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The Importance of Wetting Dynamics

Nanoliter Viscometer Microfluidic Capillary Pump

& drap ol Higuid Is Sorvic
&— placed al the inlet & ¥
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D. Juncker et al., Anal. Chem. 2002, 74, 6139-6144.
Gap Filling
(] i s 1l b= 1.8 T .

N. Srivastava, R.D. Davenport, M.A. Burns, Anal. Chem. 2005, 77, 383-392.

« Capillary/Surface forces can strongly impact flow behavior in small geometries

* Require an understanding of how the contact angle depends on contact line velocity
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% Void Formation Mechanism
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# Void Formation Mechanism

Combining Advancing Fronts

0 <90 0 >90°

*Knowing the dependence of 6 with U aids in predicting the shape of the
advancing front

*Movable voids or surface attached voids may result depending on the
interface shape (6<90° or 6>90°)
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Void Formation Mechanism

Entrapment

Results from multiple flow paths with different flow resistance
(strongly geometry dependent)



~ Overview

* Experimental Approaches to Measuring
Dynamic Wetting

* Feed-through goniometer
— Blake Model
— Kinetic Blake Model

* Reactive Liquids
« Surface Roughness
 Summary
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Methods to Study Dynamic Wetting

Spreading Drop Induced Flow in Immersion
g y u Capillary -
e N

Spontaneous Wetting Forced Wetting



Diffuser

Silicon Wafer

Zoom Lens
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———>» Vacuum Pump

Capillary

Fiber Optic
Illuminator

Amirfazli, Kwok, Gaydos, Neumann, J. Colloid Interface Sci. 205 (1998) 1.

CCD Camera

Motorized Syringe

» Analyze dynamics of spontaneous spreading

Feed-Through Goniometer

'!5,; Ba Yoy

Young-Dupré Equation: y,, =V, +7,, cos 8,

S=Ys Vs~ Vv
S >0 Complete Wetting (Oa = O°)
S <0 Partial Wetting (Oa > O°)
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» Continuously inject liquid to achieve “high” velocities
» Stop flow and let sessile drop relax to obtain “low” velocities




qeed-through Goniometer Setup
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veriment Results
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;;*‘ Wetting Models

* Molecular-Kinetic Model (Full Non-linear Blake)

T.J. Blake, J. De Coninck Adv. Colloid Int. Sci. 2002, 96, 21-36.

Adhesion to Substrate
AL

s N
U= 2kTA exp{_ v, (1+cos@, )} sinh{y”/ (cos@, — cos@)}
nv, nkT 2nkT
S—— N —
Viscosity Molecular-Kinetic

Group terms

- Solve for cos 0

U=4 sinh[ COSQ"OB_ COSQ} ) |cosO =cosO, —B sinh{%}

CcOS QOO =a,+at,,. “Curing” model empirically uses a linear
dependence on cure time (6 unknowns)

’ tcure

B = a2 + a3tcure
A=a, +a.t “No Cure” model has 3 parameters
4 S%cure
a,=a,=a;=0



Contact Angle

ynamic Wetting Measurements on
Reactive Systems
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Cure Time Cure Time

* Velocity is indirectly controlled in wetting experiment with pump rate

» Each experiment measures the contact angle and velocity as a function
of cure time

« To obtain contact angle-velocity relationship as a function of cure time,

multiple tests are conducted at different cure times with additional
substrates

*Perform nonlinear regression over a 2D domain to determine model
parameters
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ynamic Wetting on Reactive Systems

Sylgard 184 with 5 wt.% Accelerator on Aluminum at 35°C
Raw Data Extracted from Images from Multiple Tests
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Angle vs. Velocity for both Left and Right Three Phase Contact Lines
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Full Mom-Linear Blake

Model

Dynamic Wetting on Reactive Systems
Sylgard 184 with 5 wt.% Accelerator on Aluminum at 35°C

g <

222

s
rAve

RMS error

“Curing”

3.8°

“No Cure”

10.0°

* Select “best model” — only select curing model if much better than no cure model
* Interpretation is complicated since reaction is occurring in each test — data cannot

be taken at constant cure time

* Model Predictions can be used to illustrate response at constant cure time
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Dynamic Wetting on Reactive Systems
Sylgard 184 with 5 wt.% Accelerator on Aluminum at 35°C

Angle vs. Yelocity at Different Cure Times
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Vs‘ '
ﬁylgard 184 Time-Dependent Viscosity
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Sylgard 184 Wetting on
Aluminum with Mirror Finish

No Accelerator in Part A; T= 25°C

angle vs, Yelocty at Different Cure Times
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Sylgard 184 Wetting on

Aluminum with Mirror Finish
No Accelerator in Part A; T= 35°C

Angle vs. Yelocity at Different Cure Times
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Angle vs. Yelocity at Different Cure Times

Sylgard 184 Wetting on

Aluminum with Mirror Finish
5wt.% Accelerator in Part A; T=25°C

160~

170-

160~

150 -

140~
. 130-
2 120-
= 110-
= 100-
a0-
a0-
70-
60-
50-
40-
30-
20-
10-
0- I
1E-1 1E+0

e

Contact Ang

I
1E+1

cure

I I
1E+E 1E+3

Velocity (um/s)

bcure = a00s

bcure = 1200=
bcure = 15300s
bcure = 2400=
bcure = 3000=

X

cos6, =0.971-(2.45x107 )-¢
B =0.538+(9.10x10"°)-¢

A=107-(9.14x107 )¢

cure

cure

cure

(0, (3005)=13.8°)

19



_
}' Sylgard 184 Wetting on
Aluminum with Mirror Finish
5wt.% Accelerator in Part A; T= 35°C

Angle vs. Yelocity at Different Cure Times
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Ison of Curing Temperature and Accelerator
; Aluminum with Mirror Finish

T =25°C T =35°C
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Aect of Surface Roughness on Dynamic
Wetting

* Machined aluminum surfaces with varying degrees of
roughness - roughness is anisotropic. (16 to 250 p-inch)
« Measure dynamic wetting of UCON 75-H-9500 fluid at
25°C
— rand. copolymer with 75wt.% ethylene oxide and 25wt.% propylene
oxide; g4 = 4300 cP; y=37.0 mN/m

WYKO Optical Profilometer TOP VIEW
Advancing T
Against Grain O
(perpendicular) l
: Advancing T
With Grain O
' (parallel) l
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}' Liquid Advancing Against Grain

(Perpendicular)

Cantact Angle vs, Yelacity
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«“Jumpy” motion of contact line above 16 p-inch (410nm)

*Despite increased “jumping” with increasing perpendicular

roughness, average motion is not affected 25
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Liquid Advancing Against Grain
(Parallel)

Cantact Angle vs. Yelacity
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# Summary

« Altered Blake model to account for time-dependent liquids

 Examined a crosslinking silicone elastomer (Sylgard 184) and as it
cured, the dynamic contact angle depended more strongly on
velocity

« Liquid motion perpendicular to the roughness direction was not
smooth yet when averaged, showed no roughness dependence

* Rougher surfaces exhibited a reduced resistance to liquid motion
when the liquid is moving in the roughness direction

« Able to characterize the dynamic wetting of liquids and surfaces that
are encountered in practice
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