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What is DAKOTA? Executive Summary

• DAKOTA: Design and Analysis toolKit for Optimization and Terascale 
Applications
– Under development at SNL since 1994

– State of the art tools for performing engineering “what if” studies:
• Uncertainty quantification, sensitivity analysis, computer model calibration, design 

optimization, etc.

• Extensive support for parallel computing – PCs to supercomputers

– Works as a “black-box” with your simulation code(s):
• Data transferred via file read/write operations

• Works on LINUX/UNIX, Mac OS, Windows

– In use at SNL, LLNL, LANL, ORNL, Navy, NASA, Lockheed-Martin, 3M, 
Kodak, Goodyear, etc. and at numerous universities

– Freely available worldwide via GNU General Public License
• ~3000 downloads, approx several hundred “serious” users

– DAKOTA team receives significant return on investment from external users:
• Bug reports, compilations on new computer systems, suggestions for future R&D, 

research collaborations

– DAKOTA enables sensitivity analysis, optimization, and uncertainty 
quantification w/ high-fidelity simulation tools on massively-parallel 
supercomputers.

*roughly 500k lines of code total, with ~100k in DAKOTA “core”
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What is the Role of 
DAKOTA in Engineering/Science Applications?

• DAKOTA enables sensitivity analysis, optimization, and uncertainty 
quantification (UQ) to help answer “what if...” questions.
– What happens to my cost (or safety margin or performance level or ...) if I 

change parameter X?”

– How reliable is my design?

– How safe is my design?

– What is the best design?

• DAKOTA assists the analyst/designer in understanding and 
managing complex computer models.

– Automate typical “parameter variation” studies.

– Discover/predict nonlinear interactions among many parameters.
• Interactions that might be missed with traditional “change one parameter 

at a time” studies.

– Support experimental testing efforts:
• Examine many accident conditions with computer models, then physically 

test only a few of the worst-case conditions.
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DAKOTA Overview

Technical themes
• DAKOTA works with just about any simulation code.

– Typically in “black box” mode with file reading/writing.
– DAKOTA contains math & stats methods – no physics!

• Exploit large-scale/massively parallel computing platforms
• Create and deploy state-of-the art methods for complex and        

expensive engineering simulations, e.g.:
– Surrogate-based optimization & uncertainty quantification

• Balance research goals with production software support

Impact
• Internal: extensive (and growing) use within SNL
• External: DOE labs, DoD labs, NASA, commercial & academic 

partners

CALORE thermal analysis
ALEGRA shock physics
SALINAS structural dynamics
Premo high speed flow
... ...
(your code here)

DAKOTA
Optimization
Uncertainty Quant.
Parameter Est.
Sensitivity Analysis

Model
Parameters

Design
Metrics

Nominal Optimized

Worst Case Fire Safety

Structural Design

Optimal Flow
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Iterator 

Model 

Strategy: control of multiple iterators and models

Iterator 

Model 

Iterator 

Model 

Coordination:
Nested
Layered
Cascaded
Concurrent
Adaptive/Interactive

Parallelism:
Asynchronous local
Message passing
Hybrid
4 nested levels with

Master-slave/dynamic
Peer/static

DAKOTA Framework

Parameters

Model:

Design
continuous
discrete

Uncertain
normal/logn
uniform/logu
triangular
beta/gamma
EV I, II, III
histogram
interval

State
continuous
discrete

Application
system
fork
direct
grid

Approximation
global

poly 1/2/3, NN, GP,
kriging, MARS, RBF

multipoint – TANA3

local – Taylor series

hierarchical
ROM

Functions
objectives
constraints
least sq. terms
generic

ResponsesInterfaceParameters

Hybrid

SurrBased

OptUnderUnc

Branch&Bound/PICO

Strategy

Optimization Uncertainty

2ndOrderProb

UncOfOptima

LHS/MC

Iterator 

Optimizer
ParamStudy

COLINYNPSOLDOT OPT++

LeastSqDoE

GN

Vector

MultiD

List

DDACE CCD/BB

UQ

Reliability

DSTE

JEGA

Pareto/MStart

CONMIN

NLSSOL

NL2SOLQMC/CVT

Gradients
numerical
analytic

Hessians
numerical
analytic
quasiNLPQL

CenterSFEM



7

Some Notation....

• “Design parameters”: x1, x2, ..., xN
– X’s can be real-valued
– X’s can be discrete-valued (integer or real)
– X’s can be uncertain (e.g., probability distributions)
– X’s can be a mix of all of these

• Examples:
-123.4 <= x1 <= 567.8
x1 is an element of [1.0, 1.2, 1.4. 1.6. 1.8, 2.0]
x1 is an element of [-2, -1, 0, 1, 2]
x1 has Normal distribution with a specific mean and standard 

deviation

• The collection of all possible design parameter values defines the 
“parameter space.”
– e.g., if x1 and x2 are both real-valued on [0,1], then the 

parameter space is the unit square
– e.g., if x1 and x2 are both discrete-valued on [0, 0.5, 1.0], then 

the parameter space is a 3x3 grid of points on the unit square
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Some Notation....

