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« DAKOTA history and background
* DAKOTA methods

— Parameter study
— Uncertainty quantification
— Optimization
« DAKOTA input/output/script files
* Design of Computer Experiments
— DACE
— FSUDACE
— LHS
* Engineering applications
* What’s new in DAKOTA version 4.0
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hat is DAKOTA? Executive Summary

- DAKOTA: Design and Analysis toolKit for Optimization and Terascale
Applications

Under development at SNL since 1994

State of the art tools for performing engineering “what if’ studies:
* Uncertainty quantification, sensitivity analysis, computer model calibration, design
optimization, etc.
+ Extensive support for parallel computing — PCs to supercomputers
Works as a “black-box” with your simulation code(s):
« Data transferred via file read/write operations
* Works on LINUX/UNIX, Mac OS, Windows
In use at SNL, LLNL, LANL, ORNL, Navy, NASA, Lockheed-Martin, 3M,
Kodak, Goodyear, etc. and at numerous universities
Freely available worldwide via GNU General Public License
+ ~3000 downloads, approx several hundred “serious” users
DAKOTA team receives significant return on investment from external users:
* Bug reports, compilations on new computer systems, suggestions for future R&D,
research collaborations
DAKOTA enables sensitivity analysis, optimization, and uncertainty
quantification w/ high-fidelity simulation tools on massively-parallel
supercomputers.

*roughly 500k lines of code total, with ~100k in DAKOTA “core” =
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What is the Role of
DAKOTA in Engineering/Science Applications?

- DAKOTA enables sensitivity analysis, optimization, and uncertainty
quantification (UQ) to help answer “what if...” questions.

— What happens to my cost (or safety margin or performance level or ...) if |
change parameter X?”

— How reliable is my design?
— How safe is my design?
— What is the best design?

- DAKOTA assists the analyst/designer in understanding and
managing complex computer models.

— Automate typical “parameter variation” studies.

— Discover/predict nonlinear interactions among many parameters.

* Interactions that might be missed with traditional “change one parameter
at a time” studies.

— Support experimental testing efforts:

« Examine many accident conditions with computer models, then physically
test only a few of the worst-case conditions.
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DAKOTA
Optimization

. DAKOTA Overview

Worst Case Fire Safety

Model
Parameters

Technical themes

« DAKOTA works with just about any simulation code.
— Typically in “black box” mode with file reading/writing.
— DAKOTA contains math & stats methods — no physics!
- Exploit large-scale/massively parallel computing platforms

Uncertainty Quant.
Parameter Est.

Sensitivity Analysis

A

(" CALORE thermal analysis
ALEGRA shock physics

Premo high speed flow

(your code here)

\_

~

SALINAS structural dynamics ) o
Metri .
strics Structural Design

Nominal Optimized
_/

« Create and deploy state-of-the art methods for complex and

expensive engineering simulations, e.g.:

— Surrogate-based optimization & uncertainty quantification
» Balance research goals with production software support

Impact

* Internal: extensive (and growing) use within SNL
« External: DOE labs, DoD labs, NASA, commercial & academic

partners

Contours of GaMe3
on Reacting Surface




DAKOTA Framework

Iterator Model:
DoE LeastSq
— = Design Application Functions
[DDACE[[CCD/BB] INLssoL] | [GN| continuous system objectives
EI | discrete fork constraints
QMC/CVT L250L Uncertain direct least sq. terms
—— ParamStudy normaliiogn grid generic
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Coordination: Strategy
Iterator Nested
Layered / \
Model Cascaded
Concurrent |Opt1mlzat10n ncertalnty

Iterator

N

Model

-

Iterator
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Model
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Adaptive/lnteractive

Parallelism:

Asynchronous local
Message passing
Hybrid

4 nested levels with

Master-slave/dynamic
Peer/static

IM' |OthnderUnc| Vo

ncOfOptima

|an0rderProb|

Pareto/MStart

IBranch&Bound/PICO|
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Some Notation....

« “Design parameters”: x1, x2, ..., xN
— X’s can be real-valued
— X’s can be discrete-valued (integer or real)
— X’s can be uncertain (e.g., probability distributions)
— X’s can be a mix of all of these

 Examples:
-123.4 <= x1 <= 567.8
x1 is an element of [1.0, 1.2, 1.4. 1.6. 1.8, 2.0]
x1 is an element of [-2, -1, 0, 1, 2]

x1 has Normal distribution with a specific mean and standard
deviation

* The collection of all possible design parameter values defines the
“parameter space.”

— e.g., if x1 and x2 are both real-valued on [0,1], then the
parameter space is the unit square

— e.g., if x1 and x2 are both discrete-valued on [0, 0.5, 1.0], then
the parameter space is a 3x3 grid of points on the unit square
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Some Notation....

» “Response functions” are dependent on the design parameters.
— aka: “figures of merit,” “objective functions”

— These functions capture the “goodness” of what you are studying:
cost, weight, speed, penetration depth, discrepancy between
simulation data & test data, etc.

— For most real-world applications, the actual mathematical form of
the response function is not known precisely, and the response is
evaluated via a complex computer code.

* In cases where the functional form is known, this knowledge can be
exploited

— These functions are real/discrete/uncertain depending on the form
of the design parameters.

