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slide 2Motivation and Objective 

Motivation:
• Electrostatic, parallel-plate actuation is very important in many microsystems

applications. 
• Squeezed-film damping determines the dynamics of plates moving a few microns 

above the substrate. Examples abound in
• MEMS accelerometers.
• MEMS switches.  
• MEMS gyroscopes. 

http://www.sandia.gov/mstc/images/fig3.gif

Objective:
• Provide experimental validation to widely used 

squeezed-film damping models for plates.

• Models for predicting squeezed-film damping 
have not been validated experimentally the in 
high-frequency/low-pressure regime. 
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Squeezed-Film Damping
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P = ambient pressure, Pa
h = gap size, m
μ = viscosity, Pa s
p = pressure at (x,y), Pa
t = time, s

Assumptions:
1. Rigid plate
2. Small gap h/a << 1
3. Small displacement z/h
4. Small pressure variation p/P
5. Isothermal process
6. Pressure on edges = P
7. Small molecular mean free path
8. No inertial effects of gas moving in 

and out of the gap

Molecular mean free path λ is a mean 
distance a molecule travels before colliding. 

mm
RT

P
2μλ =

Forces on moving plate from gas 
layer can be obtained from the 
linearized Reynold’s equation

R = universal gas constant, 
T = temperature, K
mm=molecular mass, kg/mol

Moving plate

Gas gap
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Harmonically Oscillating Plate

• Remember assumption 8: No inertial effects of gas moving in and out of the gap.

• The above Reynold’s equation may not be valid if the gas is pushed in and out of the 
gap at high frequency ω. 

• Inertia and viscosity trap and compress the gas in the gap. 

• This presentation discusses a plate oscillating with a displacement
ε(t) = e0 exp(jωt)

• Three models will be compared with measurement:
• Blech’s model
• Andrews et al.’s limit
• Veijola’s model
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Blech Model
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• The force from the squeezed film is, from Blech’s theory,

a = width, m
b = length, m
e0 = amplitude, m
hm = mean gap size, m
hplate = plate thickness, m
j = √-1
P = ambient pressure, Pa
t = time, s
μ = viscosity, Pa s
ω = frequency, rad/s
ωn = natural frequency, rad/s
ρplate= plate mass density, kg/m3
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• A measure of gas compression is the squeeze number

Blech, J.J., 1983, “On Isothermal Squeeze Films”, Journal of Lubrication Technology, 105, p 615-620. 

• Can be decomposed into

Damping/velocity Spring force/velocity 
velocity
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Effect of Low Pressure

• The above Reynold’s equation is not valid if the molecular mean free path λ is of 
comparable magnitude with the gap size h. i.e., the gas is rarefied. 

• A measure of gas rarefaction is the (modified) Knudsen number

Ks = 1.016 λ/h
• Large Knudsen number means:  

• The mean free path becomes much longer than the gap. 
• The continuum assumption of the Reynold’s equation may break down.
• Reynold’s equation must be modified.

• Remember assumption 7: Small molecular mean free path.
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Effect of Inertia

h = gap size, m
p = pressure at (x,y), Pa
t = time, s
μ = viscosity, Pa s
ρ = density, kg/m3

• Taking into account the inertia of the gas flowing in and out of the gap, Veijola (2004) 
modified Reynold’s equation into
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• Qpr is a flow-rate coefficient that relates flow rates to pressure 
gradients. 
• Time-dependent
• Derivation is tedious but crucial in the accuracy of the model.
• Solved for in Veijola (2004) in frequency domain

• Veijola et al. (1995) also takes into account the gas rarefaction 
in low pressures by developing an effective viscosity

( )159.1638.91/ neff K+= μμ

Knudsen number
Kn = λ/h

Veijola, T., Kuisma, H., Lahdenpera, J., and Ryhanen, T., 1995, “Equivalent-circuit model of the squeezed gas film in a 
silicon accelerometer”,  Sensors and Actuators A, 48, p 239-248. 

Veijola, T., 2004, “Compact models for squeezed-film dampers with inertial and rarefied gas effects”, Journal of 
Micromechanics and Microengineering, 14, p 1109-1118. 

λ = mean free path, m
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Veijola Model
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If the gap oscillation is ε(t) = e0 exp(jωt), then the damping force complex amplitude is 
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a = width, m
b = length, m
e0 = amplitude, m
h = gap size, m
j = √-1
nχ = 1 for isothermal,

(= cp/cv for adiabatic). 
P = ambient pressure, Pa
t = time, s
μ = viscosity, Pa s
ω = frequency, rad/s
ρ = gas mass density, kg/m3

Modified Knudsen 
number 
Ks = 1.016 λ/h
λ = mean free path, m

Veijola, T., 2004, “Compact models for squeezed-film dampers with inertial and rarefied gas effects”, J. Micromech. 
Microeng., 14, p 1109-1118. 
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Model of Test Structure 

Test structure modeled as a Single-Degree-of-Freedom (SDOF) system
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Plate 
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Oscillation of air gap thickness is

Base displacement
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z(t) = Z exp(jωt)

Equation of motion

Excitation is harmonic. System is linear(ized). So response is harmonic

Frequency response function from base displacement to gap oscillation: 
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Result: 3a) and 3b) are almost identical.

Constant-coefficient Model from Curve-Fitting

1. Synthesize frequency response function with damping 
models: 

• Assume structural stiffness ks and mass m are known.
• Assume solid damping cs = 0.
• Compute transmissibility from base displacement to plate 

displacement.