• “Response functions” are dependent on the design parameters.

– aka: “figures of merit,” “objective functions”

– These functions capture the “goodness” of what you are studying: 
cost, weight, speed, penetration depth, discrepancy between 
simulation data & test data, etc.

– For most real-world applications, the actual mathematical form of 
the response function is not known precisely, and the response is 
evaluated via a complex computer code.

• In cases where the functional form is known, this knowledge can be 
exploited

– These functions are real/discrete/uncertain depending on the form 
of the design parameters.

• Typically, a problem of interest has more than one response function:

f1 = fcn1(x1,...); f2 = fcn2(x1,...); ...; fM = fcnM(x1,...)

– Multiple objectives (minimize both cost & weight)

– Objectives and constraints (minimize weight, subject to cost <= 
cost_limit)
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Examples of Sensitivity Analysis 

x1

f(x1)

x1

f(x1)

• Sensitivity analysis examines variations in f(x1) due to 
perturbations in x1

– Local sensitivities are typically partial derivatives.

• Given a specific x1, what is the slope at that point?

– Global sensitivities are typically found via least squares.

• What is the trend of the function over all values of x1?

local

global local

local

local

a1



Slide 9

a1 animate the local gradient lines
aagiunt, 4/17/2006
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Examples of Optimization 

x1

f(x1)

x1

f(x1)

• Optimization methods find the “zero” or “root” of a function 
and/or the extrema (min/max points) of a function

– Some opt methods use gradient information to guide their 
search process

– e.g., find the value of x1 where (f_simulation – f_test)=0, 
or, where (f_sim – f_test) is minimized.

root min

max

local 
extrema

global 
extrema
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Example of 
Uncertainty Quantification 

• UQ methods provide info on the statistics of the responses.

– Correlations of f-values to x-values

– Mean(f), StdDev(f), Probability( f >= f_critical)

– Example: x = uncertain test condition, f = temperature

– Choose many x-values, run code for each set of x-values, 
collect f-values, plot and analyze the f-values
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Note: DAKOTA does 
not fit a statistical 
distribution to the f-
value data. This type 
of statistical analysis 
can be performed with 
statistical analysis 
software: JMP, 
Minitab, S-Plus, 
Matlab Stats Toolbox, 
etc.
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Summary of DAKOTA’s Utility

• In many applications, we want to understand how changes in our 
x-values affect the f-values from our simulation code.

• Traditional process – user changes one x-value at a time, runs the 
simulation code, and observes the change in the f-value.

– Tried and true, but, can miss important multi-parameter 
interactions.

• Computer-aided process – DAKOTA selects the x-values, runs the 
simulation code, collects all of the f-values, and presents “data” to 
user.

– “data” = local/global sensitivity info

– “data” = optimization info on x- and f-values

– “data” = probability & statistical info on f-values

– Then, the user decides how to proceed – new x-value ranges, 
focus in on x-values of interest, etc.

– The user is still in control of the analysis/design process!
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DAKOTA Execution & Info Flow

• What files go into DAKOTA?

• What files come out of DAKOTA?

• How does DAKOTA interact with my simulation 
code?
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DAKOTA Execution & Info Flow

DAKOTA
Optimization
Uncertainty Quant.
Parameter Est.
Sensitivity Analysis

DAKOTA Input File:
-Commands
-Options
-Parameter definitions
-File names

DAKOTA Output Files:
-Raw data (all x-values & f-values)
-Sensitivity info
-Statistics on f-values
-Optimality info

CALORE thermal analysis
ALEGRA shock physics
SALINAS structural dynamics
Premo high speed flow
... ...
(your code here)

Code
Input File

Code
Output File

DAKOTA Parameters File:
{x1 = 123.4}
{x2 = -33.3}, etc.

Use a script such as 
APREPRO to cut-and-paste 
x-values into code input file

User-supplied automatic 
post-processing of code 
output data into f-values 

DAKOTA executes 
“my_sim_code_script” 
to launch a simulation 
job

DAKOTA Results File:
999.888 f1
777.666 f2, etc.
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What is the Format of 
DAKOTA’s “results.out” File?

• This question comes up a lot.

• Answer:
– List the f-values in order, one value per line in the file:

f1
f2
...
fM

• Note:
– You can add a text label after the function value (on the same 

line) to help you keep track of the f-values 

• If your code generates gradients of the f-values and/or 
Hessian values (matrix of 2nd derivatives), DAKOTA can use 
this info. See the DAKOTA Users Manual, or contact me, for 
more info.
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Questions to Consider 
Before Using DAKOTA

1. What do I want to find out?

– Sensitivity study? Optimization study? UQ study? 

