

Effect of Air Pressure on Vibrations of Micro Plates

Hartono Sumali and David S. Epp

ASME IMECE Chicago, November 5-10, 2006

Motivation and Objective

Motivation:

• Electrostatic, parallel-plate actuation is very important in many microsystems applications.

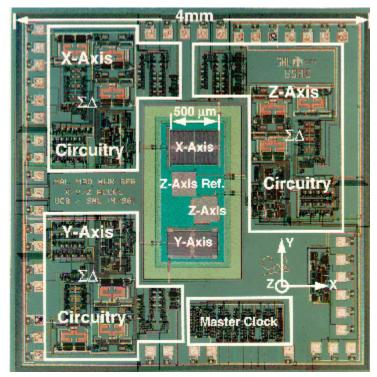
• Squeezed-film damping determines the dynamics of plates moving a few microns

above the substrate. Examples abound in

- MEMS accelerometers.
- MEMS switches.
- MEMS gyroscopes.
- Models for predicting squeezed-film damping have not been validated experimentally the in high-frequency/low-pressure regime.

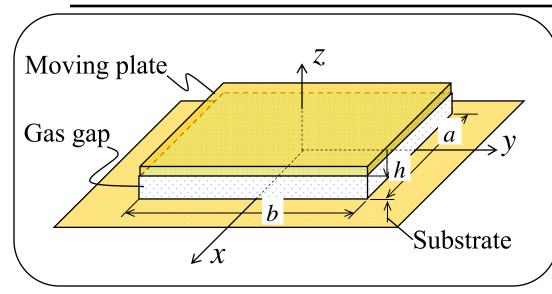
Objective:

• Provide experimental validation to widely used squeezed-film damping models for plates.



http://www.sandia.gov/mstc/images/fig3.gif

Squeezed-Film Damping



Assumptions:

1. Rigid plate

2. Small gap $h/a \ll 1$

3. Small displacement z/h

4. Small pressure variation p/P

5. Isothermal process

6. Pressure on edges = P

7. Small molecular mean free path

8. No inertial effects of gas moving in and out of the gap

Forces on moving plate from gas layer can be obtained from the linearized **Reynold's equation**

$$\frac{Ph^2}{12\mu}\nabla^2\left(\frac{p}{P}\right) - \frac{\partial}{\partial t}\left(\frac{p}{P}\right) = \frac{\partial}{\partial t}\left(\frac{z}{h}\right)$$

P =ambient pressure, Pa

h = gap size, m

 $\mu = viscosity$, Pa s

p = pressure at (x,y), Pa

t = time, s

Molecular mean free path λ is a mean distance a molecule travels before colliding.

$$\lambda = \frac{\mu}{P} \sqrt{\frac{2RT}{m_m}}$$

R = universal gas constant,

T = temperature, K

 m_m =molecular mass, kg/mol

Harmonically Oscillating Plate

• This presentation discusses a plate oscillating with a displacement

$$\varepsilon(t) = e_0 \exp(j\omega t)$$

- Remember assumption 8: No inertial effects of gas moving in and out of the gap.
- The above Reynold's equation may not be valid if the gas is pushed in and out of the gap at high frequency ω .
 - Inertia and viscosity trap and compress the gas in the gap.

- Three models will be compared with measurement:
 - Blech's model
 - Andrews et al.'s limit
 - Veijola's model

Blech Model

• A measure of gas compression is the **squeeze number**

$$\sigma = 12\mu \left(\frac{a}{h_m}\right)^2 \left(\frac{\omega}{P}\right)$$

• The force from the squeezed film is, from Blech's theory,

$$F_{damp}^{Blech} = \frac{64}{\pi^6} \frac{ab}{h} 12 \mu \left(\frac{a}{h}\right)^2 e_0 \omega \sum_{m,n \text{ odd}} \frac{m^2 + n^2 (a/b)^2}{m^2 n^2 \left[m^2 + n^2 (a/b)^2\right]^2 + \sigma^2 / \pi^4}$$