» Typically, a problem of interest has more than one response function:
f1 = fcn1(x1,...); f2 = fcn2(x1,...); ...; fM = fcnM(x1,...)
— Multiple objectives (minimize both cost & weight)
— Objectives and constraints (minimize weight, subject to cost <=

cost limit
- )
labu?g?ories




» Sensitivity analysis examines variations in f(x,) due to
perturbations in x;

— Local sensitivities are typically partial derivatives.
» Given a specific x1, what is the slope at that point?

— Global sensitivities are typically found via least squares.

« What is the trend of the function over all values of x1?

o h
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Examples of Optimization

global
extrema

f(x4) f(x4) \max
(\\ I(Z:;al

root min extrema
X X

» Optimization methods find the “zero” or “root” of a function
and/or the extrema (min/max points) of a function

— Some opt methods use gradient information to guide their
search process

— e.g., find the value of x1 where (f_simulation — f_test)=0,
or, where (f_sim — f_test) is minimized.

Sandia
m National
10 Laboratories




- Example of
Uncertainty Quantification

Final Temperature Values

Note: DAKOTA does
not fit a statistical
distribution to the f-
value data. This type
of statistical analysis
can be performed with
statistical analysis
software: JMP,
0 —ccretI] Minitab, S-Plus,
30 36 42 48 54 60 66 |72 78 84 Niaﬂab Stats Toolbox,
etc.

% in Bin

Temeprature [deg C]

 UQ methods provide info on the statistics of the responses.
— Correlations of f-values to x-values
— Mean(f), StdDev(f), Probability( f >= f_critical)
— Example: x = uncertain test condition, f = temperature

— Choose many x-values, run code for each set of x-values, i
nadia
collect f-values, plot and analyze the f-values M) fisionat
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Summary of DAKOTA'’s Utility

* In many applications, we want to understand how changes in our
x-values affect the f-values from our simulation code.

* Traditional process — user changes one x-value at a time, runs the
simulation code, and observes the change in the f-value.

— Tried and true, but, can miss important multi-parameter
interactions.

 Computer-aided process — DAKOTA selects the x-values, runs the
simulation code, collects all of the f-values, and presents “data” to
user.

— “data” = local/global sensitivity info
— “data” = optimization info on x- and f-values
— “data” = probability & statistical info on f-values

— Then, the user decides how to proceed — new x-value ranges,
focus in on x-values of interest, etc.

— The user is still in control of the analysis/design process!

Sandia
m National
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VA
} DAKOTA Execution & Info Flow

* What files go into DAKOTA?
 What files come out of DAKOTA?

 How does DAKOTA interact with my simulation
code?

Sandia
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DAKOTA Execution & Info Flow

DAKOTA Input File: DAKOTA Output Files:
-Commands Dg;io,:i‘:ation -Raw data (all x-values & f-values)
-Options —>| Uncertainty Quant. ——>| -Sensitivity info
-Parameter definitions Parameter Est. -Statistics on f-values
) Sensitivity Analysis . ..
-File names / \ -Optimality info
DAKOTA Parameters File: DAKOTA Results File:
{x1=123.4} 999.888 f1
{x2 =-33.3}, etc. 777.666 f2, etc.

Use a script such as
APREPRO to cut-and-paste
x-values into code input file

Code
Input File

DAKOTA executes
“‘my_sim_code_script”

to launch a simulation
job User-supplied automatic

post-processing of code
output data into f-values

(CALORE thermal analysis \
ALEGRA shock physics
SALINAS structural dynamics Code
Premo high speed flow —>| Output File

(your code here)

Sandia
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What is the Format of

=X 4
* DAKOTA'’s “results.out” File?

* This question comes up a lot.

 Answer:
— List the f-values in order, one value per line in the file:
f1
f2

fM

* Note:

— You can add a text label after the function value (on the same
line) to help you keep track of the f-values

* If your code generates gradients of the f-values and/or
Hessian values (matrix of 2"d derivatives), DAKOTA can use
this info. See the DAKOTA Users Manual, or contact me, for
more info.

Sandia
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|
o c Questions to Consider
- Before Using DAKOTA
1. What do | want to find out?
— Sensitivity study? Optimization study? UQ study?

2. How many runs of my simulation code can | afford?
—10’s,100’s, 1000’s, more?
— How many processors per simulation code run?

3. Where am | going to run the simulation code?
— On my PC? On my Mac?
— On my Linux/Sun/SGI/IBM workstation?
— On a network of workstations?
— On a Linux/Sun/SGI/IBM cluster?
— On a special supercomputer?

Of these, #1 and #2 are the most critical! A
16 Laboratories




DAKOTA Examples:
Rosenbrock Function

ey

e
S

f(x1,x2) = 100*(x2-x1*x1)A2 + (1-x1)A2
2 <=x1<=2

D <=x2<=2
Optimum point: (x1,x2) = (1,1); f(1,1) = 0.0

Sandia
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*‘ Parameter Study Methods

» Goal of a parameter study:
— Sensitivity of f-values due to small x-value changes
— Sensitivity of f-values due to large x-value changes

* Multidimensional parameter study:
— Good if your simulation code is not expensive
— Good if your # of design parameters “N” is small
— Pros: readily amenable to 2-D and 3-D plotting
— Cons: doesn’t scale well with large “N”

* Vector parameter study:

— Good if your simulation code is expensive and/or if your
# of design parameters is large

Sandia
m National
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Multidimensional Parameter Study

« Example: 9 equally-spaced samples
on x1 and x2 intervals.