2. How many runs of my simulation code can I afford?

– 10’s, 100’s, 1000’s, more?

– How many processors per simulation code run?

3. Where am I going to run the simulation code?

– On my PC? On my Mac?

– On my Linux/Sun/SGI/IBM workstation?

– On a network of workstations?

– On a Linux/Sun/SGI/IBM cluster?

– On a special supercomputer?

Of these, #1 and #2 are the most critical!
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DAKOTA Examples:
Rosenbrock Function

f(x1,x2) = 100*(x2-x1*x1)^2 + (1-x1)^2
-2 <= x1 <= 2
-2 <= x2 <= 2
Optimum point: (x1,x2) = (1,1); f(1,1) = 0.0
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Parameter Study Methods

• Goal of a parameter study:

– Sensitivity of f-values due to small x-value changes

– Sensitivity of f-values due to large x-value changes

• Multidimensional parameter study:

– Good if your simulation code is not expensive

– Good if your # of design parameters “N” is small

– Pros: readily amenable to 2-D and 3-D plotting

– Cons: doesn’t scale well with large “N”

• Vector parameter study:

– Good if your simulation code is expensive and/or if your 
# of design parameters is large
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Multidimensional Parameter Study

• Example: 9 equally-spaced samples 
on x1 and x2 intervals.

– Yields 81 samples on a regular grid

• Great for plotting!
– Generates a table of data for Matlab, 

Excel, Mathematica, etc.

• Flexible - could have used a different 
# of samples for x1 and x2.

• Warning: this method scales, at best, 
as # samples = 2^N:
– N = # of parameters, and the “2” 

comes from sampling at the 
endpoints of each parameter 
interval:

– For N=2, there are 4 samples
– For N=3, there are 8 samples
– For N=5, there are 32 samples
– For N=10, there are 1024 samples
– For N=20, there are ~1 million samples*

*This is the “curse of dimensionality” –
more info on this coming in the UQ 
section.
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Vector Parameter Study

• Example: 11 equally-spaced 
samples along a vector in the x1-x2 
parameter space.
– User defines the starting point, 

ending point, and number of 
samples

– In 2-D, this is like “walking” from 
point A to point B.

– In 3-D, this is like “flying” from  
point A to point B.

• This method is not especially 
useful with N=2, but is very useful 
in N>2.
– With big steps, this provides some 

global trend info on f-values.

– With small steps, this provides 
some local trend info on f-values 
(quasi derivatives).
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Example Input/Output: Parameter Studies
# DAKOTA Users Manual Ch 2 example problems
# using Rosenbrock's function

strategy,                                               \
        single_method                              \
        tabular_graphics_data

method,                                                    \
        multidim_parameter_study               \
          partitions = 8 8                                \

model,                                                  \
        single

variables,                                              \
        continuous_design = 2                  \
         cdv_initial_point         0.0    0.0          \

          cdv_lower_bounds    -2.0     -2.0         \
          cdv_upper_bounds     2.0      2.0          \
          cdv_descriptors      'x1'     'x2'              \

interface,                                              \
       system                                          \
          analysis_driver = 'rosenbrock'                \
           parameters_file = 'params.in'                \
           results_file    = 'results.out'       

responses,                                              \
        num_objective_functions = 1               \
        no_gradients                                          \

%eval_id             x1             x2         obj_fn 

1             -2             -2           3609 

2           -1.5             -2         1812.5 

3             -1             -2            904 

4           -0.5             -2          508.5 

5              0             -2            401 

6            0.5             -2          506.5 

7              1             -2            900 

8            1.5             -2         1806.5 

9              2             -2           3601 

10             -2           -1.5           3034 

11           -1.5           -1.5         1412.5 

12             -1           -1.5            629 

13           -0.5           -1.5          308.5 

14              0           -1.5            226 

15            0.5           -1.5          306.5 

Parameter Study Input

Parameter Study Output
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Optimization Methods

• Optimization problem formulation

• Key decision criteria for optimization method 
selection

• Examples of optimization methods

– Gradient-based methods

– Non-gradient pattern search

– Non-gradient genetic algorithms

• Summary
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Optimization Problem Formulation

Minimize: f1(x1, ...,xN)*

Subject to: -1.0 <= f2 <= 1.0

...

-1.0 <= fM <= 1.0

0.0 <= x1 <= 1.0

...

0.0 <= xN <= 1.0

*Note: in practice, we can have multiple f-values in the objective 
function (aka “multiobjective optimization”)

Bound constraints

Linear or nonlinear 
constraints

Objective function
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Optimization Problem Lingo*

Unconstrained problem –neither bound constraints nor 
linear/nonlinear constraints

Bound-constrained problem – bound constraints only, no 
linear/nonlinear constraints

Linearly-constrained problem – has bound constraints, and the 
f-value constraints are linear with respect to the x-values

- in this case, the f-value constraints can be written via a linear 
system of equations

Nonlinearly-constrained problem* – has bound constraints, and 
the f-value constraints are nonlinear w.r.t. the x-values

*These are just the most basic problem definition terms

**Most engineering opt problems I encounter are nonlinearly-constrained.
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Getting Ready for an 
Optimization Study via DAKOTA

• Key decision criteria:
– Smoothness of the sensitivity study data – both large scale and 

small scale trends
– Expense of the simulation
– Types of constraints in your optimization problem
– Optimization goal: local optimization or global optimization?