• Can be decomposed into

= width, m

= length, m

 e_0 = amplitude, m

= mean gap size, m

 h_{plate} = plate thickness, m

= ambient pressure, Pa

= time, s

= viscosity, Pa s

= frequency, rad/s

 ω_n = natural frequency, rad/s

 ρ_{plate} = plate mass density, kg/m³

Damping/velocity Spring force/velocity $F^{Blech}(\omega) = \left[c^{Blech}(\omega) + \kappa^{Blech}(\omega)\right] j\omega e_{0}(\omega)$ $c^{Blech}(\omega) = \frac{768}{\pi^{6}} \frac{a^{3}b}{h^{3}} \mu \sum_{m,n \text{ odd}} \frac{m^{2} + n^{2}(a/b)^{2}}{m^{2}n^{2} \left[m^{2} + n^{2}(a/b)^{2}\right]^{2} + \sigma^{2}/\pi^{4}} \qquad \kappa^{Blech}(\omega) = \frac{9216}{\pi^{8}} \frac{a^{5}b}{h^{5}P} \mu^{2} \sum_{m,n \text{ odd}} \frac{m^{2} + n^{2}(a/b)^{2}}{m^{2}n^{2} \left[m^{2} + n^{2}(a/b)^{2}\right]^{2} + \sigma^{2}/\pi^{4}} \frac{\omega}{j}$

$$c^{Blech}(\omega) = \frac{768}{\pi^6} \frac{a^3 b}{h^3} \mu \sum_{m,n \text{ odd}} \frac{m^2 + n^2 (a/b)^2}{m^2 n^2 \left[m^2 + n^2 (a/b)^2\right]^2 + \sigma^2 / \pi^4} \qquad \kappa^{Blech}(\omega) = \frac{9216}{\pi^8} \frac{a^5 b}{h^5 P} \mu^2 \sum_{m,n \text{ odd}} \frac{m^2 + n^2 (a/b)^2}{m^2 n^2 \left[m^2 + n^2 (a/b)^2\right]^2 + \sigma^2 / \pi^4} \frac{a^5 b}{b^5 P} \mu^2 \sum_{m,n \text{ odd}} \frac{m^2 n^2 \left[m^2 + n^2 (a/b)^2\right]^2 + \sigma^2 / \pi^4}{b^5 P} \frac{a^5 b}{h^5 P} \mu^2 \sum_{m,n \text{ odd}} \frac{m^2 n^2 \left[m^2 + n^2 (a/b)^2\right]^2 + \sigma^2 / \pi^4}{b^5 P} \frac{a^5 b}{h^5 P} \mu^2 \sum_{m,n \text{ odd}} \frac{m^2 n^2 \left[m^2 + n^2 (a/b)^2\right]^2 + \sigma^2 / \pi^4}{b^5 P} \frac{a^5 b}{h^5 P} \mu^2 \sum_{m,n \text{ odd}} \frac{m^2 n^2 \left[m^2 + n^2 (a/b)^2\right]^2 + \sigma^2 / \pi^4}{b^5 P} \frac{a^5 b}{h^5 P} \mu^2 \sum_{m,n \text{ odd}} \frac{m^2 n^2 \left[m^2 + n^2 (a/b)^2\right]^2 + \sigma^2 / \pi^4}{b^5 P} \frac{a^5 b}{h^5 P} \mu^2 \sum_{m,n \text{ odd}} \frac{m^2 n^2 \left[m^2 + n^2 (a/b)^2\right]^2 + \sigma^2 / \pi^4}{b^5 P} \frac{a^5 b}{h^5 P} \mu^2 \sum_{m,n \text{ odd}} \frac{m^2 n^2 \left[m^2 + n^2 (a/b)^2\right]^2 + \sigma^2 / \pi^4}{b^5 P} \frac{a^5 b}{h^5 P} \mu^2 \sum_{m,n \text{ odd}} \frac{m^2 n^2 \left[m^2 + n^2 (a/b)^2\right]^2 + \sigma^2 / \pi^4}{b^5 P} \frac{a^5 b}{h^5 P} \frac{m^2 n^2 \left[m^2 + n^2 (a/b)^2\right]^2 + \sigma^2 / \pi^4}{b^5 P} \frac{m^2 n^2 \left[m^2 + n^2 (a/b)^2\right]^2 + \sigma^2 / \pi^4}{b^5 P} \frac{m^2 n^2 \left[m^2 + n^2 (a/b)^2\right]^2 + \sigma^2 / \pi^4}{b^5 P} \frac{m^2 n^2 \left[m^2 + n^2 (a/b)^2\right]^2 + \sigma^2 / \pi^4}{b^5 P} \frac{m^2 n^2 \left[m^2 + n^2 (a/b)^2\right]^2 + \sigma^2 / \pi^4}{b^5 P} \frac{m^2 n^2 \left[m^2 + n^2 (a/b)^2\right]^2 + \sigma^2 / \pi^4}{b^5 P} \frac{m^2 n^2 n^2 \left[m^2 + n^2 (a/b)^2\right]^2 + \sigma^2 / \pi^4}{b^5 P} \frac{m^2 n^2 n^2 n^2 n^2 n^2}{b^5 P} \frac{m^2 n^2 n^2 n^2}{b^5 P} \frac{m^2 n^2$$

