

Direct Epoxidations Using Molecular Oxygen*

Brian J. Boro, Raymond B. Lansing, Agnes Mrutu, Greg Fulmer,
Karen I. Goldberg, Richard P. Muller, Constantine Stewart*, and Richard A. Kemp*

Abstract:

This poster summarizes our findings during the study of a novel homogeneous epoxidation catalyst system that uses molecular oxygen as the oxidant, a “Holy Grail” in catalysis. While olefins (alkenes) that do not contain allylic hydrogens can be epoxidized directly using heterogeneous catalysts, most olefins cannot, and so a general, atom-efficient route is desired. While most of the work performed on this project has been on pincer complexes of late transition metals, we also scouted out metal/ligand combinations that were significantly different, and unfortunately, less successful. Most of the work reported here deals with phosphorus-ligated Pd hydrides $[(\text{PCP})\text{Pd-H}]$. We have demonstrated that molecular oxygen gas can insert into the Pd-H bond, giving a structurally characterized Pd-OOH species. This species reacts with oxygen acceptors such as olefins to donate an oxygen atom, although in various levels of selectivity, and to generate a $[(\text{PCP})\text{Pd-OH}]$ molecule. We discovered that the active $[(\text{PCP})\text{Pd-H}]$ active catalyst can be regenerated by addition of either CO or hydrogen. The demonstration of each step of the catalytic cycle is quite significant. Extensions to the pincer-Pd chemistry by attaching a fluorinated tail to the pincer designed to be used in solvents with higher oxygen solubilities are also presented.

*Sandia National Laboratories, Albuquerque, New Mexico, is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

Presented: 2006 Gordon Research Conference on Inorganic Chemistry,
Newport, RI, July 16-20, 2006