• Extreme Case #1 – all optimization methods will work:
– F-values have smooth local and global trends
– Can afford millions of simulation code runs
– No constraints
– Local optimization is the goal

• Extreme Case #2 – no optimization methods will work:
– F-values have nonsmooth local and global trends
– Can afford, at most, two simulation code runs
– Many nonlinear constraints (that are also nonsmooth)
– Global optimization is the goal
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Recipe for an Optimization 
Study via DAKOTA

Here is my basic optimization method decision tree:

Unconstrained or bound-constrained problems:

– Smooth and cheap: just about any method will work, gradient-based 
methods will be fastest

– Smooth and expensive: gradient-based methods

– Nonsmooth and cheap: non-gradient methods such as pattern search 
(local opt), genetic algorithms (global opt), DIRECT (global opt), or 
surrogate-based optimization (quasi local/global opt)

– Nonsmooth and expensive: surrogate-based optimization (SBO)

Nonlinearly-constrained problems:

– Smooth and cheap: gradient-based methods

– Smooth and expensive: gradient-based methods

– Nonsmooth and cheap: non-gradient methods w/ penalty functions, 
SBO

– Nonsmooth and expensive: SBO
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Examples of Various 
Optimization Methods

• Gradient-based optimization 
method

• Started at (x1,x2) = (-1.0, 1.2)

• Search algorithm follows the 
general descent direction 
“around the bend” of the 
Rosenbrock function.

• Gradient-based optimization 
is very efficient: ~30-100 
evaluations of the f-values
needed to find the minimum.
– Performance varies 

between different 
algorithms
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Example Input/Output: Optimization

------------------------------
Begin Function Evaluation   39
------------------------------
Parameters for function evaluation 39:

1.0013529993e+00 x1
1.0026805414e+00 x2

(rosenbrock /tmp/file3O5jSa /tmp/fileN42ob5)

Active response data for function evaluation 39:
Active set vector = { 2 }
[  1.3635895231e-02 -5.4575642309e-03 ] obj_fn gradient

<<<<< Iterator optpp_q_newton completed.
<<<<< Function evaluation summary: 39 total (39 new, 0 
duplicate)
<<<<< Best parameters          =

1.0013529993e+00 x1
1.0026805414e+00 x2

<<<<< Best objective function  =
1.9050696347e-06

<<<<< Best data captured at function evaluation 38
<<<<< Single Method Strategy completed.
DAKOTA execution time in seconds:
Total CPU        =      0.05

Optimization Input

Optimization Output

# DAKOTA Users Manual Ch 2 example problems
# using Rosenbrock's function

strategy,                                               \
        single_method                              \
        tabular_graphics_data

method,                                                    \
          optpp_q_newton                              \
        max_iterations = 50                           \

          convergence_tolerance = 1e-4                  \

model,                                                  \
        single

variables,                                              \
        continuous_design = 2                  \
         cdv_initial_point         0.0    0.0          \

          cdv_lower_bounds    -2.0     -2.0         \
          cdv_upper_bounds     2.0      2.0          \
          cdv_descriptors      'x1'     'x2'              \

interface,                                              \
       system                                          \
          analysis_driver = 'rosenbrock'                \
           parameters_file = 'params.in'                \
           results_file    = 'results.out'       

responses,                                              \
        num_objective_functions = 1               \
        analytic_gradients                                 \
        no_hessians
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Examples of Various 
Optimization Methods

• Pattern search optimization

(non-gradient method)

• Started at (x1,x2) = (0,0)

• Search algorithm has made 
some progress toward the 
minimum after generating 
~2000 f-values, but still not 
converged to the minimum.

• Pattern search is a great 
method, just not for this 
type of optimization 
problem.
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Examples of Various 
Optimization Methods

• Genetic algorithm (GA) 
optimization
(non-gradient method)

• Started with 50 random 
points in the parameter 
space

• GA search algorithm run to 
generate 10,000 f-values. 46 
of the 50 samples have 
settled close to the true 
optimum

• GA is a great method, just 
not for this type of 
optimization problem.

Initial population 
(50 random 
samples)

Final population 
(46 of 50 near 
minimum)
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Summary on 
Optimization Methods

• Selecting the right optimization method that matches the 
particular attributes of your problem is critical, especially if 
your simulation code is expensive!

• You won’t have a good idea of the best optimization method 
UNLESS you perform some local and global sensitivity 
studies BEFORE you start optimizing.