Effect of Low Pressure

- Remember assumption 7: Small molecular mean free path.
- The above Reynold's equation is not valid if the molecular mean free path λ is of comparable magnitude with the gap size h. i.e., the gas is rarefied.
- A measure of gas rarefaction is the (modified) Knudsen number

$$K_s = 1.016 \ \lambda/h$$

- Large Knudsen number means:
 - The mean free path becomes much longer than the gap.
 - The continuum assumption of the Reynold's equation may break down.
 - Reynold's equation must be modified.

Effect of Inertia

• Taking into account the inertia of the gas flowing in and out of the gap, Veijola (2004) modified Reynold's equation into

$$\frac{\partial}{\partial x} \left(\frac{\rho h^3}{12\mu} Q_{pr} \frac{\partial p}{\partial x} \right) + \frac{\partial}{\partial y} \left(\frac{\rho h^3}{12\mu} Q_{pr} \frac{\partial p}{\partial y} \right) = \frac{\partial \rho h}{\partial t}$$

- Q_{pr} is a flow-rate coefficient that relates flow rates to pressure gradients.
 - Time-dependent
 - Derivation is tedious but crucial in the accuracy of the model.
 - Solved for in Veijola (2004) in frequency domain
- Veijola et al. (1995) also takes into account the gas rarefaction in low pressures by developing an effective viscosity

$$\mu_{eff} = \mu / (1 + 9.638 K_n^{1.159})$$

h = gap size, m

p = pressure at (x,y), Pa

t = time, s

 μ = viscosity, Pa s

 ρ = density, kg/m³

Knudsen number

$$K_n = \lambda/h$$

= mean free path, m

Veijola, T., Kuisma, H., Lahdenpera, J., and Ryhanen, T., 1995, "Equivalent-circuit model of the squeezed gas film in a silicon accelerometer", *Sensors and Actuators A*, 48, p 239-248.

Veijola, T., 2004, "Compact models for squeezed-film dampers with inertial and rarefied gas effects", *Journal of Micromechanics and Microengineering*, 14, p 1109-1118.

If the gap oscillation is $\varepsilon(t) = e_0 \exp(j\omega t)$, then the damping force complex amplitude is

$$F^{Veij}(\omega) = j\omega e_0 \Phi(\omega)$$

$$C_{mn} = \frac{\pi^4 h(mn)^2}{64abn_{\gamma}P}$$

$$\Phi(\omega) = \sum_{m=1,3,...}^{M} \sum_{n=1,3,...}^{N} \frac{1}{Q_{pr}G_{mn} + j\omega C_{mn}}$$

$$G_{mn} = \frac{\pi^6 h^3 (mn)^2}{768\mu ab} \left(\frac{m^2}{a^2} + \frac{n^2}{b^2}\right)$$

$$Q_{pr} = \sum_{k=1,3,...} \frac{1+6K_s}{k^4 \pi^4 + j\omega} \frac{k^2 \pi^2 \rho h^2 (1+10K_s + 30K_s^2)}{96\mu (1+6K_s)}$$

