ODT 

comparison case is Reτ = 180 because the high-Re phenomenology implicit in ODT model 

assumptions becomes marginally valid at Reτ = 180 and problematic at lower Reτ.15  Reτ 

sensitivities presented in Sec. V.B indicate that the difference between the DNS and ODT Reτ 

values should not noticeably impact the comparison. 

     The best agreement is obtained for β = 0.3, which is used in all subsequent ODT simulations.  

For this β value, the comparison to the DNS data is shown in Fig. 1.  It should be noted that the 

DNS results are subject to considerable statistical uncertainty; in particular, the lowest data point 

is based on a single deposition event. 

 

B. Stokes-number dependence of deposition 

 

     Although the present focus is deposition at large τp
+, it is useful to consider smaller τp

+ values 

as well, both for parameter evaluation (as in Sec. V.A) and to provide a general context for 

interpretation of model results.  Model results for the complete range of τp
+ values considered 

here are shown in Fig. 2 for the same conditions (Stokes drag, Reτ = 180, β = 0.3) as in Fig. 1.  
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Also shown are selected comparison cases, although only qualitative comparison is possible due 

to the differences between model assumptions and the physics governing these cases. 

     At small τp
+, model results suggest an approach to quadratic dependence of Vd

+ on τp
+.  A 

heuristic interpretation of this dependence is presented in Appendix B. 

     Low-inertia deposition based on Stokes drag is considered here solely for comparison of 

model processes and other physical pictures of deposition (see Appendix B).  Stokes drag is 

inaccurate at low inertia, as indicated by the comparison between low-inertia model results and 

DNS results7 for Reτ = 125 in Fig. 2.  The drag law used in this DNS study includes the 

Cunningham slip factor, Brownian motion force, Saffman lift, and wall effects on both drag and 

lift, none of which are included in the present model formulation (although they can be 

incorporated and will be included in future work). 

     In this regard, it is fortuitous that the low-inertia measurements5 shown in Fig. 2 approach the 

quadratic dependence.  The experiment, involving droplet deposition in tubes, was subject to the 

effects represented in the DNS plus other complications, such as droplet shape distortion and 

polydispersity, which can plausibly account for the differences between the DNS and 

experimental results.7 

     Nevertheless, the overall increase of Vd
+ with increasing inertia, followed by leveling (not 

seen in the DNS data, but an eventual necessity due to the boundedness of Vd
+) is well 

understood.2  The low-inertia trend reflects the role of inertia in enabling particles to cross fluid 

streamlines, as is required for deposition when effects of finite particle radius are negligible.  The 

resulting increase of deposition with increasing inertia saturates when the deposition becomes 

nearly ballistic and hence relatively insensitive to further increase of inertia. 

     In Sec. III, analysis of high-inertia deposition indicates that the ballistic mechanism is a near-

field transient that is followed by relaxation to a less effective mechanism, resulting in (τp
+) -2/3 

dependence of Vd
+.  The high-inertia results in Fig. 2 are consistent with the interpretation that the 
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measurements reported in Liu and Agarwal5 correspond to the near-field ballistic regime and 

model results correspond to the far-field regime.  Additional evidence supporting this 

interpretation is examined in Sec. V.C. 

     Also shown in Fig. 2 are measurements23 that have been interpreted24 as a decreasing trend 

following an empirical -1/2 power law.  It is noted in passing that the predicted -2/3 high-inertia 

far-field scaling is an equally good statistical inference, but the aforementioned experimental 

complications preclude physical inference based on this observation.  A mild decreasing trend can 

also be discerned in the measurements of Liu and Agarwal.5  As noted in Sec. III.B, models based 

on lateral equilibration of particle motions, or small corrections thereto, reproduce this trend but 

not on the basis of a physically sound representation of high-inertia deposition. 

     The model results in Fig. 2 correspond to a single, moderate value of Reτ.  Sensitivity to Reτ is 

shown in Fig. 3. There is noticeable sensitivity at moderate inertia, though not enough either to 

alter the physical picture or to raise concern about the applicability of the results for Reτ = 180.  

The only other apparent sensitivity is at very high inertia.  There, the results suggest that Reτ = 

180 may be below the onset of strong turbulence limiting behavior.  The results at higher Reτ 

show better overall conformance with the -2/3 scaling, but in contrast to the Reτ dependence in 

Eq. (4), they indicate at most slight Reτ dependence at high inertia.  As noted in Sec. III, the Reτ 

dependence in Eq. (4) relies on stronger assumptions than are required to derive the τp
+ 

dependence. 