– Many users are blinded by past experience:

• “I used method XYZ in grad school, therefore....”

• “I read about genetic algorithms in the Porcelain Press, so 
they must be good....”
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Uncertainty Quantification Methods

• UQ methods in DAKOTA include:

– DACE methods

– Sampling methods

– Analytic reliability methods

– Epistemic uncertainty methods

• Sampling methods have two main uses:

– Sensitivity analysis studies when the uncertain 
parameters only have bounds (intervals).

– Statistical studies when the uncertain parameters 
have well-established  probability distributions.
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DACE Methods

• Design of Computer Experiments
– Usually, we do not assume distributional forms for the inputs
– DDACE – Developed at SNL-CA (Monica Martinez-Canales)

• Orthogonal arrays
• Central Composite
• Box-Behnken
• Grid sampling
• LHS and pure MC
• Orthogonal LHS 
• Can calculate main effects for OAs
• Can use in Variance Based Decomposition, Quality Metrics

– FSUDACE – Developed by Florida State University, Max 
Gunzburger and John Burkardt

• Halton sequences
• Hammersley sequences
• Centroidal Voronoi tesselation
• Can “Latinize” these methods
• Can use in Variance Based Decomposition, Quality Metrics
• Fair amount of control in terms of where you want to start the 

sequence, what prime bases are used, etc.
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Quasi Monte Carlo Methods

• Quasi-Monte Carlo sequences are deterministic 
sequences determined by a series of prime 
bases.  They are designed to produce uniform 
random numbers on the interval [0,1]. 

• E.g., Halton sequence: 
Sample Number Base 2 Base 3 Base 5 Base 7

1 0.5000 0.3333 0.2000 0.1429

2 0.2500 0.6667 0.4000 0.2857
3 0.7500 0.1111 0.6000 0.4286
4 0.1250 0.4444 0.8000 0.5714

5 0.6250 0.7778 0.0400 0.7143
6 0.3750 0.2222 0.2400 0.8571

7 0.8750 0.5556 0.4400 0.0204
8 0.0625 0.8889 0.6400 0.1633
9 0.5625 0.0370 0.8400 0.3061

10 0.3125 0.3704 0.0800 0.4490
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Example:  Halton Set

Base 2 and Base 3
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Quasi Monte Carlo Methods

• The quasi-Monte Carlo (QMC) and Centroidal Voronoi Tesselation 
(CVT) methods are designed with the goal of low discrepancy. 

• Discrepancy refers to the nonuniformity of the sample points 
within the hypercube. Discrepancy is defined as the difference 
between the actual number and the expected number of points 
one would expect in a particular set B (such as a hyper-rectangle 
within the unit hypercube), maximized over all such sets. 

• Low discrepancy sequences tend to cover the unit hypercube 
reasonably uniformly. 

• CVT does very well volumetrically, however the lower-dimension 
(such as 1-D) projections of CVT can have high discrepancy.

• CVT developed as part of unstructured meshing techniques for 
irregular domains 

• Centroidal Voronoi diagrams subdivide arbitrarily shaped 
domains into arbitrary numbers of nearly uniform subvolumes

• Sample points returned are the centers of the Voronoi region
• CVT good choice for high dimensional sampling
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Sampling Methods

– Latin Hypercube Sampling

• Distribution types supported:  normal, lognormal, uniform, 
loguniform, triangular, gamma, gumbel, frechet, weibull, 
histogram, interval

• Also can specify plain MC

• Correlations between inputs supported with Iman and 
Conover’s restricted pairing algorithm

A B C D

G

H

I

J

K

L
 

A Two-Dimensional Representation of One Possible LHS of size 5 
Utilizing X1 (normal)  and X2 (uniform)
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Variance Based Decomposition
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Vi = V(E(Y| Xi)), 
Vij = V(E(Y| Xi, Xj) – Vi – Vj

Vijk = V(E(Y| Xi, Xj, Xk)  – Vi – Vj – Vk– Vij – Vjk – Vik

• Variance-based decomposition methods involve Monte Carlo sampling of the 
“inner loop” to calculate E(Y| Xi = x*) and additional Monte Carlo sampling of the 
“outer loop” to calculate the variance V(E(Y| Xi)).  This is very expensive in terms of 
number of function evaluations.  
• Various methods (Saltelli, McKay replicated LHS, Morris, FAST) have been 
developed to calculate SA indices.
•Advantage of VBD over correlation analysis is that VBD better captures non-
monotonic relationships. 
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Example Input/Output: LHS
Statistics based on 200 samples:

Moments for each response function:
response_fn_1:  Mean = 6.68699e+02  Std. Dev. = 1.01401e+03  Coeff. of 
Variation = 1.51639e+00

95% confidence intervals for each response function:
response_fn_1:  Mean = ( 5.27307e+02, 8.10091e+02 ), Std Dev = ( 
9.23420e+02, 1.12446e+03 )

