

# Defect Collection & Analysis – The Basis of Software Quality Improvement

**Joe Schofield,  
Sandia National Laboratories  
Albuquerque, N. M.**

Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company,  
for the United States Department of Energy under contract DE-AC04-94AL85000.



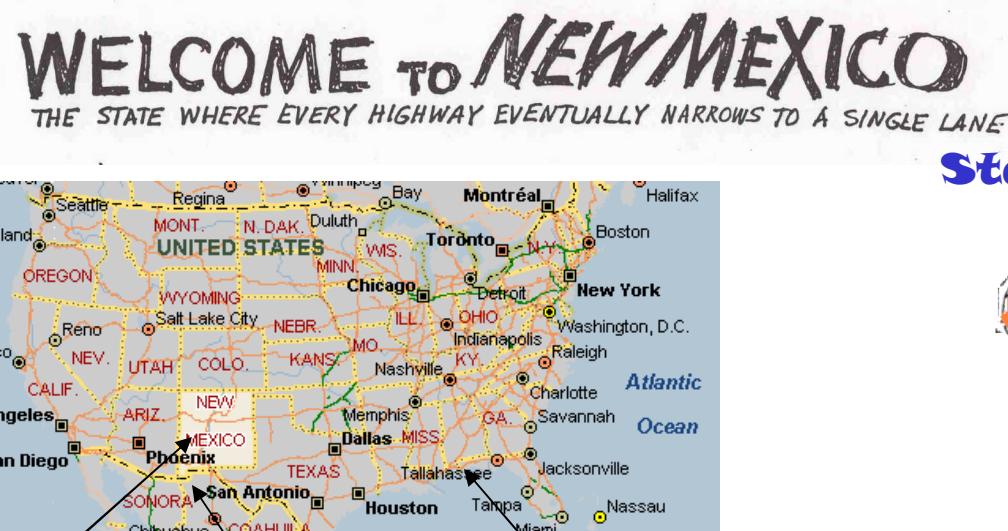


# Defect Collection & Analysis – The Basis of Software Quality Improvement

**Joe Schofield, yhs**

Note: The CMMI and SW-CMM are registered copyrights of the Software Engineering Institute

The opinions expressed in the presentation are solely / sorely, the presenter's.


# (Geographical) Context Diagram



State mineral



State animal



New Mexico

Mexico

You are here!

State flag & statue

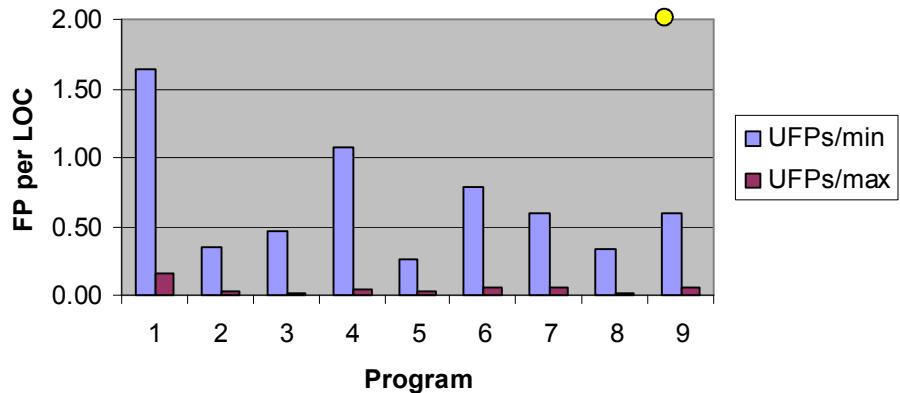


State motto






# A Quick Look Back & Update on Recent IFPUG / ISMA Presentations


|      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 2002 | <p><b>Counting KLOCs – Software Measurement's Ultimate Futility (I can't do this anymore, or who am I fooling?, or why not count ants?)</b></p> <p><i>The Statistically Unreliable Nature of Lines of Code; CrossTalk, April 2005</i></p> <p><i>A Practical, Statistical, and Criminal Look at the Use of Lines of Code as a Software Sizing Measure ; N.M. SPIN; March, 2004</i></p>                                                                                                                                                                                                          |
| 2003 | <p><b>Amplified Lessons from the Ant Hill –</b></p> <p><b>What Ants and Software Engineers Have in Common</b></p> <p><i>Lessons from the Ant Hill - What Ants and Software Engineers Have in Common; Information Systems Management, Winter 2003</i></p>                                                                                                                                                                                                                                                                                                                                       |
| 2004 | <p><b>Applying Lean Six Sigma to Software Engineering</b></p> <p><i>When Did Six Sigma Stop Being a Statistical Measure?; CrossTalk, April 2006</i></p> <p><i>Lean Six Sigma - Real Stories from Real Practitioners; Albuquerque, N.M.; N.M. SPIN; August 2005</i></p> <p><i>Six Sigma &amp; Software Engineering: Complement or Collision; Albuquerque, N.M.; N.M. SPIN; August, 2004</i></p>                                                                                                                                                                                                 |
| 2005 | <p><b>Defect Collection &amp; Analysis – The Basis of Software Quality Improvement</b></p> <p><i>Defect Management through the Personal Software Process(SM); CrossTalk, September 2003</i></p> <p><i>The Team Software ProcessSM - Experiences from the Front Line; Software Quality Forum; Arlington, Virginia, March; 2003</i></p> <p><i>Measuring Software Process Improvement - How to Avoid the Orange Barrels; System Development, December 2001</i></p> <p><i>Usable Metrics for Software Improvement within the CMM; Software Quality Forum 2000; Santa Fe, N.M.; April, 2000</i></p> |

# Min and max values for “C” code compared to Function Point size over 9 programs (n = 49)

|                 | <b>*P1</b> | <b>P2</b> | <b>P3</b> | <b>P4</b> | <b>P5</b> | <b>P6</b> | <b>P7</b> | <b>P8</b> | <b>P9</b> |
|-----------------|------------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|
| <i>Min</i>      | 22         | 20        | 15        | 13        | 27        | 23        | 25        | 21        | 25        |
| <i>Max</i>      | 221        | 311       | 336       | 289       | 270       | 306       | 242       | 383       | 284       |
| <i>UFPs</i>     | 36         | 7         | 7         | 14        | 7         | 18        | 15        | 7         | 15        |
| <i>UFPs/min</i> | 1.64       | 0.35      | 0.47      | 1.08      | 0.26      | 0.78      | 0.60      | 0.33      | 0.60      |
| <i>UFPs/max</i> | 0.16       | 0.02      | 0.02      | 0.05      | 0.03      | 0.06      | 0.06      | 0.02      | 0.05      |
| <i>Variance</i> |            |           |           |           |           |           |           |           |           |
| <i>Range</i>    | 10.05      | 15.55     | 22.40     | 22.23     | 10.00     | 13.30     | 9.68      | 18.24     | 11.36     |
|                 |            |           |           |           |           |           |           |           | 14.76     |

