
ICCCI 2006
Kurashiki, Japan, September 6-9, 2006

The Second International Conference on the Characterization
and Control of Interfaces for High Quality Advanced Materials, and 
Joining Technology for New Metallic Glass and Inorganic Materials

K.G. Ewsuk 
M.W. Reiterer, and C.B. DiAntonio

Sandia National Laboratories, Albuquerque, NM  87185-1340

I. Nettleship
University of Pittsburgh, Pittsburgh, PA

Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lookheed 
Martin company, for the United States Department of Energy's National 
Nuclear Security Administration under contract DE-AC04-94AL85000

Controlled Processing, 
Microstructure, & Properties

of ZnO-Based Varistors

SAND2006-5407C



Acknowledgements

Sandia National Laboratories
Denise Bencoe

Dick Grant
Joanetta Hanlon 

Alice Kilgo
Steve Lockwood
Julie Marquez

Bonnie McKenzie
Don Susan

University of Pittsburgh
Tienden Chen



Varistors Have Highly Nonlinear 
Current-Voltage (I-V) Characteristics

Levinson, L. M. “Zinc Oxide Varistors – A Review”
Amer. Ceram. Soc. Bull., 65 No. 4 (1986)

Nonlinearity Coefficient,

α = ∆ln(J) / ∆ln(E)

• ZnO Varistor
– Ceramic semiconductor based on zinc oxide and dopant elements
– Highly nonlinear current-voltage (I-V) characteristics

» Large current and energy handling capabilities



Dopants Are Used To Control
The ZnO Varistor Properties

Typical Role of Dopant
• Non-linearity enhancer – Co, Mn
• Non-linearity inducer – Bi
• Grain growth retardant – Si, Sb
• Grain growth enhancer – Al
• Stability Enhancer - Na
• ZnO conductivity enhancer – Al

Varistor Composition
• ZnO 81.45 mol%
• Bi2O3 2.43 mol%
• CoO 0.87 mol%
• MnO2 0.45 mol%, 
• Sb2O3 3.04 mol %
• Cr2O3 0.79 mol%
• SiO2 9.84 mol%
• NiO 0.78 mol%
• H3BO3 0.13 mol%
• BaCO3 0.21 mole
• Al 0.01 mol%



• ZnO Varistor
- Conductive ZnO grains are surrounded by an insulating grain boundary

- Microstructure (e.g., GS, ρ, GB chemistry) and dimensions control properties

The Varistor Microstructure 
Produces The I-V Characteristics

Levinson, L. M. “Zinc Oxide Varistors – A Review”
Amer. Ceram. Soc. Bull., 65 No. 4 (1986)



Science-Based Processing Can Be Used 
To Control Microstructure & Properties

Clarke, D.R., “Varistor Ceramics”
J. Am. Ceram. Soc., 82 [3] 485-502 (1999)

• Varistors regulate voltage to protect electrical circuits
– Limit voltage applied to devices or components

• Microstructure determines varistor properties
– Grain size, the grain boundary, & density affect I-V characteristics
– Small flaws and/or inhomogeneities can result in high-voltage breakdown

• Processing controls microstructure & properties
– The Master Sintering Curve (MSC) approach can be applied



The Master Sintering Curve (MSC)
Links Processing & Microstructure
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The MSC Can Be Used To
Predict And Control Densification
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An activation energy (Q) of 394 kJ/mole was calculated
for densification of the mixed-oxide (M-O) varistor
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The 5-20ºC/min shrinkage data collapse onto a MSC
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A Master Sintering Curve Was 
Constructed For The M-O Varistor 

Heating rates <5ºC/min do NOT fall on the MSC 
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MSC Predictions Reveal A 
Sensitive Sintering Process

target
MSC prediction

T = 984°C

Experiment, T =  987°C

+20/-30°C/min

target
MSC prediction

T = 984°C

Experiment, T =  987°C

+20/-30°C/min

Modeling varistor firing 
revealed process sensitivity

Predictive modeling was used to
design & control varistor firing

ZnO Mixed-Oxide Varistor

The sensitivity of varistor density (and microstructure) to minor deviations
in sintering time & Temperature can contribute to variability in varistor performance.



MSC-Based T-t Profiles Predict The
Densification Observed Experimentally

MSC predictions are validated by experimental results  
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Quantitative Microstructure Analysis 
Was Aided By MSC-Based Calculations
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MSC T-t Profiles Produce The Same 
Microstructure At The Same Density
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Varistors Sintered To The Same
MSC Density Have The Same Grain Size
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The Results Support A Master
Density-Microstructure Trajectory 
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Comparable Density & GS Varistors 
Have The Same Regulating Voltage

1.0E-08

1.0E-07

1.0E-06

1.0E-05

1.0E-04

1.0E-03

1.0E-02

1.0E-01

1.0E+00

1.0E+01

1.0E+02

10.00 100.00Electric Field (kV/cm)

Cu
rr

en
t 

D
en

si
ty

 (A
/c

m
2 ) Fast Fired To 

Production Density

Production Fired To 
Production Density

Fast Fired To 
High Density High Field Pulse Test Data

Regulating Voltage

1.0E-08

1.0E-07

1.0E-06

1.0E-05

1.0E-04

1.0E-03

1.0E-02

1.0E-01

1.0E+00

1.0E+01

1.0E+02

10.00 100.00Electric Field (kV/cm)

Cu
rr

en
t 

D
en

si
ty

 (A
/c

m
2 ) Fast Fired To 

Production Density

Production Fired To 
Production Density

Fast Fired To 
High Density High Field Pulse Test Data

Regulating Voltage



Model-derived sintering profiles were used to control processing to systematically 
control the density, microstructure, & electrical properties of ZnO varistors.
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5°C/min to 960°C
(3.50 g/cm3)

Controlled Microstructure And
Property Varistors Were Produced
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“Block” model microstructure
» Conducting ZnO cubes in an insulating barrier matrix
» VBarrier = EBreakdown * d = Volts / Barrier
» VBreakdown = n * VBarrier = (D * VBarrier) / d

Empirical Power Law Equation:
» J1/J2 = (E1/E2)α

A “Block” Model Was Used To 
Calculate Electrical Parameters

*Levinson, L. M., Amer. Ceram. Soc. Bull., Vol. 65, NO. 4 (1986)



EDS-Spectral Imaging Maps
Reveals A Three Component System

ZnO

Bismuth

ZnSiO4



Model Calculations Confirm The 
Microstructure - Properties Link
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*Bo-Ming, Y. and Jian-Hua, L. “A Geometry Model for Toruosity of Flow Path in Porous Media”, Chin. Phys. Lett., 21 [8] 1569-1571 (2004)
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“Tortuosity & Percolation” Theory 
Were Used to Correct for Porosity

Tortuosity & Percolation Theory
Geometric Model for Flow 

Path in a Porous Media
- Tortuosity = τ = Lactual/L

VBarrier – Macroscopic Barrier Voltage 
(Volts/Barrier)



MSC Derived T-t Profiles Predict
Densification During Slow Cooling
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Leakage current is reduced by maturating
the grain boundary phase during slow cooling 



The MSC Ties Processing, 
Microstructure, & Properties Together

Modeling was used to assess process 
sensitivity, and optimize processing

The MSC was used to predict, design, 
and control varistor processing, 
microstructure, and properties
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