— Yields 81 samples on a regular grid

* Great for plotting!
— Generates a table of data for Matlab,
Excel, Mathematica, etc.
* Flexible - could have used a different
# of samples for x1 and x2.

 Warning: this method scales, at best,
as # samples = 2 N:

— N = # of parameters, and the “2”
comes from sampling at the
endpoints of each parameter
interval:

— For N=2, there are 4 samples

— For N=3, there are 8 samples

— For N=5, there are 32 samples

— For N=10, there are 1024 samples

— For N=20, there are ~1 million samples*

*This is the “curse of dimensionality” —
more info on this coming in the UQ
section. 'I" Sandia

National _
Laboratories
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Vector Parameter Study

« Example: 11 equally-spaced
samples along a vector in the x1-x2
parameter space.

— User defines the starting point,
ending point, and number of
samples

— In 2-D, this is like “walking” from
point A to point B.

— In 3-D, this is like “flying” from
point A to point B.

* This method is not especially
useful with N=2, but is very useful
in N>2,

— With big steps, this provides some
global trend info on f-values.

— With small steps, this provides
some local trend info on f-values
(quasi derivatives).

Sandia
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21

mple Input/Output: Parameter Studies

# DAKOTA Users Manual Ch 2 example problems
# using Rosenbrock's function

strategy, \
single method \
tabular graphics_data

method, \
multidim_parameter study \
partitions = 8 8 \

model, \
single

variables, \

continuous_design = 2 \
cdv_initial point 0.0 0.0
cdv_lower bounds -2.0 -2.0
cdv_upper bounds 2.0 2.0
cdv_descriptors  'x1' 'x2'

- —

interface, \
system \
analysis_driver = 'rosenbrock’ \
parameters_file = 'params.in' \
results file = 'results.out'

responses, \
num_objective functions = 1 \
no_gradients \

Parameter Study Input

%eval id x1 obj fn
1 2 2 3609
2 -1.5 2 18125
3 -1 2 904
4 -0.5 2 508.5
5 0 2 401
6 0.5 2 506.5
7 1 2 900
8 1.5 2 1806.5
9 2 2 3601
10 2 -1.5 3034
11 -1.5 1.5 14125
12 -1 -1.5 629
13 -0.5 -1.5 308.5
14 0 -1.5 226
15 0.5 -1.5 306.5
Parameter Study Output

Sandia
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A4
# Optimization Methods

» Optimization problem formulation

« Key decision criteria for optimization method
selection

« Examples of optimization methods
— Gradient-based methods
— Non-gradient pattern search
— Non-gradient genetic algorithms

« Summary

Sandia
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%‘ Optimization Problem Formulation

Minimize: f1(x1, ..., xN)* } Objective function

Subject to: 10<=f2<=1.0
Linear or nonlinear
constraints

-1.0<=fM <=1.0

~/

0.0<=x1<=1.0

>~ Bound constraints

0.0 <=xN<=1.0

~/

*Note: in practice, we can have multiple f-values in the objective
function (aka “multiobjective optimization”) S
23 L
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Optimization Problem Lingo*

Unconstrained problem —neither bound constraints nor

linear/nonlinear constraints

Bound-constrained problem — bound constraints only, no

linear/nonlinear constraints

Linearly-constrained problem — has bound constraints, and the

f-value constraints are linear with respect to the x-values

- in this case, the f-value constraints can be written via a linear
system of equations

Nonlinearly-constrained problem* — has bound constraints, and

the f-value constraints are nonlinear w.r.t. the x-values

*These are just the most basic problem definition terms
**Most engineering opt problems | encounter are nonlinearly-constrained.

Sandia
m National
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' Getting Ready for an

Optimization Study via DAKOTA

* Key decision criteria:

— Smoothness of the sensitivity study data — both large scale and
small scale trends

— Expense of the simulation
— Types of constraints in your optimization problem
— Optimization goal: local optimization or global optimization?

 Extreme Case #1 — all optimization methods will work:
— F-values have smooth local and global trends
— Can afford millions of simulation code runs
— No constraints
— Local optimization is the goal

* Extreme Case #2 — no optimization methods will work:
— F-values have nonsmooth local and global trends
— Can afford, at most, two simulation code runs
— Many nonlinear constraints (that are also nonsmooth)
— Global optimization is the goal

Sandia
m National
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'Recipe for an Optimization
Study via DAKOTA

Here is my basic optimization method decision tree:

-

Unconstrained or bound-constrained problems:

— Smooth and cheap: just about any method will work, gradient-based
methods will be fastest

— Smooth and expensive: gradient-based methods

— Nonsmooth and cheap: non-gradient methods such as pattern search
(local opt), genetic algorithms (global opt), DIRECT (global opt), or
surrogate-based optimization (quasi local/global opt)

— Nonsmooth and expensive: surrogate-based optimization (SBO)

Nonlinearly-constrained problems:
— Smooth and cheap: gradient-based methods
— Smooth and expensive: gradient-based methods

— Nonsmooth and cheap: non-gradient methods w/ penalty functions,
SBO

— Nonsmooth and expensive: SBO

Sandia
m National
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Optimization Methods

» Gradient-based optimization
method

Ny
- Started at (x1,x2) = (-1.0, 1.2) ;%ﬂ\f “::Q\?‘“:;/’f / h"'ﬂ
II II' IIII':III":IH\ . “\\:H-h-_\_‘_jf ;.-. /

» Search algorithm follows the
general descent direction
“around the bend” of the
Rosenbrock function.