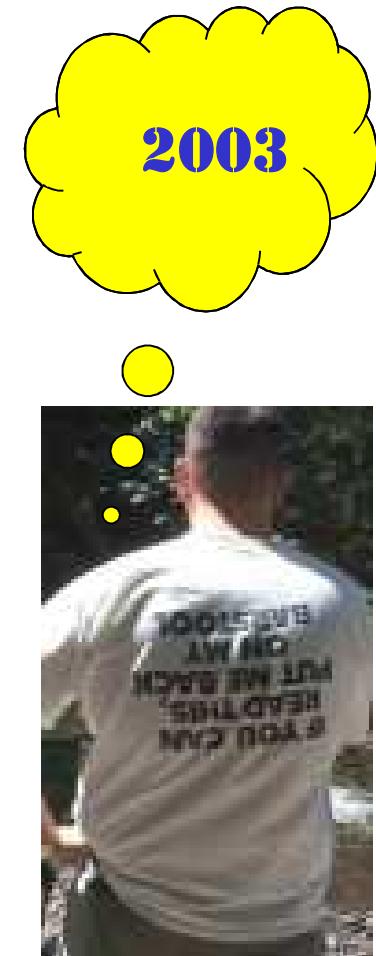


"C" Min/Max Function Point Range



Largest min to max variance is > 22, smallest is almost 10, average is almost 15.

Note that in these three examples, variance and averages increased as the population increased.




# Software engineers are smarter than ants, right?

**Observation:** When ants underestimate the size of a job, they compensate with waves of more ants. Most software projects cannot afford this tactic.

**Lesson:** Use reliable sizing measures like Function Points to assess progress. Avoid the practice of counting lines of code as a measure of size or progress.

**Reference:** *A Practical, Statistical, and Criminal Look at the Use of Lines of Code as a Software Sizing Measure*, Schofield, Structured Development Forum, March, 2003



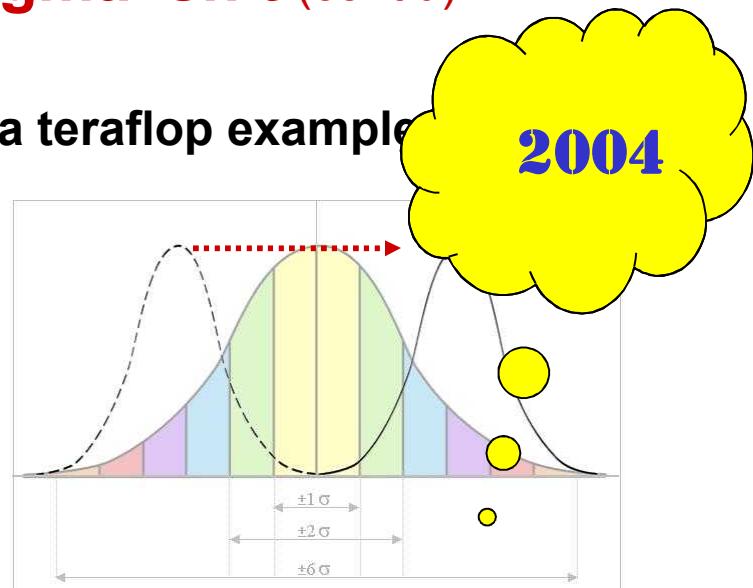
# When Lean Six Sigma Isn't (cont'd)

“What if” the *sigma shift* went to the right – a teraflop example

TeraFlops machine

1T floating point operations instructions per second =

3 defects per 100 seconds =


108 defects per hour =

18,144 per week =

943,488 DEFECTS per year =

50M+ a year at “shifted 6 sigma” (4.5 sigma)

(these numbers are rounded down)



<sup>1</sup> PetaFlops machine

predicted to be ready by 2005 or 2006

1,000 times faster than a 1TFlop machine =

943,488,000 defects per year @ 7.5 sigma =

**50B (that's BILLION) at “shifted 6 sigma”**

**Who can repair / afford / manage that many defects?**

PETAFLOP Imperative; Informationweek; June 21, 2004; pgs. 55 – 62

<sup>2</sup> IBM's Gene/L at Lawrence Livermore National Lab operates @ 70.72TF

IBM will increase the speed to 360 TF in 2005

U.S. Regains Top Supercomputer Spots; Informationweek; November 15, 2004; pg. 28



# (Back to Defects . . . )

## The Business Case for Defect Removal

Software defects cost the U.S. \$59.6B a year<sup>1</sup>

38 percent of polled organizations have no SQA program<sup>2</sup>

Software technicians in Panama are charged with second degree murder after 27 patients received overdoses of gamma rays; 21 have died in 40 months<sup>3</sup>

BMW, DaimlerChrysler, Mitsubishi, and Volvo experience product malfunctions (engine stalls, gauges not illuminated, wiping intervals, wrong transmission gears) due to software<sup>4</sup>

A 2002 GAP report showed that spreadsheet errors at NASA contributed to a \$644M misstatement in 1999<sup>5</sup>

SPAM will cost the world \$50B in lost productivity and other expenses . . . according to Ferri Research<sup>6</sup>

Medical staff report 38 percent defect rate while using computerized physician order entry (CPOE) systems in determining low dose for infrequently used medications.<sup>7</sup>

The FBI's \$170M virtual case file project went through 10 program managers before being cancelled.<sup>8</sup>

<sup>1</sup> Informationweek, *Behind the Numbers*, March 29, 2004; pg 94

<sup>2</sup> CIO, *By the Numbers*, December 1, 2003, pg 28

<sup>3</sup> Baseline – The Project Management Center, *We Did Nothing Wrong*, March 4, 2004

<sup>4</sup> Informationweek, *Software Quality*, March 15, 2004; pg 56

<sup>5</sup> CIO, *Essential Technology*, May 15, 2005; pg 74

<sup>6</sup> Informationweek, February 28, 2005; pg 18

<sup>7</sup> CIO, *Medication Systems*, June 1, 2005; pg 28

<sup>8</sup> CIO, *Why the G-Men Aren't IT Men*, June 15, 2005; pg 44

# The Business Case for Defect Removal (continued)

## December Data Exposures



**JUSTICE** Social Security numbers and other personal data of an unknown number of people involved in various cases can be seen on its Web site



**MARRIOTT** Social Security and credit-card numbers and other personal data of 206,000 employees and customers went missing



**FORD** A computer with personal data, including Social Security numbers, on 70,000 current and former employees was stolen



**ABN AMRO** A tape containing data on about 2 million customers was lost as it was being transported; the tape was later found



**SAM'S CLUB** At least 600 customers who bought gas at Sam's Club stores between Sept. 21 and Oct. 2 had credit-card data stolen

Informationweek; 1/2/2006; pg. 19

## Room for Improvement

**ALIGNMENT** In a recent survey of more than 1,400 midsize organizations in the United States, Canada and the United Kingdom conducted by Info-Tech Research Group, 95 percent of respondents said their IT departments are failing to deliver projects either on time or that meet the expectations of business executives. It should hardly come as a surprise, therefore, that only 11 percent of the organizations that responded view technology as a "strategic weapon."