2. Curve-fit around resonant peaks to obtain 
damping ratio ζ and resonant frequency. 

3. Compare the resulting damping ratio ζ
from 

a) curve fitting
b) using the resonant frequency ωd in 

Blech’s model, i.e.,  
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Constant-coefficient Model Using Resonant Frequency

• Then the squeezed-film damping force can be recast into an 
equivalent viscous damping ratio

• If the equation of motion is re-written into the modal form)(tfkzzczm extplate =++ &&&
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• The mass of the plate is mplate = ρplate hplate ab

a = width, m
b = length, m
e0 = amplitude, m
h = gap size, m
hplate = plate thickness, m
j = √-1
mplate = plate mass, kg
P = ambient pressure, Pa
t = time, s
μ = viscosity, Pa s
ωd = resonant freq., rad/s
ωn = natural frequency, rad/s
ρplate = plate density, kg/m3
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• For Veijola’s model, 

• For Blech’s model, 
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Test Device

Plate width
143 μm

1. Substrate is 
shaken up and 
down. 

2. Plate moves up 
and down. 3. Springs flex. 

4. Air gap is compressed and expanded by 
plate oscillation. 

Air gap between plate 
and substrate. Mean 
thickness = 4.6 μm. 

• Oscillator plate suspended 
by four folded springs.  

• Structure is electro-plated 
gold. 

• Thickness around 5.7 μm. 
• Substrate is alumina.
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Test Setup

Microscope Vacuum chamber
Laser beam Die under test
PZT actuator (shaker)

• Excitation: Base displacement with 
piezoelectric actuator. 

• Sensing: Scanning Laser Doppler 
Vibrometer. 

• Modal analysis was done in 2k-50 kHz. 

Measured deflection shape, first mode.

• Tests were repeated at five different 
air pressures from atmospheric (640 
Torr) to near-vacuum (6 milliTorr).
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Effect of Air Pressure on FRF

Near vacuum (0.06 Torr) Atmospheric (625 Torr)

• Atmospheric air damped the first resonant response by two orders of magnitude. 
• Atmospheric air did not damp spring bending (higher) modes as much. 

• From Frequency Response Functions (FRFs), natural frequencies and mode shapes 
were computed with I-DEAS.

• Only the lowest-frequency mode will be discussed here. 
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• Natural frequency and damping were obtained 
from experimental modal analysis. 

• Squeezed-film damping ratios were predicted 
using measured dimensions, measured natural 
frequency.

Array of Test Devices

w1

w3

w4

w2

L1

s2

height h1

height h2

• A 2 x 3 part of a larger array: 
• Two rows 

nominally 
identical. 

• Measured 
dimensions, 
μm:

Long springs Medium 
springs

Short 
springs

w2 14.6 13.6 13.6
w3 9.7 8.8 8.8
w4 8.8 9.7 9.7
L1 225.1 175.4 126.7
s1 0 0 0
s2 143.2 144.2 144.2
h1 5.7 5.7 5.7
h2 10.4 10.3 10.2

w1 9.7 10.7 10.7
w2 14.6 13.6 13.6
w3 8.8 9.7 8.8
w4 9.7 9.7 9.7
L1 226.1 175.4 126.7
s1 0 0 0
s2 144.2 144.2 144.2
h1 5.7 5.7 5.7
h2 10.4 10.6 10

• Assumed width a and 
length b, where
ab = true plate area.

b

a

Des. and Fab. Chris Dyck, SNL
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Result: Natural Frequency and Damping

10.05 7.61 5.35
10.36 7.72 5.93

5.58 3.57 2.26
4.93 3.56 2.58

1.03 0.59 0.49
1 0.79 0.41

0.49 0.12 0.2
0.3 0.34 0.09

0.54 0.07 0.1
0.12 0.28 0.09

P = 6 mTorr

Atm P=625Torr

P = 60 Torr

P = 6 Torr

P = 60 mTorr

Damping ratios ζ, % of critical

290711850712003

217211735010509

Natural frequency, Hz

•Shorter springs result in higher 
natural frequencies, as expected.

•Lower pressure results 
in lower damping, as 
expected.
•Curve-fitting was not 
reliable at 6 mT.

• The two rows were significantly 
different.

• Fabrication variation
• Much more common in MEMS than in 

macro world

Numbers in tables correspond to 
position in array

• ζ < 0.1%.
• Window was 

needed to reduce 
leakage, but 
distorted damping. 
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Result: Predictions versus Measured
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Squeeze number

• Non-squeeze-film 
damping accounts for 
solid structural and 
other unknown 
damping. 

• At high pressure, 
nonSFD does not 
contribute much. 

• At near-vacuum: 
• Gas damping is 

negligible. 
• Assume 90% of 

damping is nonSFD. 

For low squeeze 
numbers, 
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Andrews, M., Harris, I., Turner, G., 1993, “A comparison of squeeze-film theory with measurements 
on a microstructure”, Sensors and Actuators A, 36, p 79-87. 
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Conclusions

• On rigid plates with dimensions about 140 μm, 
oscillating a few μm above the substrate, 
squeezed air film can cause large damping. 

• This work has compared the Blech model, 
Andrews et al. model, and Veijola model. 

• For the conditions tested here, in atmospheric air 
the simplest model mentioned by Andrews et al. 
is as good as any more sophisticated models. 

• In the high squeeze number regime (low 
pressures or high frequencies), the Veijola model 
is shown to match experimental data accurately. 

•The experiments did not allow strong conclusions for the very high squeeze-number 
regime.

•Gas behaves as colliding particles. Continuum theories break down. 
•Experiments must use structures with much lower structural damping (e.g. Si with Q ~100,000).  
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