 

C. High-inertia deposition 

 

     Additional results are presented that elucidate the transient features of high-inertia deposition.  

In Fig. 4, LES results8 for Reτ = 180 are plotted along with results shown in Fig. 2.  The LES 

results exhibit decreasing τp
+ sensitivity, consistent with measurements, suggesting eventual 
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leveling or possible decline.  Also shown are model results for cases configured to be 

quantitatively comparable to the LES cases. 

     The drag law used in the LES includes the drag correction shown in Eq. (14), so it is included 

in the corresponding model cases.  Also, for these comparisons, the particle initial conditions are 

the same as in the LES (uniform spatial distribution, particle velocities equal to fluid velocities), 

and the model is run for the same duration in wall time as the LES, with all particle depositions 

counted in the determination of Vd
+.  In the LES and in the corresponding model cases, Reτ = 

180.  (Both the model and LES results indicate insensitivity of deposition to Reτ at the τp
+ values 

of interest.)  This model configuration is also run at τp
+ = 50 for comparison to the plotted DNS 

result at this τp
+ value. 

     Figure 4 shows that the two changes (the drag law and the time interval of data collection) 

relative to the baseline model results account for almost all of the discrepancy between the LES 

and baseline model results, and likewise improve the agreement with DNS at τp
+ = 50.  The effect 

of the data collection period is further elaborated in Fig. 5, in which the DNS and LES Vd
+ values 

are compared to model results for time-resolved deposition.  Model results indicate that the time 

variation of Vd
+ during the data-collection period for each comparison case exceeds the 

differences between the model results and the comparison LES or DNS results that are shown in 

Fig. 4. 

     Beyond the LES data-collection period, the model results indicate relaxation to statistically 

steady deposition with Vd
+ values slightly higher than the baseline (Stokes-drag) values, 

confirming that the departure from baseline results that is evident in Fig. 4 is mostly due to the 

difference between near-field transient and far-field statistically steady deposition.  Figure 5 

indicates the reversal from deposition increasing to deposition decreasing with increasing inertia 

as the transient relaxes.  This behavior is likewise obtained for higher τp
+ values. 



 28

     Recall that statistical steadiness does not necessarily imply equilibration of particle velocities 

relative to turbulent motions.  In fact, the analysis of Sec. III indicates that such equilibration does 

not occur during the deposition process at very large τp
+. 

     Further illustrations of the distinction between transient and statistically steady deposition are 

provided in Figs. 5 and 6.  For a case that is identical to the τp
+ = 200 model case of Fig. 5 except 

that particles initially have zero velocity and are uniformly distributed within a y interval [-0.6h, 

0.6h] relative to the channel mid-plane, Fig. 5 shows an early period of negligible deposition 

followed by convergence to the τp
+ = 200 model case with zero initial slip and spatially uniform 

initial conditions.  This convergence occurs before statistically steady deposition is attained, but 

beyond the DNS and LES time intervals.  For the zero-initial-velocity case, the deposition 

averaged over the time interval of the LES comparison case (τp
+ = 200) is seen to be much lower 

than for the other (zero-initial-slip) cases, emphasizing that this time interval corresponds to a 

regime governed primarily by initial conditions. 

     The convergence of the two model cases is consistent with the predicted (Sec. III.B) 

insensitivity to initial U values provided that they are not large compared to u’.  The two cases 

converge when both reach a state that is insensitive to initial conditions. 

     Figure 6 shows a measure of transient relaxation for the model analog of the DNS case (τp
+ = 

50).  Ballistic time is the time until deposition based on a ballistic trajectory, i.e., infinite particle 

inertia.  Inertia can increase or decrease the actual time relative to the ballistic time, but a net 

decrease occurs only at very early times when deposition is promoted by ‘favorable’ eddy 

motions acting on particles initially near a wall.  (To simplify the interpretation of this metric, 

particles that deposit on the wall opposite to the wall encountered ballistically are disregarded.)  