"The fact that almost every IT department is failing on some of their projects is both a major contributor to, and a major symptom of, the misalignment of business and IT," says Frank Koelsch, executive vice president for corporate strategy and research at the Info-Tech Research Group.

CIO; 5/1/2005; pg. 28

According to "IT Priorities 2005," a survey by Info-Tech Research Group, organizations cited these top three reasons that projects fail.

|                              |            |
|------------------------------|------------|
| Unrealistic time frames      | <b>68%</b> |
| Insufficient staffing        | <b>64%</b> |
| Poorly defined project scope | <b>62%</b> |

(Organizations could select more than one answer.)

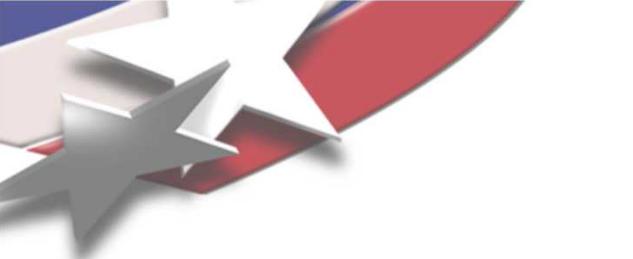
## Terror Data Collection System a 'Boondoggle'

BY SIOBHAN GORMAN

*The Baltimore Sun*

WASHINGTON—A program that was supposed to help the National Security Agency identify electronic data crucial to the nation's safety is not up and running more than six years and \$1.2 billion after it was launched, according to current and former government officials.

The classified project, code-named Trailblazer, was promoted as the NSA's state-of-the art tool for sifting through an ocean of modern day digital communications and uncovering key nuggets to protect the nation against an ever-changing collection of enemies.


Its main goal when it was launched in 1999 was to allow NSA analysts to connect the 2 million bits of data the agency collects every hour — a task that has grown increasingly complex with the advent of the Internet, cell phones and instant messaging — and enable them quickly to identify the

most important information.

A major failure leading up to Sept. 11, 2001 involved communications intelligence, investigators found. More than 30 hints of the impending attack had been collected in the previous three years but had gone unnoticed in the NSA's databases, according to a joint congressional inquiry into pre-Sept. 11 intelligence operations.

The NSA initiative, which was designed to spot and analyze such information, has resulted in little more than detailed schematic drawings filling almost an entire wall, according to intelligence experts. After an estimated \$1.2 billion in development costs, only a few isolated analytical and technical tools have been produced, said an intelligence expert with extensive knowledge of the program.

Trailblazer is "the biggest boondoggle going on now in the intelligence community," said Matthew Aid, who has advised three federal commissions and panels that investigated the Sept. 11 intelligence failures.



# The Business Case for Defect Removal (continued)

## GM Recalls 900,000 Chevy, GMC Pickups

### Tailgate Cable Might Break

BY KEN THOMAS  
The Associated Press

WASHINGTON — General Motors Corp. said Friday it is recalling about 900,000 pickup trucks worldwide to fix problems with tailgate cables that can corrode and break when loads are placed on them.

The recall involves 1999-2000 models of the Chevrolet Silverado and GMC Sierra trucks. GM said there have been 84 injuries, most of them minor scrapes and bumps, but no crashes or deaths linked to the problem.

GM, the world's No. 1 automaker, said the galvanized, braided-steel support cables that keep the tailgates in place can corrode or fray over time, "which can make them break," Adler said.

Albuquerque Journal; 3/2006; Business page

time because of moisture seeping through cracks in the plastic sheathing of the cable or entering between the cable's metal strands.

The automaker had recalled about 4 million 2000-2004 pickups worldwide in March 2004 because the tailgates could break without warning. The recall involved a broader range of vehicles, including the Chevrolet Silverado, GMC Sierra, Chevrolet Avalanche and Cadillac Escalade EXT trucks.

GM spokesman Alan Adler said the vehicles covered by the new recall had different materials used in the support cables and involved fewer complaints. He said the automaker decided to issue the recall after "an exhaustive investigation."

"We worked with (the National Highway Traffic Safety Administration) and decided to get this house in line," Adler said.

Informationweek; 6/5/2006; pg. 18

## House Wrecks Valued at \$400M

The Associated Press

VALPARAISO, Ind. — A house erroneously valued at \$400 million is being blamed for budget shortfalls and possible layoffs in municipalities and school districts in northwest Indiana.

An outside user of Porter County's computer system may have triggered the mess by accidentally changing the value of the Valparaiso house. The house had been valued at \$121,900 before the glitch.

County Treasurer Jim Murphy said the home usually carried about \$1,500 in property taxes; this year, it was billed \$8 million.

U.K. HEALTH SYSTEM


## One Sick IT Project

**CALLED "THE GREATEST IT DISASTER IN HISTORY"** one London columnist, the U.K. National Health Services' program to create nationwide e-health records and upgrade the medical system's IT infrastructure is in trouble. Britain's Labor government says the program will end up costing more than \$55 billion — a whopping \$26 billion over budget.

The project, run by Accenture, Computer Sciences Corp., Fujitsu, and others, has been plagued by software problems and resistance from physicians. The vendors face big penalties if deadlines aren't met. In March, Accenture took a \$450 million hit as a result. It's enough to make you sick.

