

Society for Experimental Mechanics
Annual Conference and Exposition
 3-6 June 2007
 Springfield, Massachusetts

Abstract title: Doppler Electron Velocimeter—a Proposed Nano-scale Dynamic Measurement System
Corresponding author (first name): Phillip
Corresponding author (MI): L.
Corresponding author (family name): Reu
University/Company: Sandia National Laboratories
Street address: PO Box 5800
Dept/Mail codes: MS 1310
City: Albuquerque
State: New Mexico
Zip/Country postal code: 87185
Country: USA
Phone: 505 284 8913
Fax: 505 845 8620
Email: plreu@sandia.gov
Presentation type (please indicate either Oral or Poster): Oral

ABSTRACT

Phillip L. Reu

Sandia National Laboratories
 Albuquerque, NM

Doppler Electron Velocimeter—a Proposed Nano-scale Dynamic Measurement System

As engineering challenges grow in the ever shrinking world of nano-design, methods of making dynamic measurements of these materials and systems will become important. Electron microscopes have imaged these extremely small samples for years, but are incapable of measuring dynamic events. A means of measuring these nano-scale dynamic events is envisioned by converting an electron microscope into a Doppler velocimeter. This idea proceeds from the analogous concept of laser Doppler velocimetry. However, the obvious solution of using a laser to probe at the nano-scale is not feasible because the diffraction limit of light is orders of magnitude larger than the samples of interest. This paper investigates the theoretical underpinnings of using electron beams for Doppler measurements. Potential issues and their solutions, including electron beam coherence and interference will be presented. If answers to these problems can be found, the invention of the Doppler electron velocimeter could yield a completely new measurement concept at atomistic scales.

Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy's National Nuclear Security Administration under contract No. DE-AC04-94AL85000.

Keywords: Nano, MEMS, vibrometry, dynamic measurements, electron microscopy.