$$C_{mn} = \frac{\pi^4 h(mn)^2}{64abn_{\gamma}P}$$

$$a = \text{width, m}$$

$$b = \text{length, m}$$

$$e_0 = \text{amplitude, m}$$

$$h = \text{gap size, m}$$

$$j = \sqrt{-1}$$

$$\frac{h^3(mn)^2}{68\mu ab} \left(\frac{m^2}{a^2} + \frac{n^2}{b^2}\right)$$

$$n_{\chi} = 1 \text{ for isothermal,}$$

$$(= c_p/c_{\chi} \text{ for adiabatic).}$$

$$P = \text{ambient pressure, Pa}$$

$$t = \text{time, s}$$

$$\mu = \text{viscosity, Pa s}$$

= frequency, rad/s

= gas mass density, kg/m³

Modified Knudsen number

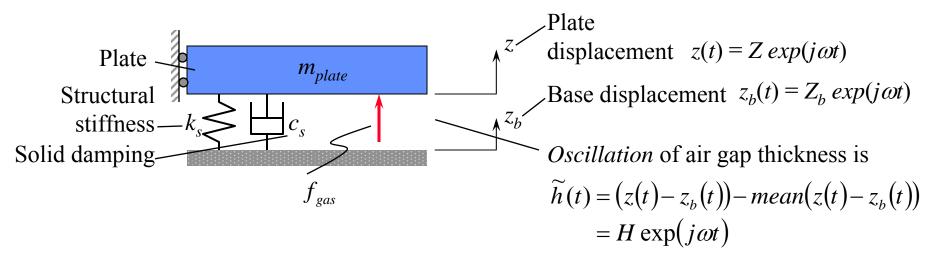
$$K_s = 1.016 \ \lambda/h$$

 λ = mean free path, m

Veijola, T., 2004, "Compact models for squeezed-film dampers with inertial and rarefied gas effects", *J. Micromech. Microeng.*, 14, p 1109-1118.

Model of Test Structure

Test structure modeled as a Single-Degree-of-Freedom (SDOF) system



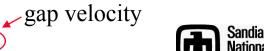
Excitation is harmonic. System is linear(ized). So response is harmonic

Equation of motion
$$\ddot{m} = k(z_b - z) + c_s(\dot{z}_b - \dot{z}) + f_{gas}$$

Frequency response function from base displacement to gap oscillation:

$$\frac{H(\omega)}{Z_b(\omega)} = \frac{m\omega^2}{-m\omega^2 + j\omega(c_s + \Phi(\omega)) + k_s}$$

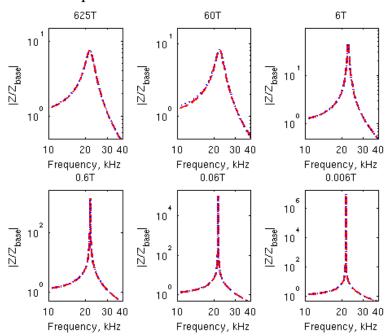
from gas damping models $\Phi(\omega) = F_{gas}(\omega)/(j\omega H)$



Constant-coefficient Model from Curve-Fitting

slide 10

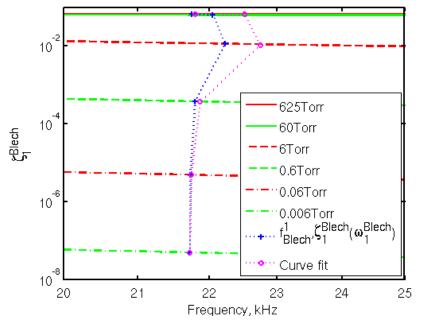
- 1. Synthesize frequency response function with damping models:
 - Assume structural stiffness k_s and mass m are known.
 - Assume solid damping $c_s = 0$.
 - Compute transmissibility from base displacement to plate displacement.



2. Curve-fit around resonant peaks to obtain damping ratio ζ and resonant frequency.

- 3. Compare the resulting damping ratio ζ from
 - a) curve fitting
 - b) using the resonant frequency ω_d in Blech's model, i.e.,

$$F_{damp}^{Blech} = \frac{64}{\pi^{6}} \frac{ab}{h} 12 \mu \left(\frac{a}{h}\right)^{2} e_{0} \omega_{d} \sum_{m,n \text{ odd}} \frac{m^{2} + n^{2} (a/b)^{2}}{m^{2} n^{2} \left[m^{2} + n^{2} (a/b)^{2}\right]^{2} + \sigma_{d}^{2} / \pi^{4}}$$
and
$$\zeta_{Blech} = \frac{c_{Blech}}{2m_{plate} \omega_{n}} = \frac{F_{Blech}^{damp}}{e_{0} \omega_{d} 2m_{plate} \omega_{n}}$$



Result: 3a) and 3b) are almost identical.