—PAUL McDougall

Informationweek; 6/5/2006; pg. 18



# Basic Measures for Defects

**Defect** – a product anomaly such as an omission or imperfection; faults in software sufficiently mature for test or operation. Adapted from the IEEE 982.1

## Defect Attributes:

Defect injection

Defect detection

Defect removal cost

Defect type

Defect status

Defect severity

Peer Review times

Defect repair cost

## Derivable Defect Measures:

Defect per Function Point

Average cost of defect by phase

Average cost of defect by work product

Defect leakage

Predicted number of defects (historic DFP)

Cost of Peer Reviews

Cost of defect removal

Cost of testing

ROI for defect removal (Cost of prevention and removal vs. cost of repair)



# Applying DMAIC (Six Sigma) to Defect Data

Actual cost benefit figures for software development

**Measures:**

**Define (opportunities)**

An Organization Definition

**Measure (performance)**

Peer Reviews & Defects

**Analyze (opportunity)**

Defect List & Analysis

**Improve (performance)**

Process Focus & Change

**Control (performance)**

Sustained Measurement & Improvement

*Whats*

*Hows*



# Applying DMAIC to Defect Data (cont'd)

Required items are **bold**.

| Attribute               | Value          |
|-------------------------|----------------|
| <b>Discovered By</b>    | Change Request |
| <b>Peer Review Item</b> |                |
| <b>Detection Phase</b>  | Planning       |
| <b>Injection Phase</b>  | Planning       |
| <b>Defect Type</b>      | Completeness   |
| <b>Defect Severity</b>  | Aesthetic      |
| Cost to Repair          |                |
| Description/Class       |                |
| Disposition             |                |

**Measure / Record**

**Analyze**

**Defect Types**

| Category   | Count |
|------------|-------|
| Failure    | ~20   |
| Functional | ~165  |
| Aesthetic  | ~125  |

**Injected Defects for 12 Projects**

| Phase    | Defects |
|----------|---------|
| Ops.     | ~115    |
| Deploy.  | ~40     |
| Impl.    | ~75     |
| Design   | ~95     |
| Analysis | ~95     |
| Planning | ~40     |

**Distribution of Defect Cost to Repair**

| Cost Range                  | Count |
|-----------------------------|-------|
| Cost not recorded           | ~40   |
| More than \$100             | ~5    |
| Less than or equal to \$100 | ~50   |
| Less than or equal to \$20  | ~35   |
| Less than or equal to \$5   | ~145  |

# Applying DMAIC to Defect Data (cont'd)

[Modify or Input Defects](#)

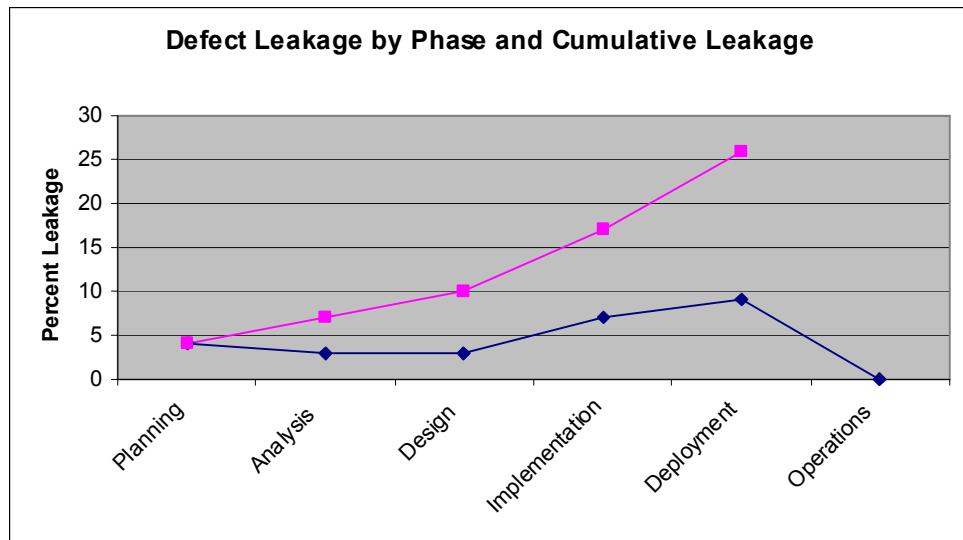
| SILC Review Phase | Discovered By  | Defect Type  | Total Defects | Total Cost | Cost Per Defect |
|-------------------|----------------|--------------|---------------|------------|-----------------|
| Planning          | Change Request | Completeness | 20            | 707        | 35.35           |
| Planning          | Peer Review    | Completeness | 91            | 3867       | 42.49           |
| Planning          | Peer Review    | Consistency  | 21            | 667        | 31.76           |
| Planning          | Peer Review    | Corrective   | 33            | 1481       | 44.88           |
| Planning          | Test Plan      | Completeness | 1             | 4          | 4.00            |
| Analysis          | Change Request | Completeness | 6             | 180        | 30.00           |
| Analysis          | Change Request | Corrective   | 6             | 60         | 10.00           |
| Analysis          | Peer Review    | Completeness | 124           | 2900       | 23.39           |
| Analysis          | Peer Review    | Consistency  | 103           | 1968       | 19.11           |
| Analysis          | Peer Review    | Corrective   | 109           | 1890       | 17.34           |
| Design            | Change Request | Completeness | 3             | 160        | 53.33           |
| Design            | Change Request | Corrective   | 4             | 170        | 42.50           |
| Design            | Peer Review    | Completeness | 265           | 7406       | 27.95           |
| Design            | Peer Review    | Consistency  | 59            | 1313       | 22.25           |
| Design            | Peer Review    | Corrective   | 162           | 2054       | 12.68           |
| Design            | Test Plan      | Completeness | 2             | 8          | 4.00            |
| Design            | Test Plan      | Consistency  | 1             | 6          | 6.00            |
| Design            | Test Plan      | Corrective   | 4             | 124        | 31.00           |
| Implementation    | Change Request | Completeness | 2             | 80         | 40.00           |
| Implementation    | Change Request | Corrective   | 8             | 1337       | 167.13          |
| Implementation    | Peer Review    | Completeness | 63            | 2125       | 33.73           |
| Implementation    | Peer Review    | Consistency  | 55            | 1909       | 34.71           |
| Implementation    | Peer Review    | Corrective   | 76            | 2572       | 33.84           |
| Implementation    | Test Plan      | Completeness | 36            | 3801       | 105.58          |
| Implementation    | Test Plan      | Consistency  | 15            | 1146       | 76.40           |
| Implementation    | Test Plan      | Corrective   | 85            | 3151       | 37.07           |
| Deployment        | Change Request | Corrective   | 4             | 67         | 16.75           |
| Deployment        | Peer Review    | Completeness | 29            | 200        | 6.90            |
| Deployment        | Peer Review    | Consistency  | 1             | 4          | 4.00            |
| Deployment        | Peer Review    | Corrective   | 7             | 38         | 5.43            |
| Operational       | Change Request | Completeness | 5             | 408        | 81.60           |
| Operational       | Change Request | Consistency  | 4             | 195        | 48.75           |
| Operational       | Change Request | Corrective   | 12            | 1215       | 101.25          |
| Operational       | Test Plan      | Corrective   | 11            | 1319       | 119.91          |