Probabilities for each response function:
Cumulative Distribution Function (CDF) for response_fn_1:

Response Level  Probability Level  Reliability Index
-------------- ----------------- -----------------

1.0000000000e+02   3.0500000000e-01

Simple Correlation Matrix between input and output:
x1           x2 response_fn_1 

x1  1.00000e+00 
x2  3.69447e-03  1.00000e+00 

response_fn_1 -1.23484e-01 -3.35515e-01  1.00000e+00 

Partial Correlation Matrix between input and output:
response_fn_1 

x1 -1.29767e-01 
x2 -3.37645e-01 

Simple Rank Correlation Matrix between input and output:
x1           x2 response_fn_1 

x1  1.00000e+00 
x2 -3.09488e-02  1.00000e+00 

response_fn_1  1.85300e-02 -3.03560e-01  1.00000e+00 

Partial Rank Correlation Matrix between input and output:
response_fn_1 

x1  9.59218e-03 
x2 -3.03183e-01 

Sample Input

Sample Output

# DAKOTA Users Manual Ch 2 example problems
# using Rosenbrock's function

strategy,                                               \
        single_method                              \
        tabular_graphics_data

method,                                                    \
           nond_sampling                                 \
           samples = 200 seed = 1734              \
           sample_type lhs                                 \
           response_levels = 100.0              

model,                                                  \
        single

variables,                                              \
    normal_uncertain = 2                      \
         nuv_means  0.0  0.0     \
         nuv_std_deviations  1.0   2.0      \
         nuv_descriptor         'x1'  'x2'    

interface,                                              \
       system                                          \
          analysis_driver = 'rosenbrock'                \
           parameters_file = 'params.in'                \
           results_file    = 'results.out'       

responses,                                              \
        num_response_functions = 1               \
        no_gradients                                 \
        no_hessians
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UQ with Reliability Methods

Mean Value Method

Rough 
statistics

G(u)

MPP search methods

Reliability Index 
Approach (RIA)

Find min dist to G level curve
Used for fwd map z  p/

Performance Measure
Approach (PMA)

Find min G at  radius
Used for inv map p/ z

Nataf x  u:
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Epistemic UQ

Second-order probability

– Two levels: distributions/intervals on 
distribution parameters

– Outer level can be epistemic (e.g., interval)

– Inner level can be aleatory (probability distrs)

– Strong regulatory history (NRC, WIPP).

Dempster-Shafer theory of evidence

– Basic probability assignment (interval-based)

– Solve opt. problems (currently sampling-based)

to compute belief/plausibility for output intervals
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Epistemic Uncertainty Quantification

• Epistemic uncertainty refers to the situation where one does not know 
enough to specify a probability distribution on a variable

• Sometimes it is referred to as subjective, reducible, or lack of knowledge 
uncertainty

• The implication is that if you had more time and resources to gather more 
information, you could reduce the uncertainty

• Initial implementation in DAKOTA uses Dempster-Shafer belief structures. 
For each uncertain input variable, one specifies “basic probability 

assignment” for each potential interval where this variable may exist.

• Intervals may be contiguous, overlapping, or have “gaps”

BPA=0.5 BPA=0.2

BPA=0.3 Variable 1

BPA=0.5 BPA=0.2BPA=0.3
Variable 2
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Epistemic Uncertainty Quantification

• Look at various combinations of intervals.  In each joint interval “box”, one needs to 
find the maximum and minimum value in that box (by sampling or optimization)

• Belief is a lower bound on the probability that is consistent with the evidence

• Plausibility is the upper bound on the probability that is consistent with the evidence

• Order these beliefs and plausibility to get CDFs

• Draws on the strengths of DAKOTA

– Requires surrogates

– Requires sampling and/or optimization for calculation of plausibility and belief 
within each interval “cell” 

– Easily parallelized

Variable 1

Variable 2

.5 .3 .2

0.1

0.2

0.7

Original LHS samples used 
To generate a surrogate

Million sample points 
generated from the 
surrogate, used to 
determine the max and 
min in each “cell” to 
calculate plausibility and 
belief
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UQ Needs for the next 5 years

• Quantify "extrapolative" confidence
– Requires the use of response surface methods which handle uncertainty

• Sampling for stochastic processes
– Sampling of random fields (in space and/or time, possibly non-stationary 

and non-Gaussian), not just random variables. 
• Intrinsic / Analytic UQ capability 

– Expand the role of expansion methods such as Polynomial chaos
– Many issues remain about the set of points on which to construct the 

basis for different distribution types, the type of integration method, etc.
• Efficient (e.g. surrogate) methods for higher order moments and tail 

statistics
– Better quantification of surrogate accuracy

• Adaptive Experimental Design
– Importance Sampling, Adaptive OAs

• Efficient sensitivity analysis
• Epistemic UQ

– Capability to combine aleatory and epistemic uncertainty in one analysis
• UQ treatment in multi-fidelity and/or hierarchical models