The relatively slow change of ballistic relative to actual time prior to t+ = 150, corresponding to 3 

particle time constants, reflects the deposition of particles whose trajectories retain memory of the 

initial orientation of the particle velocity vector.  The subsequent rapid growth and increased 



 29

scatter of this ratio reflects the transition to particle evolution that is insensitive to initial 

conditions.  Fig. 5 indicates that this onset coincides with the attainment of statistically steady 

deposition for this case.  In contrast, the apparent convergence of the two τp
+ = 200 cases in Fig. 5 

prior to their attainment of statistical steadiness suggests that memory loss precedes the 

completion of transient relaxation.  The overlap of these cases during the late transient is 

imperfect and may be fortuitous; they unambiguously coincide only when statistical steadiness is 

attained. 

     Further detailed investigation would be required to form a complete picture of the process of 

transition from initial condition sensitivity to insensitivity and the related but distinct process of 

transient relaxation.  The foregoing observations are suggestive of the rich phenomenology of 

non-equilibrium deposition that remains to be explored. 

 

VI.  DISCUSSION 

 

     Although the influence of non-equilibration of particle-flow interactions on high-inertia 

deposition is recognized, experimental methods, models, and numerical simulation tools 

heretofore applied to this problem have lacked the capability to probe this regime and discern the 

underlying physics.  The heuristic scaling analysis presented here indicates power-law decay of 

the deposition rate as a function of particle Stokes number τp
+ for large τp

+.  A stochastic model 

that captures the relevant physics of particle-flow coupling and simulates turbulent channel flow 

accurately, yet is economical enough for simulation of deposition at very high τp
+, is formulated 

and applied to channel-flow deposition over a wide range τp
+.  Based on adjustment of one 

parameter governing particle-flow coupling (in addition to prior adjustment of parameters 

governing the flow simulation), the model reproduces much of the phenomenology of channel-

flow deposition and elucidates the predicted high-inertia scaling. 
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     Specifically, is it shown that the predicted scaling is a far-field asymptote preceded by a 

transient regime during which deposition is nearly ballistic and therefore insensitive to τp
+.  The 

deposition rate during this transient may far exceed the rate during the subsequent statistically 

steady deposition, so a large majority of particles may deposit during the transient.  Typically, the 

particles that survive the transient are those whose initial trajectories are nearly streamwise so that 

ballistic motion does not cause early deposition. 

     The relative contributions of transient and far-field deposition are sensitive to initial 

conditions.  Particles with negligible initial lateral velocity are not subject to the ballistic 

mechanism, so the deposition rate for particles initialized in this matter is lower during the 

transient than subsequently. 

     In published 3D numerical simulations of deposition in the vicinity of the onset of the inertia-

moderated regime, the initial particle slip velocity is set equal to zero, a scenario in which the 

transient deposition rate exceeds the far-field rate and the transient deposition exhibits ballistic 

scaling (insensitivity to τp
+).  These simulations are costly, which may be the reason they were 

not run long enough to reach the far-field regime beyond the initial transient.  In addition to this 

consideration, valid interpretation of the results requires examination of the time-resolved 

deposition rate, as demonstrated here.  The increase of computer capabilities subsequent to the 

published 3D simulation studies provides the wherewithal for future 3D numerical exploration of 

the time domain as well as a relevant range of τp
+ values.  The model results presented here may 

provide useful guidance for planning these studies and interpreting the results. 

     Experimental investigation of time-resolved (more precisely, streamwise-resolved because the 

flow development in experiments is spatial rather than temporal) high-inertia deposition may be 

more problematic.  It is difficult to design an experiment in a confined flow (e.g., a pipe) that is 

long enough to allow transient relaxation yet is not subject to complications that obscure the 

quantitative signatures of convergence to statistically steady deposition.  The main implication of 
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the present study with regard to measurements is that the well-known inconsistencies among 

various reported measurements of high-inertia deposition2,24 can perhaps be attributed to the 

sensitivity to initial conditions during the near-field transient, although other contributing factors 

may be equally if not more significant.  The present study indicates that collimation of injected 

particles would tend to prevent the obscuration of statistically steady deposition by the initial 

transient. 

     It is emphasized here that statistically steady deposition does not imply equilibration of 

particle motions relative to turbulent fluid motions.  In fact, it is found that the particle motions 

are far from equilibrium in the statistically steady deposition regime.  It is noted in Sec. III.B that 

non-equilibrium presents a challenge to closure-type deposition modeling that has not yet been 

satisfactorily addressed.  The present results may aid further developments in this regard by 

providing guidance concerning the behaviors that should be captured by closure models of 

deposition. 