» Gradient-based optimization
is very efficient: ~30-100
evaluations of the f-values
needed to find the minimum.

— Performance varies
between different
algorithms

Sandia
m National
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# DAKOTA Users Manual Ch 2 example problems
# using Rosenbrock's function

strategy, \
single_method \
tabular_graphics_data

method, \

xample Input/Output: Optimization

optpp_q_newton \
max_iterations = 50 \
convergence tolerance = le-4 \

model, \
single

variables, \
continuous_design = 2 \
cdv_initial point 0.0 0.0
cdv_lower bounds -2.0 -2.0
cdv_upper bounds 2.0 2.0
cdv_descriptors  'x1' 'x2'

— e — -

interface, \
system \
analysis_driver = 'rosenbrock’ \
parameters_{file = 'params.in’ \
results file = 'results.out'

responses, \
num_objective functions =1 \
analytic gradients

no_hessians

Begin Function Evaluation 39

Parameters for function evaluation 39:
1.0013529993¢+00 x1
1.0026805414¢+00 x2

(rosenbrock /tmp/file305jSa /tmp/fileN420b5)

Active response data for function evaluation 39:
Active set vector = { 2 }
[ 1.3635895231e-02 -5.4575642309¢-03 ] obj _fn gradient

<<<<< Iterator optpp_q newton completed.

<<<<< Function evaluation summary: 39 total (39 new, 0

duplicate)

<<<<< Best parameters =
1.0013529993e+00 x1
1.0026805414e+00 x2

<<<<< Best objective function =
1.9050696347¢e-06

<<<<< Best data captured at function evaluation 38

<<<<< Single Method Strategy completed.

DAKOTA execution time in seconds:

Total CPU = 0.05

Optimization Input

Optimization Output

Sandia
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Optimization Methods

b3

WA AN
N\
it | %, \\ \“"‘--._—ﬂ'/ - / {}J)‘I ,l'u
\:\\\I\. \\ ) A "l.' I(J:I . )

» Pattern search optimization
(non-gradient method)

- Started at (x1,x2) = (0,0) o

» Search algorithm has made
some progress toward the

minimum after generating
~2000 f-values, but still not o
converged to the minimum. 02 1
0 “3:__7"
» Pattern search is a great -02 -
method, just not for this o
type of optimization AN e
problem. Y o i

_lational
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Optimization Methods

- Genetic algorithm (GA) Irg(t)ual pgpulanon N NS

optimization ( raln om W AN/ /f/ % |
. m L —

(non-gradient method) samples) 1 '~ \!ﬁ/./-; i
o . il

» Started with 50 random
points in the parameter
space

* GA search algorithm run to
generate 10,000 f-values. 46

Final population 2 =
of the 50 samples have AN
settled close to the true (46 of 50 near '“'\‘ \ —
optimum minimum) \%‘:

 GA is a great method, just AN
not for this type of N\
optimization problem. VAR N—’

1
Sandia
m National
30 Laboratories




'
— ' Summary on
* Optimization Methods

» Selecting the right optimization method that matches the
particular attributes of your problem is critical, especially if
your simulation code is expensive!

* You won’t have a good idea of the best optimization method
UNLESS you perform some local and global sensitivity
studies BEFORE you start optimizing.

— Many users are blinded by past experience:
» “l used method XYZ in grad school, therefore....”

* “l read about genetic algorithms in the Porcelain Press, so
they must be good....”

Sandia
m National _
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*‘Uncertainty Quantification Methods

* UQ methods in DAKOTA include:
— DACE methods
— Sampling methods
— Analytic reliability methods
— Epistemic uncertainty methods

« Sampling methods have two main uses:

— Sensitivity analysis studies when the uncertain
parameters only have bounds (intervals).

— Statistical studies when the uncertain parameters
have well-established probability distributions.

Sandia
m National _
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DACE Methods

* Design of Computer Experiments
— Usually, we do not assume distributional forms for the inputs

— DDACE - Developed at SNL-CA (Monica Martinez-Canales)
« Orthogonal arrays
« Central Composite
 Box-Behnken
* Grid sampling
 LHS and pure MC
* Orthogonal LHS
« Can calculate main effects for OAs
« Can use in Variance Based Decomposition, Quality Metrics
— FSUDACE - Developed by Florida State University, Max
Gunzburger and John Burkardt
» Halton sequences
« Hammersley sequences
Centroidal Voronoi tesselation
Can “Latinize” these methods
Can use in Variance Based Decomposition, Quality Metrics

Fair amount of control in terms of where you want to start the
sequence, what prime bases are used, etc.