Find  
Remove  
Prevent

# Applying DMAIC to Defect Data (cont'd)

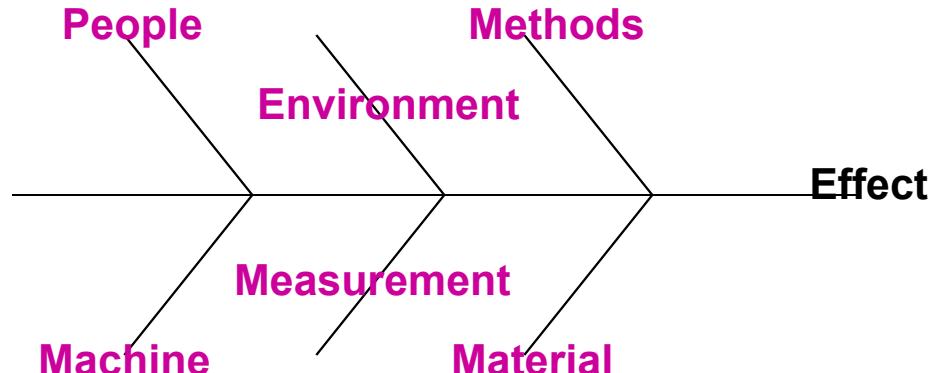
Find  
Remove  
Prevent

| Artifact Reviewed                                        | Total Defects | Total Cost | Cost Per Defect |
|----------------------------------------------------------|---------------|------------|-----------------|
| External Interfaces Definition                           | 94            | 1612       | 17.15           |
| Information Model                                        | 57            | 525        | 9.21            |
| Internal Components Definition                           | 67            | 1507       | 22.49           |
| Other: Business Rules                                    | 5             | 13         | 2.60            |
| Other: Business Rules and Use Cases                      | 33            | 122        | 3.70            |
| Other: CSA Administrator Documentation                   | 2             | 20         | 10.00           |
| Other: CSA User Documentation                            | 2             | 20         | 10.00           |
| Other: EP Interim Solution: Source Code                  | 13            | 308        | 23.69           |
| Other: External Interfaces Definition - Admin            | 5             | 9          | 1.80            |
| Other: External Interfaces Definition - Report           | 9             | 29         | 3.22            |
| Other: External Interfaces Definition - Wizard           | 4             | 47         | 11.75           |
| Other: Information Model, Data Dictionary                | 7             | 22         | 3.14            |
| Other: Interim Solution Test Plan                        | 6             | 159        | 26.50           |
| Other: Internal Components Definition--Admin             | 1             | 1          | 1.00            |
| Other: Internal Components Definition--Course            | 3             | 266        | 44.33           |
| Other: RS2 User Process Model                            | 5             | 70         | 14.00           |
| Other: RS3 SW Requirements & Design Specification        | 1             | 50         | 50.00           |
| Other: RS3 Software Source Code & Executables            | 5             | 610        | 122.00          |
| Other: RS3 User Process Model                            | 8             | 165        | 20.63           |
| Other: RS5 User Process Model                            | 4             | 14         | 3.50            |
| Other: RS6 User Process Model                            | 7             | 300        | 42.86           |
| Other: RS7 Design                                        | 7             | 200        | 28.57           |
| Other: RS7 Software Source Code & Executables            | 3             | 40         | 13.33           |
| Other: RS7 User Process Model                            | 8             | 135        | 16.88           |
| Other: Software Requirements Specification               | 27            | 470        | 17.41           |
| Other: Test Plan, Information Model, External Interfaces | 25            | 134        | 5.36            |
| Other: Use Case Diagrams & Textual Use Cases             | 1             | 2          | 2.00            |
| Other: Use Case Model                                    | 3             | 7          | 2.33            |
| Other: User Documentation                                | 17            | 101        | 5.94            |
| Project Plan                                             | 129           | 4005       | 31.05           |
| Software Source Code & Executables                       | 139           | 4561       | 32.81           |
| Test Plan                                                | 209           | 3774       | 18.06           |
| User Process Model                                       | 132           | 5641       | 42.73           |


Defect summary by work product

For defect removal, Tom Glib reports some inspection efficiencies as high as 88 percent. Jones, *Software Quality*, pg 215

# Applying DMAIC to Defect Data (cont'd)


Given:

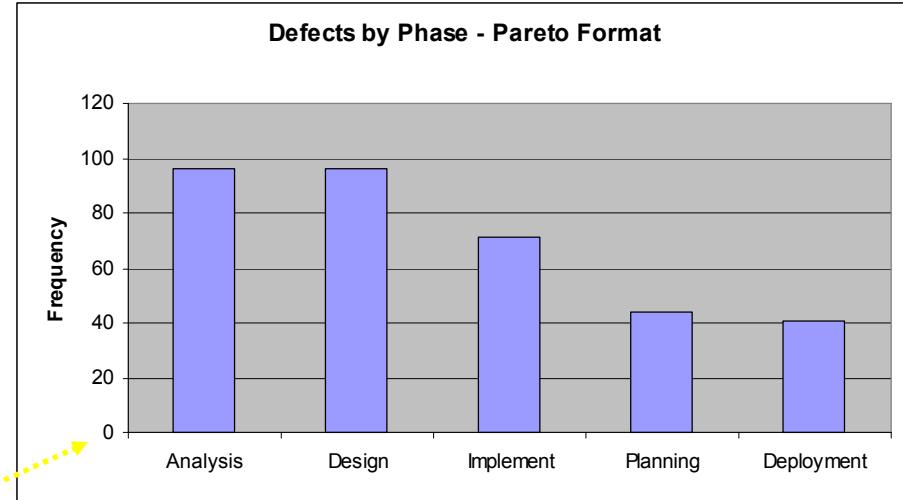
- 1 Peer Review is performed in Planning
- 2 Peer Reviews are performed in Analysis
- 3 Peer Reviews are performed in Design