Constant-coefficient Model Using Resonant Frequency

• If the equation of motion $m_{plate}\ddot{z} + c\dot{z} + kz = f_{ext}(t)$ is re-written into the modal form

$$\ddot{z} + 2\zeta \omega_n \dot{z} + \omega_n^2 z = \hat{f}_{ext}(t)$$

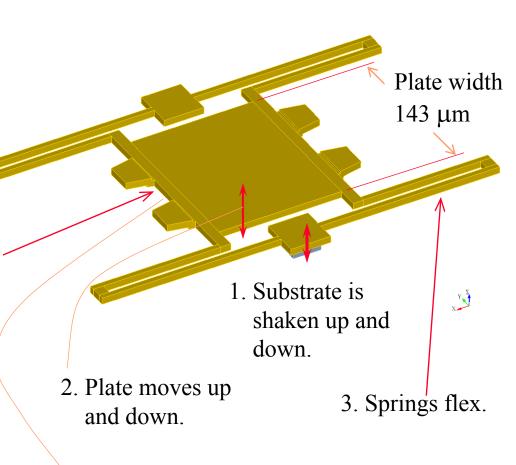
- Then the squeezed-film damping force can be recast into an equivalent viscous damping ratio
- For Blech's model, $\zeta_{Blech} = \frac{c_{Blech}}{2m_{plate}\omega_n} = \frac{F_{Blech}^{damp}}{e_0\omega_d 2m_{plate}\omega_n}$
- For Veijola's model, $\zeta_{Veij} = \text{Re} \left(\frac{F_{Veij}}{j\omega_d e_0 2m_{plate} \omega_n} \right)$
- The mass of the plate is $m_{plate} = \rho_{plate} h_{plate} ab$

$$a = \text{width, m}$$
 $b = \text{length, m}$
 $e_0 = \text{amplitude, m}$
 $h = \text{gap size, m}$
 $h_{plate} = \text{plate thickness, m}$
 $j = \sqrt{-1}$
 $m_{plate} = \text{plate mass, kg}$
 $P = \text{ambient pressure, Pa}$
 $t = \text{time, s}$
 $\mu = \text{viscosity, Pa s}$
 $\omega_d = \text{resonant freq., rad/s}$
 $\omega_n = \text{natural frequency, rad/s}$
 $\rho_{plate} = \text{plate density, kg/m}^3$

Test Device

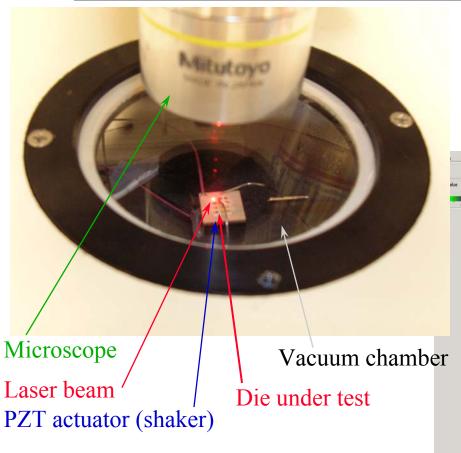
- Oscillator plate suspended by four folded springs.
- Structure is electro-plated gold.
- Thickness around 5.7 μm.
- Substrate is alumina.

Air gap between plate and substrate. Mean thickness = $4.6 \mu m$.