Sandia
m National
Laboratories
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Quasi Monte Carlo Methods

* Quasi-Monte Carlo sequences are deterministic
sequences determined by a series of prime
bases. They are designed to produce uniform
random numbers on the interval [0,1].

 E.g., Halton sequence:

Sample Number Base 2 Base 3 Base 5 Base 7
1 0.5000 0.3333 0.2000 0.1429
2 0.2500 0.6667 0.4000 0.2857
3 0.7500 0.1111 0.6000 0.4286
4 0.1250 0.4444 0.8000 0.5714
5 0.6250 0.7778 0.0400 0.7143
6 0.3750 0.2222 0.2400 0.8571
7 0.8750 0.5556 0.4400 0.0204
8 0.0625 0.8889 0.6400 0.1633
9 0.5625 0.0370 0.8400 0.3061

-
o

0.3125 0.3704 0.0800 0.4490

Sandia
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Example: Halton Set

Base 2 and Base 3

B Halton 25 points
B Halton 10 points

0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1

0.1

0.2

0.3

0.4

B Halton 100 points
B Halton 25 points
B Halton 10 points

Base 2 and Base 3

0.5 0.6 0.7 0.8 0.9 1

Sandia
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Quasi Monte Carlo Methods

* The quasi-Monte Carlo (QMC) and Centroidal Voronoi Tesselation
(CVT) methods are designed with the goal of low discrepancy.

» Discrepancy refers to the nonuniformity of the sample points
within the hypercube. Discrepancy is defined as the difference
between the actual number and the expected number of points
one would expect in a particular set B (such as a hyper-rectangle
within the unit hypercube), maximized over all such sets.

* Low discrepancy sequences tend to cover the unit hypercube
reasonably uniformly.

« CVT does very well volumetrically, however the lower-dimension
(such as 1-D) projections of CVT can have high discrepancy.

« CVT developed as part of unstructured meshing techniques for
irregular domains

» Centroidal Voronoi diagrams subdivide arbitrarily shaped
domains into arbitrary numbers of nearly uniform subvolumes

« Sample points returned are the centers of the Voronoi region
« CVT good choice for high dimensional sampling

Sandia
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Sampling Methods

— Latin Hypercube Sampling

* Distribution types supported: normal, lognormal, uniform,
loguniform, triangular, gamma, gumbel, frechet, weibull,

histogram, interval
 Also can specify plain MC

 Correlations between inputs supported with Iman and
Conover’s restricted pairing algorithm

G
@
H
I [ ]
@
J
®
K
®
L
—00 A B C D 00
A Two-Dimensional Representation of One Possible LHS of size 5 _
Utilizing X1 (normal) and X2 (uniform) |I'| ﬁaa?igﬁal
Laboratories
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Variance Based Decomposition

n non
ZK+ZZ Vg,
i=1 j=i+1

Vi= V(E(Y| X)),
vlJ = V(E(Y| X;, X)) = Vi =V,
Viik = VE(Y| X, Xj, Xy) — Vi = V= V= Vi — Vi — Vi

_V(EX X))
! V(Y)

* Variance-based decomposition methods involve Monte Carlo sampling of the
“inner loop” to calculate E(Y| X, = x*) and additional Monte Carlo sampling of the
“outer loop” to calculate the variance V(E(Y| X)). This is very expensive in terms of
number of function evaluations.

« Various methods (Saltelli, McKay replicated LHS, Morris, FAST) have been
developed to calculate SA indices.

*Advantage of VBD over correlation analysis is that VBD better captures non-
monotonic relationships.
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Example Input/Output: LHS

# DAKOTA Users Manual Ch 2 example problems Statistics based on 200 samples:
f# using Rosenbrock’s function Moments for each response function:
response_fn_1: Mean = 6.68699¢+02 Std. Dev. = 1.01401e+03 Coeff. of
strategy, \ Variation = 1.51639¢+00
single method \
tabular_graphics_data 95% confidence intervals for each response function:
response_fn_1: Mean = ( 5.27307¢+02, 8.10091e+02 ), Std Dev = (
method, \ 9.23420e+02, 1.12446¢+03 )
nond_sampling \
samples = 200 seed = 1734 \ Probabilities for each response function:
sample_type lhs \ Cumulative Distribution Function (CDF) for response fn_1:
response_levels = 100.0 Response Level Probability Level Reliability Index
model, \ 1.0000000000e+02  3.0500000000e-01
single
Simple Correlation Matrix between input and output:
variables, \ x1 x2 response_fn_1
normal_uncertain =2 T x1 1.00000¢+00 Sample Output
nuv_means 0.0 0.0 \ x2 3.69447¢-03 1.00000e+00
nuv_std deviations 1.0 2.0 \ response_fn 1-1.23484e-01 -3.35515¢-01 1.00000e+00
nuv_descriptor 'x1" 'x2'
Partial Correlation Matrix between input and output:
interface, \ response_fn_1
analysis_driver = 'rosenbrock’ \ X2 -3.37645¢-01
parameters_file = 'params.in’ \ ) ) . .
results file = 'results.out' Simple Rank Correlation Matrix between input and output:
- x1 x2 response_fn_1
x1 1.00000e+00
responses, \
x2 -3.09488e-02 1.00000e+00
fions = 1 T
| Egnjg—r;ejg (I’lr[lsse—mnc 1ons : | response_fn 1 1.85300-02 -3.03560e-01 1.00000¢-+00
no_hessians Partial Rank Correlation Matrix between input and output:
response_fn 1 m ndia
Sample Input x1 9.59218e-03 Ngtional _
39 P p X2 -3.03183¢-01 Laboratories
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UQ with Reliability Methods