     Graham addresses initial-condition sensitivity, slow relaxation of transients, non-equilibrium 

effects, and implications concerning the design and interpretation of experiments and numerical 

simulations, in the context of dispersion in isotropic turbulence.9  This context allows more 

precise and detailed analysis than is presented in Sec. III and Appendix B.  The present 

contribution may be viewed as a demonstration, using heuristic analysis and modeling, of the 

impact of these considerations in the context of deposition in turbulent channel flow. 

     Thus, the issues addressed here are broader than this particular application.  It is anticipated 

that future application of the analytical and numerical modeling approaches introduced here to 

other multiphase turbulent flow regimes may provide further useful insight.  In this regard, 

generalization of the present two-phase-flow formulation of ODT to include more elaborate drag 

laws and multiple scalars, allowing inter-phase couplings such as thermophoresis, should be 

straightforward.  The modeling framework should also accommodate other generalizations such 

as two-way coupling. 
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APPENDIX A: DETAILS OF THE CHANNEL-FLOW SIMULATION 

 

     To supplement the turbulence model description in Sec. IV.B, some details of the channel-

flow formulation are presented here.  Motivation is minimal because it is discussed extensively 

elsewhere.13-15,20 

     During the T process, the fluid state evolves according to 
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where (u1,u2,u3) corresponds to (u,v,w) in Sec. IV.  The boundary conditions are ui(y,t) = 0 at y = 

0 and 2h. 

     Apart from particle-eddy interaction (Sec. IV.C), each eddy event consists of two 

mathematical operations.  One is a measure-preserving map representing the fluid displacements.  

The other is a modification of the velocity profiles in order to account for energy transfers.  The 

combined effect of these operations is denoted 

( ) ( )( ) ( ) .yKcyfuyu iii +→                          (A2) 
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     The fluid at location f(y) is moved to location y by the mapping operation, taken to be the 

triplet map (see below).  This mapping is applied to all fluid properties, including scalars in 

variable-property flows (not considered here).  The additional term ciK(y), which is only applied 

to the velocity components, is the ODT analog of pressure-induced energy redistribution among 

the velocity components, and also accommodates energy exchange with sources and sinks such as 

gravitational potential energy. 

     The mapping rule y  y′ for a triplet map applied to the interval [yo,yo+l] is 
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where y′ is the post-map y profile.  The expressions on the successive lines of Eq. (A3) define the 

map images denoted y1′, y2′, and y3′, respectively, in Sec. IV.B.  f(y′) corresponds to the inverse 

map y(y′) implied by Eq. (A3). 

     In the energy-redistribution term of Eq. (A2), K(y) denotes y – f(y), the displacement of the 

fluid element mapped to y. It is non-zero only within the eddy interval l and it integrates to zero 

so that the eddy event does not change the total (y-integrated) momentum of individual velocity 

components. 

     The remaining ingredient in the specification of the eddy event is the expression for ci,  
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where 

.)())((2
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This is obtained by requiring that the maximum kinetic energy extractable from the post-map 

profiles of the respective velocity components should be the same for all velocity components 
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(equalization of ‘available kinetic energy,’ the model analog of ‘return to isotropy’).  The 

available kinetic energy of iu  is determined by finding the value of b that minimizes the kinetic 

energy of the profile iu  + bK(y).  The difference between the kinetic energies of the iu  and iu  + 

bK(y) profiles is the available kinetic energy. 

     Eddy sampling is based on the eddy rate distribution 
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where ( )tlyo ;,λ dtdldy0  is the probability of an event with parameters in the ranges 

[yo,yo+dyo] and [l,l+dl], respectively, during [t,t+dt].  If the radical in Eq. (A6) has a negative 

argument, the event rate is taken to be zero.  Physically, this represents viscous suppression of the 

eddy, governed by the parameter Z.  C (which scales the rate distribution) and Z are two 

adjustable parameters of the present ODT formulation.  Following Schmidt et al.,15 they are 

assigned the values C = 12.73 and Z = 98 and the constraint l < h (a third empirical assignment) is 

applied. 

     Equation (A6) embodies the core physical content of ODT.  Its derivation and features are 

discussed extensively elsewhere,14 so they are not explained here, but some implications of Eq. 

(A6) are noted in Appendix B. 