4. Air gap is compressed and expanded by plate oscillation.

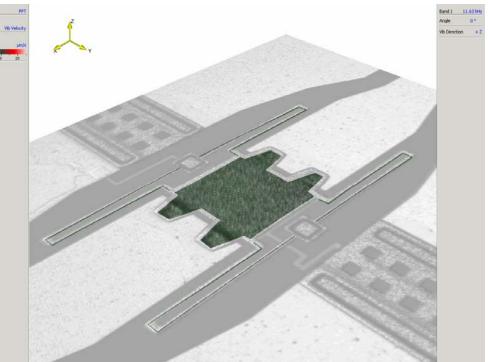
Test Setup



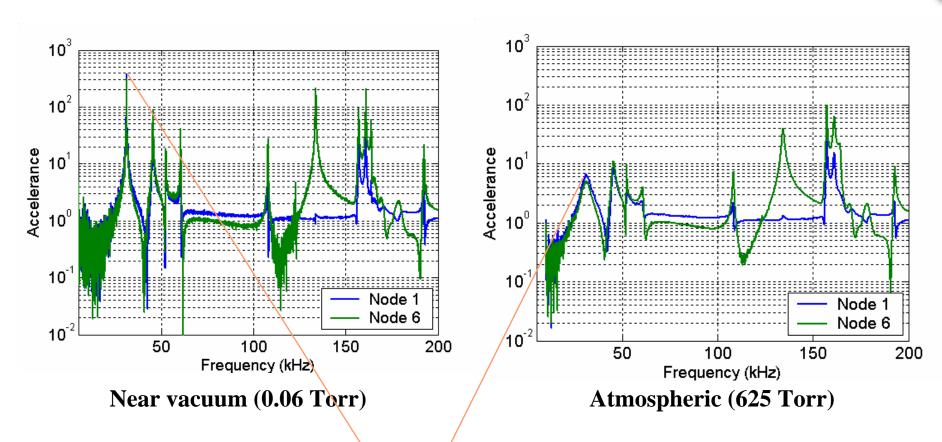
- Excitation: Base displacement with piezoelectric actuator.
- Sensing: Scanning Laser Doppler Vibrometer.

• Modal analysis was done in 2k-50 kHz.

• Tests were repeated at five different air pressures from atmospheric (640 Torr) to near-vacuum (6 milliTorr).



Measured deflection shape, first mode.



- From Frequency Response Functions (FRFs), natural frequencies and mode shapes were computed with I-DEAS.
- Only the lowest-frequency mode will be discussed here.
- Atmospheric air damped the first resonant response by two orders of magnitude.
- Atmospheric air did not damp spring bending (higher) modes as much.

Array of Test Devices

slide 15

13.6

8.8

9.7

175.4

144.2

5.7

10.3

10.7

13.6

9.7

14.6

225.1

143.2

10.4

14.6

8.8

9.7

13.6

8.8

9.7

126.7

144.2

5.7

10.2

10.7

13.6

8.8

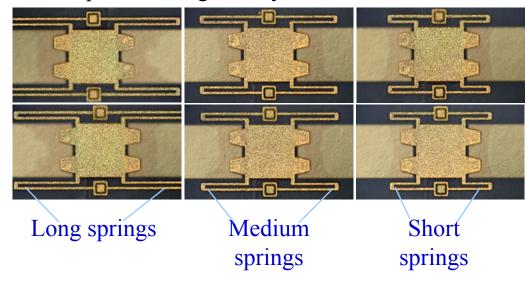
9.7

126.7

144.2

5.7

• A 2 x 3 part of a larger array: Des. and Fab. Chris Dyck, SNL

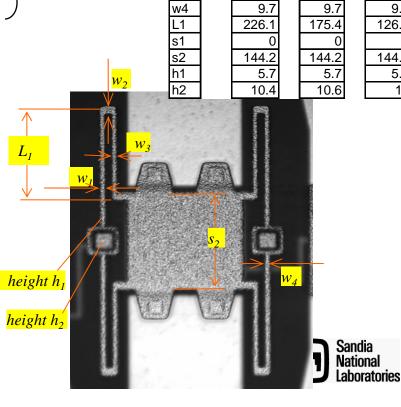


• Natural frequency and damping were obtained from experimental modal analysis.

• Squeezed-film damping ratios were predicted using measured dimensions, measured natural frequency.

• Assumed width a and length b, where ab = true plate area.