– Efficiency issue
– More important, dealing with uncertainty at different time or length scales 

across simulations
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DAKOTA Team Contact Info

• Web site:
– http://endo.sandia.gov/DAKOTA
– Email: dakota@sandia.gov
– User’s Manual, Reference Manual, Developers Manual - online

• Team Members
– Mike Eldred, Principal Investigator (R&D)
– Tony Giunta, Product Manager (applications & training)
– Shane Brown, Support Manager (software issues)
– Laura Swiler
– Brian Adams
– Danny Dunlavy
– Dave Gay
– Bill Hart
– Jean-Paul Watson
– Many other technical contributors (SNL-CA, SNL-NM, academia,...)
– Scott Mitchell, Dept. 1411 manager
– Marty Pilch, Dept. 1533 manager
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DAKOTA

Parting Thoughts....
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Recipe for a UQ 
Study via DAKOTA

UQ Study*
• Define appropriate parameter ranges and/or probability distributions.
• Use the Latin hypercube sampling method to generate Order(N to N^2) 

samples of the x-values.
– The minimum # samples you can get away with is N+1
– One rule of thumb is: # samples >= 0.5*(N+1)*(N+2)
– Another rule of thumb is: ~15-30 samples for each N (i.e., # samples =  15*N or 30*N)
– Another rule of thumb is: # samples = 1/3 of your simulation run budget, so that you 

can save the other 2/3 runs for follow-on studies

• Examine the f-value correlation data and basic statistical data generated by 
DAKOTA.

– These correlations are the “global” linear trends in the f-values.
– Often they are useful in finding a worst-case or best-case combination of x-values.

• Perform a more detailed statistical analysis of the f-values (contact me or a 
SNL stats expert for pointers).

• Only use DAKOTA’s f-value probability estimates if you have well-founded 
knowledge about the probability distributions on the x-values.

*Note: There are other more advanced UQ methods (e.g., Dempster-Shafer theory, polynomial chaos 
theory) in DAKOTA, but these are yet ready for “production” use.
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Statistical Analysis via UQ Methods

• The UQ statistical analysis leverages the fact that 
we know the probability distributions of the 
design parameters.

• Same approach as with the sensitivity analysis:
– Assign specific probability distributions to the 

design parameters in the dakota input file

– Select 0.3*K samples (see “recipe” guidelines) via 
DAKOTA’s Latin hypercube sampling method

– Run DAKOTA and examine the following:
• Correlation data for f-values to x-values

• Minimum and maximum f-values 

• Probability data on f-values, e.g., Prob( f>f_critical)

– Repeat the LHS study with another 0.3*K samples
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Sensitivity Analysis via UQ Methods

• 200 random samples in the 
parameter space:

-2 <= x1 <= 2
-2 <= x2 <= 2
* We only know the bounds, and not 

any probabilities on x1 and x2.

• DAKOTA produces a correlation 
matrix with data on:

– Correlation of f with x1
– Correlation of f with x2
– Correlation of x1 with x2 (should 

be nearly zero!)

• DAKOTA produces a column 
oriented output data file: 200 rows  
by 3 columns; the columns are x1, 
x2, and f

– Analyze this data file in a 
commercial statistics software 
package to get min, max, and 
trend data
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Statistical Analysis via UQ Methods

• 200 random samples in the 
parameter space:

-2 <= x1 <= 2
-2 <= x2 <= 2
* But now we are told that x1 and x2 

have uniform probability 
distributions

• DAKOTA produces a correlation 
matrix with data on:

– Correlation of f with x1
– Correlation of f with x2
– Correlation of x1 with x2 (should 

be nearly zero!)

• DAKOTA produces statistics on the 
f-values (e.g., Prob(f<4) = 0.049)

• DAKOTA produces a column 
oriented output data file: 200 rows  
by 3 columns; the columns are x1, 
x2, and f

– Analyze this data file in a 
commercial statistics software 
package to get min, max, etc.
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DAKOTA Applications
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Typical SNL DAKOTA Applications 

Design Optimization  - Use numerical optimization 
methods to find the best design.

• Load spreader plate design with Pronto
• Weapon component design with Salinas
• F-35 fuel tank design (with Lockheed-Martin)

Parameter Estimation – Use numerical optimization 
methods to calibrate computer models to match 
experimental test data.

• Heterogeneous material parameter identification w/ Presto
• Hypervelocity flyer plate calibration w/ ALEGRA 
• Molecular force field parameter identification w/ Towee
• Material parameter identification w/ CTH

Uncertainty Quantification – Propagate variability and 
uncertainty on code inputs & compute output response 
probabilities.