Mean Value Method g = glus)
o = 2.2
i
- by —
Beag = !Hn
z = pB _5e
9 - il — _ug
Heodf  — 0

MPP search methods

Reliability Index
Approach (RIA)
T

m u

minimize

subject to G(u) =2

\ A

dg (pix)

oo d
Coui, )~ (1x)
dx; (

;1_1‘? — z{

o

-~
“

(U2

{r j

Mg — Hg.ﬁr:rff

fg + 0 g.ﬁr.'r.‘fl!f

u* - MPP

FORM

[
»

Find min dist to G level curve
Used for fwd map z 2 p/p

40

Nataf x = u:

®(2;) = F(z)
z = Lu

U1

SORM

\

Rough
statistics

_/

Performance Measure
Approach (PMA)

+G(u)
subject to ulu = 3

Find min G at  radius
Used for inv map p/8 2 z

minimize

Sandia
National
Laboratories
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Epistemic UQ

Totat Normalized Releases: Replicate R1

Second-order probability \gn 100 Observatons, 10000 FuurssiObsanaon
— Two levels: distributions/intervals on e B 1
distribution parameters o b ]
— Outer level can be epistemic (e.g., interval) _;f;_wz r '; ]
— Inner level can be aleatory (probability distrs) f;w_, L
— Strong regulatory history (NRC, WIPP). Tl ]
; Frame 2a ]

10-% sttt o

105 104 10 102 10t 19 100 12
Normalized Release (EPA units}, R

Dempster-Shafer theory of evidence o
— Basic probability assignment (interval-based) H\ltL

— Solve opt. problems (currently sampling-based)
to compute belief/plausibility for output intervals

Fallure
Region

PI>Y) 3

BelY)-» PGY)

00 01 02 03 04 05 06 07 0.6 08 1.0

PI(>Y) or P(>Y) or Bel(>Y)
]

Source 1 —2k | - 20% . 4
SOUrCe 2 e 7070 P
33% | L 33%
T 1 I o 1 4 | 1 L 1 L 1 L 1 L L L
Source 3 33% mo_a 08 10 12 14 16 18 20 22

41 Y
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pistemic Uncertainty Quantification

Epistemic uncertainty refers to the situation where one does not know
enough to specify a probability distribution on a variable

Sometimes it is referred to as subjective, reducible, or lack of knowledge
uncertainty

The implication is that if you had more time and resources to gather more
information, you could reduce the uncertainty

Initial implementation in DAKOTA uses Dempster-Shafer belief structures.
For each uncertain input variable, one specifies “basic probability

assignment” for each potential interval where this variable may exist.
Intervals may be contiguous, overlapping, or have “gaps”

BPA=0.2 !
Variable 1

| |
BPA=0.5 BPA=0.3

Variable 2 Sandia
m National _
Laboratories




istemic Uncertainty Quantification

* Look at various combinations of intervals. In each joint interval “box”, one needs to
find the maximum and minimum value in that box (by sampling or optimization)

- Belief is a lower bound on the probability that is consistent with the evidence
* Plausibility is the upper bound on the probability that is consistent with the evidence

* Order these beliefs and plausibility to get CDFs
* Draws on the strengths of DAKOTA
— Requires surrogates

— Requires sampling and/or optimization for calculation of plausibility and belief

within each interval “cell”
— Easily parallelized

0.1 o © © ©
Variable 2 0.2 ® ® @
o | Aa
071 © A‘ AA
° A o4s
S 3 2

43 Variable 1

@ Original LHS samples used
To generate a surrogate

Million sample points

generated from the

A surrogate, used to

determine the max and

min in each “cell” to

calculate plausibility and

belief

h
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UQ Needs for the next 5 years

Quantify "extrapolative" confidence
— Requires the use of response surface methods which handle uncertainty
Sampling for stochastic processes

— Sampling of random fields (in space and/or time, possibly non-stationary
and non-Gaussian), not just random variables.

Intrinsic / Analytic UQ capability
— Expand the role of expansion methods such as Polynomial chaos

— Many issues remain about the set of points on which to construct the
basis for different distribution types, the type of integration method, etc.