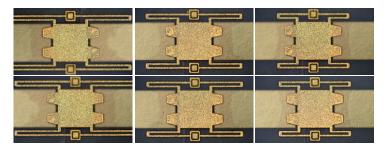
Two rows nominally identical. Measured dimensions, μm:



w2

Result: Natural Frequency and Damping

Numbers in tables correspond to position in array



Natural frequency, Hz

10509	17350	21721
12003	18507	29071

- •Shorter springs result in higher natural frequencies, as expected.
- The two rows were significantly different
 - Fabrication variation
 - Much more common in MEMS than in macro world

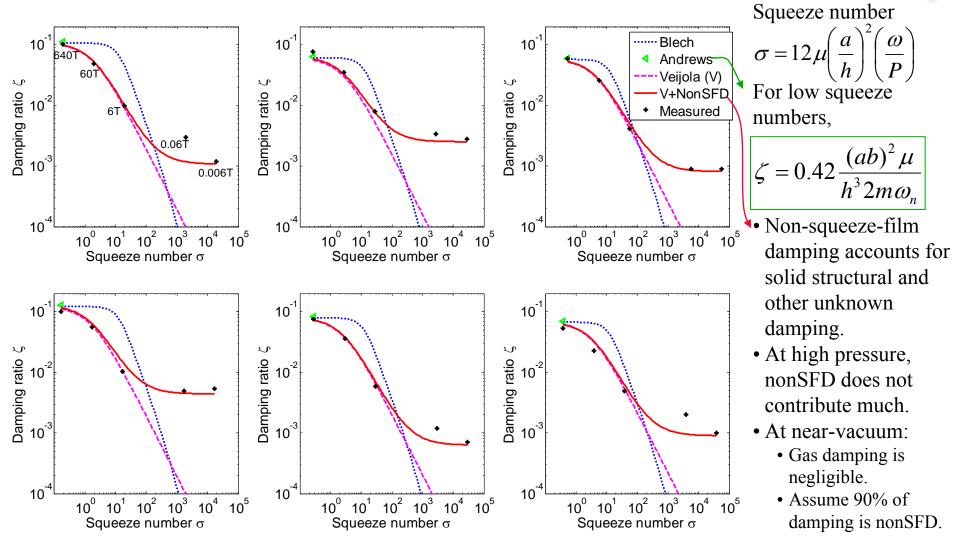
Damping ratios ζ , % of critical

Atm P=625Torr		
10.05	7.61	5.35
10.36	7.72	5.93
P = 60 Torr		
5.58	3.57	2.26
4.93	3.56	2.58
P = 6 Torr		
1.03	0.59	0.49
1	0.79	0.41
P = 60 mTorr		
0.49	0.12	0.2
0.3	0.34	0.09
P = 6 mTorr		
0.54	0.07	0.1
0.12	0.28	0.09

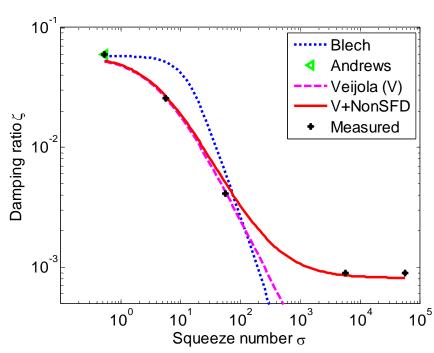
- •Lower pressure results in lower damping, as expected.
- •Curve-fitting was not reliable at 6 mT.
 - $\zeta < 0.1\%$.
 - Window was needed to reduce leakage, but distorted damping.

Result: Predictions versus Measured

slide 17



Conclusions



- On rigid plates with dimensions about 140 μm, oscillating a few μm above the substrate, squeezed air film can cause large damping.
- This work has compared the Blech model, Andrews et al. model, and Veijola model.
- For the conditions tested here, in atmospheric air the simplest model mentioned by Andrews et al. is as good as any more sophisticated models.
- In the high squeeze number regime (low pressures or high frequencies), the Veijola model is shown to match experimental data accurately.

- •The experiments did not allow strong conclusions for the **very high** squeeze-number regime.
 - •Gas behaves as colliding particles. Continuum theories break down.
 - •Experiments must use structures with much lower structural damping (e.g. Si with $Q \sim 100,000$).

Acknowledgment

The authors thank the following personnel:

- Chris Dyck and Bill Cowan's team for providing the test structures.
- Carl Diegert for the confocal microscope photographs.
- Jim Redmond and Steve Kempka for technical guidance and programmatic support.

Thank you!

hSumali@Sandia.gov