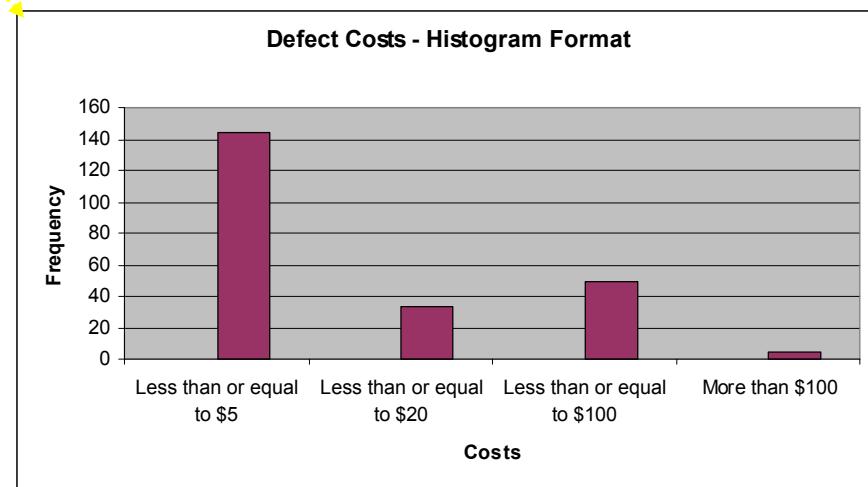
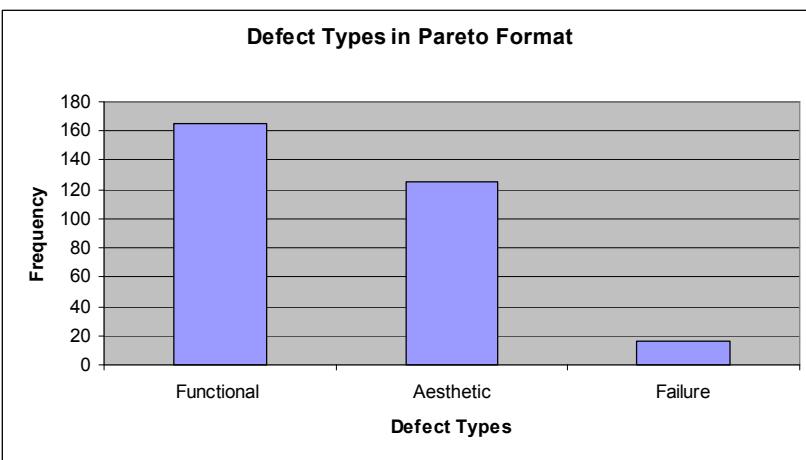
Look at Planning & Analysis

- 1) How are so many defects removed in Implementation?
- 2) Does the organization need more Peer Reviews in Planning & Analysis?
- 3) How effective are Design Peer Reviews?

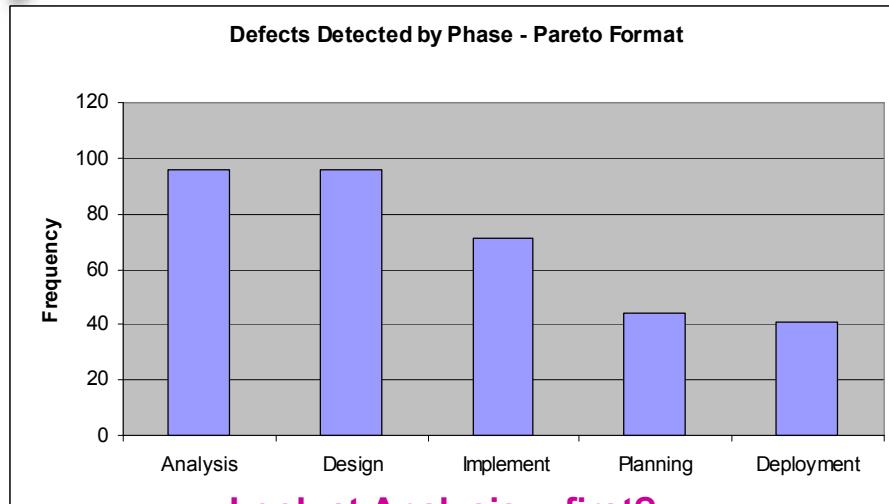



# Using Pareto Analysis and Histograms for Defect Data

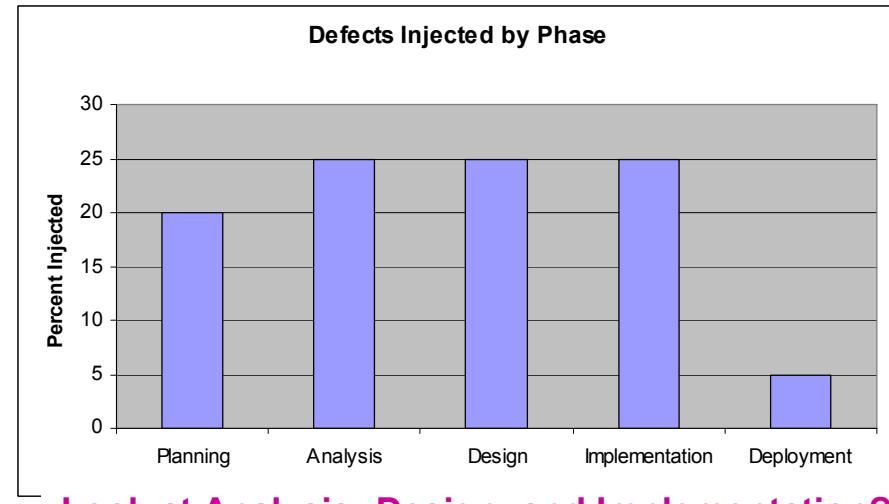
Required items are **bolded**.



| Attribute         | Value                                                                                                                                                |                                                                                                                                                        |
|-------------------|------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------|
| Discovered By     | Change Request <input style="width: 100px; height: 20px; border: 1px solid #ccc; border-radius: 5px; padding: 2px 10px;" type="button" value="..."/> | Peer Review Item <input style="width: 100px; height: 20px; border: 1px solid #ccc; border-radius: 5px; padding: 2px 10px;" type="button" value="..."/> |
| Detection Phase   | Planning <input style="width: 100px; height: 20px; border: 1px solid #ccc; border-radius: 5px; padding: 2px 10px;" type="button" value="..."/>       |                                                                                                                                                        |
| Injection Phase   | Planning <input style="width: 100px; height: 20px; border: 1px solid #ccc; border-radius: 5px; padding: 2px 10px;" type="button" value="..."/>       |                                                                                                                                                        |
| Defect Type       | Completeness <input style="width: 100px; height: 20px; border: 1px solid #ccc; border-radius: 5px; padding: 2px 10px;" type="button" value="..."/>   |                                                                                                                                                        |
| Defect Severity   | Aesthetic <input style="width: 100px; height: 20px; border: 1px solid #ccc; border-radius: 5px; padding: 2px 10px;" type="button" value="..."/>      |                                                                                                                                                        |
| Cost to Repair    | <input style="width: 100px; height: 20px; border: 1px solid #ccc; border-radius: 5px; padding: 2px 10px;" type="text"/>                              |                                                                                                                                                        |
| Description/Class | <input style="width: 100px; height: 20px; border: 1px solid #ccc; border-radius: 5px; padding: 2px 10px;" type="text"/>                              |                                                                                                                                                        |
| Disposition       | <input style="width: 100px; height: 20px; border: 1px solid #ccc; border-radius: 5px; padding: 2px 10px;" type="text"/>                              |                                                                                                                                                        |