Efficient (e.g. surrogate) methods for higher order moments and tail
statistics

— Better quantification of surrogate accuracy
Adaptive Experimental Design
— Importance Sampling, Adaptive OAs
Efficient sensitivity analysis
Epistemic UQ
— Capability to combine aleatory and epistemic uncertainty in one analysis
UQ treatment in multi-fidelity and/or hierarchical models
— Efficiency issue

— More important, dealing with uncertainty at different time or length scales
across simulations

Sandia
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DAKOTA Team Contact Info

* Web site:
— http://lendo.sandia.gov/IDAKOTA
— Email: dakota@sandia.gov
— User’s Manual, Reference Manual, Developers Manual - online

« Team Members
— Mike Eldred, Principal Investigator (R&D)
— Tony Giunta, Product Manager (applications & training)
— Shane Brown, Support Manager (software issues)
— Laura Swiler
— Brian Adams
— Danny Dunlavy
— Dave Gay
— Bill Hart
— Jean-Paul Watson
— Many other technical contributors (SNL-CA, SNL-NM, academia,...)
— Scott Mitchell, Dept. 1411 manager
— Marty Pilch, Dept. 1533 manager

Sandia
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Parting Thoughts....

TOUR OF pDAKOTA

OVER HERE

WE HAVE OUR
RANDOM NUMBER
GENERATOR.

NINE NINE
NINE NINE
NINE NINE

4t

12)as/o) © 2001 United Feature Syndicate, Inc.

\A(gs THAT'S THE
hioedl PROBLEM
WITH RAN-
THATS DOMNESS :
RANDOM? ‘
YOU CAN

NEVER BE
SURE.
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Recipe for a UQ
Study via DAKOTA

UQ Study*

» Define appropriate parameter ranges and/or probability distributions.

» Use the Latin hypercube sampling method to generate Order(N to N*2)
samples of the x-values.

The minimum # samples you can get away with is N+1
One rule of thumb is: # samples >= 0.5*(N+1)*(N+2)
Another rule of thumb is: ~15-30 samples for each N (i.e., # samples = 15*N or 30*N)

Another rule of thumb is: # samples = 1/3 of your simulation run budget, so that you
can save the other 2/3 runs for follow-on studies

- Examine the f-value correlation data and basic statistical data generated by
DAKOTA.

These correlations are the “global” linear trends in the f-values.
Often they are useful in finding a worst-case or best-case combination of x-values.

« Perform a more detailed statistical analysis of the f-values (contact me or a
SNL stats expert for pointers).

« Only use DAKOTA'’s f-value probability estimates if you have well-founded

knowledge about the probability distributions on the x-values.

*Note: There are other more advanced UQ methods (e.g., Dempster-Shafer theory, polynomial chaos

theory) in DAKOTA, but these are yet ready for “production” use.

(L
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*‘Statistical Analysis via UQ Methods

* The UQ statistical analysis leverages the fact that
we know the probability distributions of the
design parameters.

« Same approach as with the sensitivity analysis:

— Assign specific probability distributions to the
design parameters in the dakota input file

— Select 0.3*K samples (see “recipe” guidelines) via
DAKOTA'’s Latin hypercube sampling method
— Run DAKOTA and examine the following:
» Correlation data for f-values to x-values
* Minimum and maximum f-values
* Probability data on f-values, e.g., Prob( f>f_critical)

— Repeat the LHS study with another 0.3*K samples

Sandia
m National
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ensitivity Analysis via UQ Methods

* 200 random samples in the

* We only know the bounds, and not
any probabilities on x1 and x2.

parameter space. o ~.\\\_‘xﬁ_lﬂ_.*/ ,};I;' / "III.'r I.-”."
2<=x1<=2 ) ?.\.::3_;.&’}; ;H,-"H- ’J'/ !
2 <=x2<=2 e K{/ i

e — ; A b
\\_RT 4 34/1 i

v
- DAKOTA produces a correlation °*2 " J/fe

matrix with data on: *® a8 @/

— Correlation of f with x1 ) \‘% N e ’?x’ /)
— Correlation of f with x2 SRR s ot sy
— Correlation of x1 with x2 (should & -\‘;&. “’—l:?}{‘,} .
be nearly zero!) \:‘f:?\m{x-”ffﬁf
‘*i:miri//%- "
« DAKOTA produces a column Ml
oriented output data file: 200 rows 0 1 2

by 3 columns; the columns are x1,
x2, and f

— Analyze this data file in a
commercial statistics software
package to get min, max, and
trend data
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tatistical Analysis via UQ Methods

* 200 random samples in the
parameter space:

2

T

. e
-2<=x1<=2 ]'qk__!"—f"f /e
2 <=x2<=2 il PSRN S
* But now we are told that x1 and x2 1] ® N ‘_i:;-}
gL e

have uniform probability
distributions

« DAKOTA produces a correlation
matrix with data on:

— Correlation of f with x1
— Correlation of f with x2 -1

— Correlation of x1 with x2 (should
be nearly zero!)

« DAKOTA produces statistics on the ) -
f-values (e.g., Prob(f<4) = 0.049)

0 1 2

« DAKOTA produces a column
oriented output data file: 200 rows
by 3 columns; the columns are x1,
x2, and f

— Analyze this data file in a
commercial statistics software Sandia

51 package to get min, max, etc. II'I National
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Typical SNL DAKOTA Applications

Design Optimization - Use numerical optimization
methods to find the best design.

» Load spreader plate design with Pronto

« Weapon component design with Salinas

» F-35 fuel tank design (with Lockheed-Martin)

Parameter Estimation — Use numerical optimization
methods to calibrate computer models to match
experimental test data.