• Circuit transient response w/ Xyce
• Thermal environment uncertainties w/ CALORE
• Material stress-strain response w/ Presto
• Underground target response modeling
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DAKOTA UQ Study: 
Presto Simulations vs. Z-Accelerator Data

X-rays

1 mm
6061-T6
Absorber

X-Ray Induced Thermomechanical Shock
Modeled w/ Presto

4 mil
Kapton
filter

16 um
Epoxy bond

1mm
X-cut
quartz

Signal proportional
To stress difference
Between quartz 
surfaces.

Tungsten wire array & Z pinch

+/- 1% rho
+/- 5% Co
+/- 5% Us/Up slope
+/- 15% Gruneisen
+/- 20% fluence

9 total parameters
randomly varied

Z shot 1211Z shot 1209

Summary:
•UQ study on Presto sims. of 
thermomechanical shock.
•DAKOTA generated 2000 
Presto runs; run on 1500’s 
network of workstations
•Compared Presto vs. Z Shot 
μ±1σ uncertainty bands.
•First-ever UQ study gives info 
on design margins. Need for 
Presto model improvement was 
identified.
•Contacts: Tony Giunta, 1533 & 
Joel Lash, 1514



55

DAKOTA UQ Study:
Underground Target Defeat (1 of 4)

• Scenario: underground target with an external threat

• Goal: Assess uncertainty in target response due to uncertainties in target 
construction and threat characteristics

• 9 parameters that describe target & threat uncertainty

– Each parameter has uncertainty specified by an interval

• Response: deflection angle (φ) of target roof at mid-span

• Tools: Sandia shock physics code; DAKOTA UQ/optimization tool; JMP 
statistical analysis software

Threat:
• size parameter #1
• size parameter #2

Target:
•Depth
•Materials
•Size of 
structure

φ

http://www.jmp.com/index.shtml
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DAKOTA UQ Study:
Underground Target Defeat (2 of 4)

• Example: 2-parameter sampling via DAKOTA; simulations run on a Linux 
cluster; data analysis via JMP yields response trends vs parameters 
variations

DAKOTA Latin Hypercube sampling

Sims run on a 
LINUX Cluster

Statistical Analysis 
& Graphics

RSquare

RSquare Adj

Root Mean Square Error

Mean of Response

Observations (or Sum Wgts)

0.866299

0.823758

#.#

#.#

30

Summary of Fit

Model

Error

C. Total

Source

7

22

29

DF

5343.9158

824.7562

6168.6720

Sum of Squares

763.417

37.489

Mean Square

20.3638

F Ratio

<.0001

Prob > F

Analysis of Variance
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DAKOTA UQ Study:
Underground Target Defeat (3 of 4)

• Actual Study:

– 9 parameters of interest

– 70 Latin Hypercube samples uniformly distributed in the 9-dimensional 
parameter space: 70 simulations run on various Sandia Linux clusters

– Data analysis & visualization in JMP: stepwise regression on mixed 2nd & 
3rd order polynomial models, plus neural network models.

• Results from these 70 code runs 
motivated additional code runs 
concentrated in several [v1,v2] 
parameter subspaces.

– 150 additional code runs

– 220 total code runs
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RSquare

RSquare Adj

Root Mean Square Error

Mean of Response

Observations (or Sum Wgts)

0.848663

0.825564

###.###

###.###

220

Summary of Fit

Model

Error

C. Total

Source

29

190

219

DF

36483.299

6505.842

42989.141

Sum of Squares

1258.04

34.24

Mean Square

36.7406

F Ratio

<.0001

Prob > F

Analysis of Variance
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DAKOTA UQ Study:
Underground Target Defeat (4 of 4)

• Take home messages:

– This statistical design/analysis approach yielded new insights:

• Some parameters though to be important actually were not 
important

• We found some multi-parameter interactions that were not 
obvious

– We are exploiting the statistical tools in DAKOTA and in JMP to 
obtain greater insights out of our simulation runs.

– These same statistical tools can be applied to many projects 
underway at SNL.
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What’s New for DAKOTA version 4.0?

• User Interface:
– New DAKOTA input file syntax (pros & cons)
– New graphical user interface “JAGUAR”
– New manuals (including a version 4.0 User’s Manual!!!)

• Optimization:
– New non-gradient methods for both local and global 

optimization
– General penalty function capability for handling 

constraints in non-gradient optimization methods

• Uncertainty Quantification:
– Several new probability distribution types (triangular, 

beta, gamma, gumbel, frechet, etc.)
– Dempster-Shafer theory method operational
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Summary

• DAKOTA Capabilities:

– Both time-tested and state-of-the-art methods for 
sensitivity analysis, optimization, and uncertainty 
quantification.

• DAKOTA Software Support:

– Working to improve manuals & user support.

– Lots of one-on-one training in FY05 and FY06

– Working to pass on “philosophy” of sensitivity/Opt/UQ 
studies to SNL staff.

• Goal:
– DAKOTA to become a widely used tool at Sandia, within the 

DOE/NNSA Tri-Laboratory community, and with key 
industrial partners.

• Much progress, but more to be done