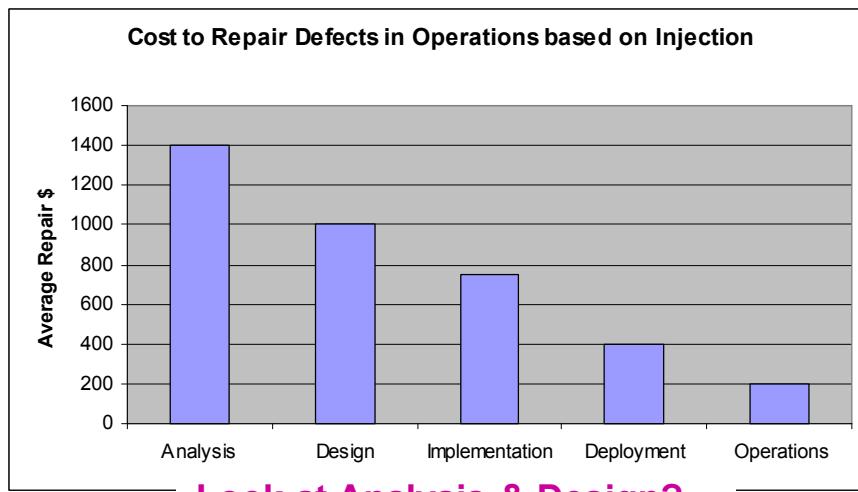
Buttons: Submit, Reset.


Captured




Analyze (Derived)




# Even Tools Require Thinking



Look at Analysis – first?



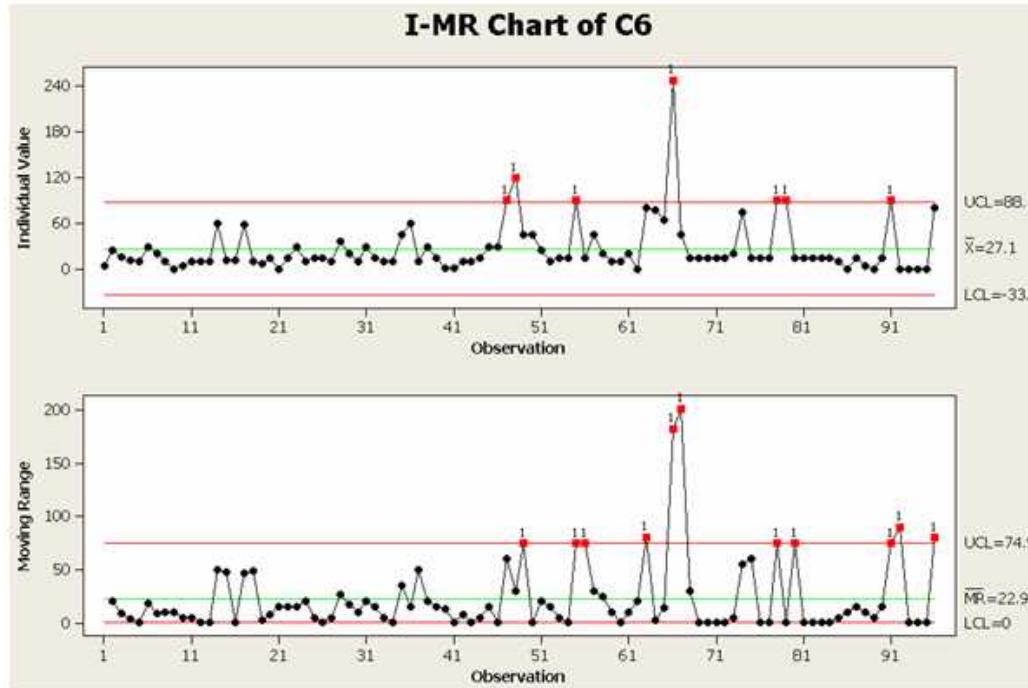
Look at Analysis, Design, and Implementation?



Look at Analysis & Design?



Look at Implementation?


# A Way to Look at Defects

|                |                | Phase Injected |          |        |       |         |         |
|----------------|----------------|----------------|----------|--------|-------|---------|---------|
|                |                | Planning       | Analysis | Design | Impl. | Deploy. | Ops.    |
| Phase Detected | Planning       | 109            | 4        | 8      | 8     |         |         |
|                | Analysis       | 1              | 290      | 2      |       |         | Find    |
|                | Design         | 3              | 9        | 476    | 2     |         | Remove  |
|                | Impl.          | 1              | 1        | 13     | 296   |         | Prevent |
|                | Deploy.        |                |          |        | 1     | 20      |         |
|                | Ops.           |                |          | 3      | 24    | 2       | 30      |
|                | Total Injected | 114            | 304      | 502    | 331   | 22      | 30      |
| % leakage      |                | 4              | 3        | 3      | 7     | 9       |         |

What does this association matrix REVEAL?



