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The Importance of Wetting Dynamics

N. Srivastava, R.D. Davenport, M.A. Burns, Anal. Chem. 2005, 77, 383-392.

D. Juncker et al., Anal. Chem. 2002, 74, 6139-6144.

Nanoliter Viscometer Microfluidic Capillary Pump

Gap Filling

• Capillary/Surface forces can strongly impact flow behavior in small geometries

• Require an understanding of how the contact angle depends on contact line velocity
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Void Formation Mechanism
Entrainment
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Void Formation Mechanism
Combining Advancing Fronts

90 90

•Knowing the dependence of  with U aids in predicting the shape of the 
advancing front

•Movable voids or surface attached voids may result depending on the 
interface shape (<90º or >90º)
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Void Formation Mechanism
Entrapment

Results from multiple flow paths with different flow resistance 
(strongly geometry dependent)
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Overview

• Experimental Approaches to Measuring 
Dynamic Wetting

• Feed-through goniometer
– Blake Model

– Kinetic Blake Model

• Reactive Liquids

• Surface Roughness

• Summary
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Methods to Study Dynamic Wetting

Induced Flow in 
Capillary

ImmersionSpreading Drop

Forced WettingSpontaneous Wetting
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Feed-Through Goniometer

Amirfazli, Kwok, Gaydos, Neumann, J. Colloid Interface Sci. 205 (1998) 1.
0

20

40

60

80

100

120

140

160

180

0.0001 0.001 0.01 0.1 1 10

Ca

C
o

n
ta

c
t 

A
n

g
le

 (
d

e
g

)

 
 



00

00







a

a

LVSLSV

S

S

S







 WettingPartial

 WettingComplete

• Analyze dynamics of spontaneous spreading 
• Continuously inject liquid to achieve “high” velocities
• Stop flow and let sessile drop relax to obtain “low” velocities
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Feed-through Goniometer Setup
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Wetting Experiment Results
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Wetting Models
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Adhesion to Substrate

Viscosity Molecular-Kinetic

• Molecular-Kinetic Model (Full Non-linear Blake)

T.J. Blake, J. De Coninck Adv. Colloid Int. Sci. 2002, 96, 21-36.

Group terms

curetaa 10cos 

curetaaA 54 
curetaaB 32 

“Curing” model empirically uses a linear 
dependence on cure time, tcure (6 unknowns)

“No Cure” model has 3 parameters 
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Dynamic Wetting Measurements on 
Reactive Systems

• Velocity is indirectly controlled in wetting experiment with pump rate

• Each experiment measures the contact angle and velocity as a function 
of cure time 

• To obtain contact angle-velocity relationship as a function of cure time, 
multiple tests are conducted at different cure times with additional 
substrates

•Perform nonlinear regression over a 2D domain to determine model 
parameters
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Dynamic Wetting on Reactive Systems
Sylgard 184 with 5 wt.% Accelerator on Aluminum at 35°C

Raw Data Extracted from Images from Multiple Tests

Left Contact Line Right Contact Line
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Dynamic Wetting on Reactive Systems
Sylgard 184 with 5 wt.% Accelerator on Aluminum at 35°C

Angle vs. Velocity for both Left and Right Three Phase Contact Lines

• Select “best model” – only select curing model if much better than no cure model
• Interpretation is complicated since reaction is occurring in each test – data cannot 
be taken at constant cure time
• Model Predictions can be used to illustrate response at constant cure time

Model RMS error
“Curing” 3.8°
“No Cure” 10.0°
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Dynamic Wetting on Reactive Systems
Sylgard 184 with 5 wt.% Accelerator on Aluminum at 35°C

Model Predictions 

tcure
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Sylgard 184 Time-Dependent Viscosity
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Sylgard 184 Wetting on 
Aluminum with Mirror Finish

No Accelerator in Part A; T= 25°C

Model RMS error
“Curing” 4.4°
“No Cure” 4.4°
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Sylgard 184 Wetting on 
Aluminum with Mirror Finish

No Accelerator in Part A; T= 35°C

Model RMS error
“Curing” 3.8°
“No Cure” 6.0°
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Sylgard 184 Wetting on 
Aluminum with Mirror Finish

5wt.% Accelerator in Part A; T= 25°C

Model RMS error
“Curing” 3.1°
“No Cure” 3.5°
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Sylgard 184 Wetting on 
Aluminum with Mirror Finish

5wt.% Accelerator in Part A; T= 35°C

Model RMS error
“Curing” 3.8°
“No Cure” 10.0°
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Comparison of Curing Temperature and Accelerator 
Aluminum with Mirror Finish

T = 25°C T = 35°C
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Effect of Surface Roughness on Dynamic 
Wetting

• Machined aluminum surfaces with varying degrees of 
roughness - roughness is anisotropic. (16 to 250 µ-inch)

• Measure dynamic wetting of UCON 75-H-9500 fluid at 
25ºC 
– rand. copolymer with 75wt.% ethylene oxide and 25wt.% propylene 

oxide; µ = 4300 cP;  = 37.0 mN/m

CameraLens

CameraLens

Advancing
Against Grain

(perpendicular)

Advancing
With Grain
(parallel)

WYKO Optical Profilometer TOP VIEW
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Measuring Anisotropic Surface Roughness
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Roughness Statistics for Al Samples
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Liquid Advancing Against Grain
(Perpendicular)

CameraLens

TOP VIEW
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Nominal Roughness (microinches)

•“Jumpy” motion of contact line above 16 µ-inch (410nm)

•Despite increased “jumping” with increasing perpendicular 
roughness, average motion is not affected
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Liquid Advancing Against Grain
(Parallel)

CameraLens

TOP VIEW
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Increasing
Roughness

•Enhanced motion observed when grooves are parallel to 
fluid motion (more pronounced with higher RR)
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Summary

• Altered Blake model to account for time-dependent liquids

• Examined a crosslinking silicone elastomer (Sylgard 184) and as it 
cured, the dynamic contact angle depended more strongly on 
velocity

• Liquid motion perpendicular to the roughness direction was not 
smooth yet when averaged, showed no roughness dependence

• Rougher surfaces exhibited a reduced resistance to liquid motion 
when the liquid is moving in the roughness direction

• Able to characterize the dynamic wetting of liquids and surfaces that 
are encountered in practice
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