 

APPENDIX B: LOW-INERTIA DEPOSITION 

 

     Here, the quadratic dependence of Vd
+ on τp

+ indicated by model results at small τp
+ values is 

interpreted.  For small τp
+, it is assumed that there is a distance yw << h at which the typical 

particle velocity Vw is directed toward the wall and is large enough so that Vwτp > yw.  This 
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identifies a wall layer [0, yw] in which particle inertia is sufficient for the particle to deposit before 

it comes to rest.  (Recall that the lateral fluid velocity is taken to be zero during the T process.) 

     It is assumed that the particle arrives in the wall layer with velocity Vw through displacement 

by a particle-eddy interaction.  The frequency of such arrivals is estimated. 

     Equation (A6) implies a lower bound on eddy sizes.  The sum of the terms preceding Z in the 

radical must exceed Z in order for occurrence of the eddy to be allowable.  These terms are 

squares of Reynolds numbers based on a measure of velocity fluctuations; in Eq. (A5), note that a 

uniform velocity, multiplied by K(y), integrates to zero.  For a given level of velocity fluctuations 

near the wall, this implies that l cannot be arbitrarily small, reflecting viscous dominance near the 

wall (i.e., the absence of eddies of size yτ or smaller). 

     Suppose then that yw << lo, where lo is the scale of the smallest eddy events in the vicinity of 

the wall.  This assumption will be verified self-consistently; yw is found to vanish for vanishing 

inertia.  An eddy that displaces particles to [0, yw] corresponds to a triplet-mapped interval whose 

lower bound yo is in [0, yw].  Therefore particles mapped into this interval arrive at a location that 

is a distance of at most yw from yo.  The triplet-map definition then implies that the y range of 

particles fluxed across y = yw by the triplet map is of order yw.  This gives a particle flux across yw 

that is of order nωyw, where n is the particle number density above the wall layer and ω(yw) is the 

frequency of eddies for which yo < yw.  n does not depend on yw because bulk properties are 

applicable beyond the wall layer.  This is because particles beyond the wall layer require 

additional eddy interactions before they can deposit, so they are deemed to be spatially 

homogenized within the bulk flow. 

     To determine an eddy frequency from the rate distribution given by Eq. (A6), λ is multiplied 

by an eddy size range and by a y interval corresponding to a range of possible eddy locations.  In 

this case, the range of locations corresponds to the interval [0, yw] that contains the lower bound 

yo of the eddies that contribute to the particle flux across yw.  This contributes a factor yw 
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multiplying λ.  λ itself is independent of yw because the variables determining λ vary only on 

scales much larger than yw (provided that yw vanishes with vanishing inertia, as demonstrated 

shortly).  Therefore ω(yw) ∼ yw, so the particle flux across yw scales as yw
2. 

     yw is estimated using the relation yw ~ Vwτp.  If Vw depends solely on the imputed fluid velocity 

during the most recent particle-eddy interaction, then it scales as yw, so this relation is inconsistent 

because τp is the independent variable and therefore cannot be uniquely determined by the 

analysis. 

     This inconsistency is analogous to the well-known low-inertia inconsistency of the free-flight 

model of deposition.25  Namely, low-inertia deposition cannot be explained based on statistical 

estimates of fluid motion.  This motivates the formulation of models based on idealizations of 

individual fluid motions, hence a fluctuation picture.25 

     The analog of this consideration in ODT is the particle-eddy-interaction history, which affects 

particle trajectories because the particle velocity at the inception of each particle-eddy interaction 

is taken to be its velocity upon completion of its last prior interaction.  In ODT, the analog of 

intense downsweeps deemed to transport particles to the immediate vicinity of the wall25 is the 

occurrence of intense bursts of eddy events.14  Each triplet map increases velocity gradients, 

thereby intensifying local fluctuations that influence the occurrence of subsequent eddies in that 

vicinity, as governed by Eq. (A6).  This analog of local self-acceleration of the turbulent cascade 

(i.e., intermittent bursts) reduces eddy time scales and thus increases their imputed velocities 

during particle-eddy interaction.  In conjunction with the history effect, the effect of these bursts 

on particle motion is analogous to the effect of downsweeps. 

     Cleaver and Yates used a simple analytical model of downsweeps to estimate deposition 

rates.25  There is no obvious method for analyzing burst statistics in ODT other than to collect and 

analyze simulation data.  Nevertheless, the low-inertia deposition results can be interpreted 
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straightforwardly by making a simple assumption and comparing the predicted outcome to the 

ODT deposition results. 