# Some Statistical Analysis is Required for “Higher Level Maturity”




**Find**  
**Remove**  
**Prevent**

**Special (Assignable) Cause removal required at CMMI® Level 4**

*How well the process is performed*

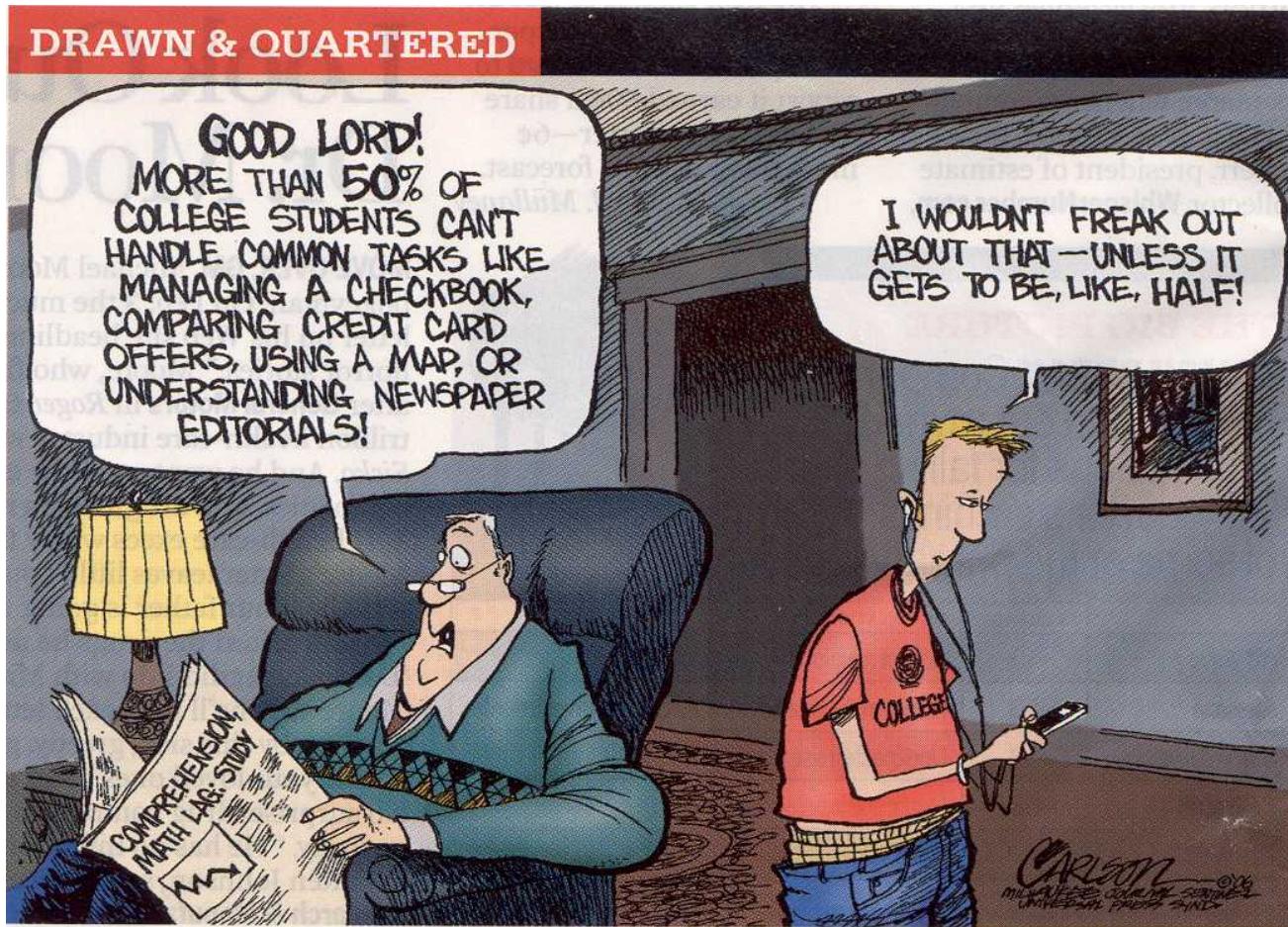
# Some Statistical Analysis is Required for “Higher Level Maturity”

Balancing the “voice of the customer” with the “voice of the process”



Causal analysis is required at CMMI® Level 5

Find


*How well the process is performs*

Remove

Prevent



# Don't worry, the future looks bright – &\$#%!



BusinessWeek 2/20/2006 pg. 14



# Measurement-related Characteristics of “Higher Level Maturity” Organizations

- 85 percent of high maturity organization align process improvement with TQM initiatives at the enterprise level
- 85 percent of high maturity organizations have multiple process and quality improvement initiatives
- 81 percent of high maturity organizations also have ISO 9001 certification
- 50 percent using CMM, 42 percent using balanced scorecard, 42 percent using LSS, 25 percent using Baldrige
- 58 percent of high maturity organizations have established formal mentoring programs
- 15 - 21 percent decrease in effort for a one level increase

*Higher Level Maturity with Statistics course (SEI)*



# Measurement-related Characteristics of “Higher Level Maturity” Organizations

## Higher level maturity organizations:

- Use centralized measurement
- Know why measurement are used, bring tables and charts to interviews and explain them!
- Describe “causal” analysis spontaneously during assessment interviews
- Have and supply ROI data
- Use Pareto analysis
- Use control charts
- Use Six Sigma
- Use *orthogonal defect classification* – and this means . . .
- Require participation in the SQA Group and / or the SEPG prior to promotion to management

*The 2001 High Maturity Workshop (sponsored by the SEI)*



# Introducing defect pithy 'tudes

(a hostile attitude or disposition; that is, not defect friendly )

Defects persist in software; *most of these come from executing a poor software development process or not executing a good one!*


**Defectectomy** – *Surgical* defect removal, often evidenced in peer reviews

**Defecticide** – the killing off of defects, often evidenced in testing

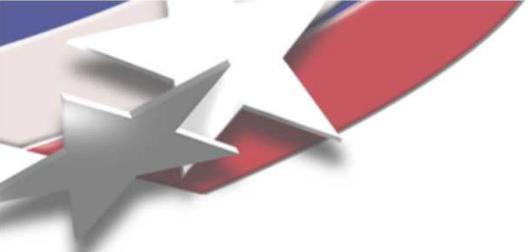
**Defect metastasization** – the absence of Defectectomy and Defecticide practices

$$Q - Dr = F$$

Quality without defect (removal) is merely “faking it.”



## Closing Reminders


**“Higher maturity” organizations MUST use statistical tools for identifying assignable and common cause deviation.**

**Collecting and statistically analyzing defects is superior to merely counting defects and their origins.**

**SPC, Pareto, and Histogram charts are simple statistical tools for defect analysis and quantitative improvement.**

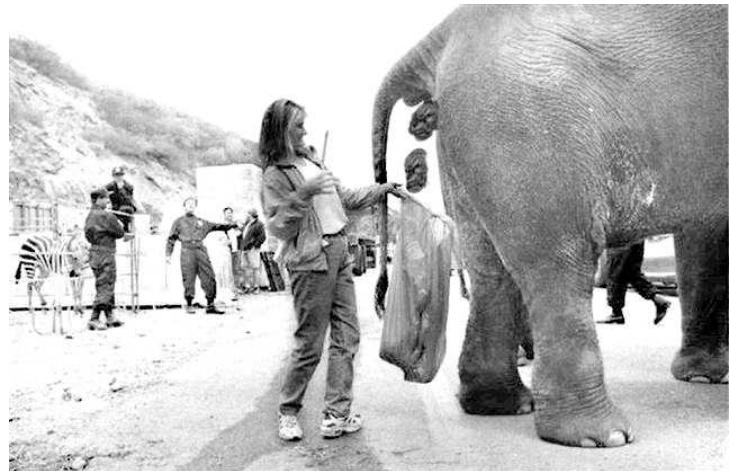
**These same tools can be used in other software development activities (estimated vs. actual, requirements volatility)**

**The following approaches have been found to be the best in class for defect prevention: JADs during requirements, prototypes during design, and reuse during coding and documentation. Jones, *Software Quality*, pg 160**



## And we do this because . . .

Defects are an aspect of measurement (and part of the CSMS!)


The customer has already paid for a quality product.

Predicting performance should be based on process capability. (voice of the process)

Most organizations are interested in lower operational costs.

Most defects are preventable.

You won't need to clean-up later and you won't need to be as charming!