     In the limit of vanishing inertia, it is reasonable to suppose that the non-vanishing history 

contribution to Vw depends neither on yw nor τp.  Then the relation yw ~ Vwτp implies yw ~ τp in this 

limit, so the particle flux across yw scales as τp
2.  Expressed in wall normalization, this yields 

quadratic dependence of Vd
+ on τp

+, consistent with the model tendency at low inertia.  The 

absence of Re sensitivity at low inertia (Fig. 3) indicates that there is no discernible dependence 

of Vw on outer variables such as ub. 

     In the simulations for τp
+ ≤ 50, particle diameter is based on particle density 713 times the 

fluid density.  To verify that finite particle size does not explain the observed quadratic scaling, 

note that particle radius r scales as (τp
+)1/2 according to Eq. (13).  Assume that deposition occurs 

when yw =  r.  The particle flux across yw =  r scales as r2 and therefore as τp
+.  This yields linear 

rather than quadratic dependence of Vd
+ on τp

+, so it does not explain the computed model 

behavior.  As τp
+ is reduced with particle density held fixed, an eventual crossover to this linear 

dependence is anticipated. 

     The model of Cleaver and Yates predicts a different functional dependence at low inertia than 

indicated by ODT.  Neither model is expected to provide a quantitatively accurate representation 

of the flow fluctuations that govern this regime.  ODT has the advantage that it can incorporate 

more realistic drag laws than considered here, so a quantitative test of its accuracy in comparison 

to the low-inertia DNS results in Fig. 2 can be performed in the future. 
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LIST OF CAPTIONS 

FIG. 1.  Dependence of normalized particle deposition rate Vd
+ on normalized Stokes number τp

+ 

in turbulent channel flow, using Stokes drag.  ○, ODT for β = 0.3, Reτ = 180; ●, DNS22 for Reτ = 

125. 

 

FIG. 2. (Color online) Comparison of ODT deposition rates, for the same conditions as Fig. 1 

data, to simulations and measurements.  Stars, ODT; □, DNS;7 + and ×, measurements5 for flow 

Reynolds numbers 10,000 and 50,000, respectively; ●, measurements.23  Line slopes: – – – –, +2; 

— · · —, -2/3; ——–, -1/2. 

 

FIG. 3. (Color online) ODT results of Fig. 2 in the format of that figure, and additional ODT 

results for Reτ = 640 (□) and 1200 (◊).  Line slopes: – – – –, +2; — · · —, -2/3.  Otherwise, the 

same symbol definitions as in Fig. 2. 

 

FIG. 4. (Color online) A portion of the data of Fig. 2, and additional results: Filled stars, transient 

ODT; Δ, LES.24  Otherwise, the same symbol definitions as in Fig. 2. 

 

FIG. 5. (Color online) For ODT at Reτ = 180 using corrected drag, dependence of deposition rate 

on elapsed time in wall units for τp
+ = 50 (+), 100 (×), and 200 (□).  ○, same as the ODT τp

+ = 

200 case but with zero-particle-velocity initial condition and particle initial spatial distribution as 

described in the main text; — · —, average for this case over the time interval spanned by the 

line.  Other lines are also averages over the spanned time interval: ——–, DNS7 for τp
+ = 50; – – 

– – and — · · —, LES for τp
+ = 100 and 200, respectively.8 
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FIG. 6.  For the ODT case denoted by + in Fig. 5, ratio of actual to ballistic (infinite-inertia) 

particle deposition time, conditioned on both depositions occurring on the same wall.  This ratio 

is shown as a function of actual deposition time in wall units. 
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J.R. Schmidt, J.O.L. Wendt, and A.R. Kerstein 
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Figure 2. 

J.R. Schmidt, J.O.L. Wendt, and A.R. Kerstein 

 



 45

τp
+

1e+0 1e+1 1e+2 1e+3 1e+4 1e+5

V
d+

1e-5

1e-4

1e-3

1e-2

1e-1

 

 

 

 

 

 

 

 

Figure 3. 

J.R. Schmidt, J.O.L. Wendt, and A.R. Kerstein 
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J.R. Schmidt, J.O.L. Wendt, and A.R. Kerstein 
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