Heterogeneous material parameter identification w/ Presto
Hypervelocity flyer plate calibration w/ ALEGRA
Molecular force field parameter identification w/ Towee
Material parameter identification w/ CTH

PCD yield — 0.48 cal/fcm2
T T

Uncertainty Quantification — Propagate variability and:
uncertainty on code inputs & compute output respohse
probabilities. £ y
Circuit transient response w/ Xyce
Thermal environment uncertainties w/ CALORE

Material stress-strain response w/ Presto
Underground target response modeling

Sdiaid
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DAKOTA UQ Study:

Presto Simulations vs. Z-Accelerator Data

Tungsten wire array & Z pinch

X-Ray Induced Thermomechanical Shock
Modeled w/ Presto

(VAN 4
[AVAVaW 2
[aVaVAV 2
X-rays \
4 mil
]fl?pto” 1 mm 16 um
tter 6061-T6  Epoxy bo
Absorber
PCD yield — 0.32 calfcm2 +/-1% rho
0.8 y y ' T +/-5% Co
£ :?:;otafPresto - 2000 +/_ 5% US/Up S|Ope
- ] +/- 15% Gruneisen
' a77 +/- 20% fluence
479
485
— 04 —— PAESTO —nom 9 total parameters =
3 randomly varied g
a P
E 0.2 | E
ta 7]
il e
ST 5
-0z} 1
G4 i ; i A i .
5 150 160 170 180 190 200 210 220
‘ Time (ns)

Signal proportional
To stress difference

> £ ctvveen quartz

Summary:
*UQ study on Presto sims. of

thermomechanical shock.
*DAKOTA generated 2000
Presto runs; run on 1500’s

surfaces. network of workstations
*Compared Presto vs. Z Shot
px10 uncertainty bands.
*First-ever UQ study gives info
;(mmt on design margins. Need for
_Cu .
nd  quartz !:’rest.o. model improvement was
identified.
*Contacts: Tony Giunta, 1533 &
Joel Lash, 1514
PCD yield — 0.48 cal/cm2
15 T T T T T
- Dakota/Presto — 1500 runs
454
552
555
556
LY
= PRESTO - nominal
05
0.0
) ) ) . . lia
_0'5150 160 170 180 190 200 210 ;le:?(lmes

Time (ns)



DAKOTA UQ Study:
Underground Target Defeat (1 of 4)

Scenario: underground target with an external threat

Goal: Assess uncertainty in target response due to uncertainties in target
construction and threat characteristics

9 parameters that describe target & threat uncertainty
— Each parameter has uncertainty specified by an interval
Response: deflection angle (¢) of target roof at mid-span

Tools: Sandia shock physics code; DAKOTA UQ/optimization tool; JMP
statistical analysis software

Threat:
* Size parameter #1
* Size parameter #2

Target:

} *Depth
*Materials

*Size of

structure

J m ﬁaa?igﬁal
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http://www.jmp.com/index.shtml

DAKOTA UQ Study:
nderground Target Defeat (2 of 4)

« Example: 2-parameter sampling via DAKOTA;

simulations run on a Linux

cluster; data analysis via JMP yields response trends vs parameters

variations
DAKOTA Latin Hypercube sampling 9
Higt S
8
- * * *
* % *  x *
i . ”
x X
S 4 * K *
K *
* *
4 * * ok
v X x * NE
i % * [ e
Lo T T T T T t ,' i
L High e 4 o
° " Ml The Stafistical Software

Max
Mid
Min —
q > 9 5
Md T Md T
v1 V2

Statistical Analysis
& Graphics

Summary of Fit
RSquare 0.866299
RSquare Adj 0.823758
Root Mean Square Error ##
Mean of Response ##
‘ Observations (or Sum Wgts) 30
Sil’l”lS FUN ON a Analysis of Variance

Source DF  Sum of Square: Mean Squar¢ F Ratio
LINUX Clu ster Model 7 5343.9158 763.417  20.3638
,. - Error 22 824.7562 37.48S Prob>F
56 N =3 C. Total 29 6168.6720 <.0001
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- DAKOTA UQ Study:
Underground Target Defeat (3 of 4)

 Actual Study:
— 9 parameters of interest

— 70 Latin Hypercube samples uniformly distributed in the 9-dimensional
parameter space: 70 simulations run on various Sandia Linux clusters

— Data analysis & visualization in JMP: stepwise regression on mixed 2" &
3rd order polynomial models, plus neural network models.

Summary of Fit * Results from these 70 code runs
RSquare 0.848663 H H'H
RSouore Ad iy motivated add_ltlonal code runs
Root Mean Square Error i concentrated in several [v1,v2]
Mean of Response HHHE
Observations (or Sum Wgts) 220 parameter SUbSpaces.
Analysis of Variance — 150 additional code runs
Source DF  Sum of Squaret Mean Squar F Ratio
Model 29 36483.299 1258.04  36.7406 — 220 total code runs
Error 190 6505.842 3424  Prob > F
C.Total 219 42989.141 <.0001
° Max
§- Avg
2 +stddev r_’_,__,_,—»"l - | I i ) S g} F SR 1
Min
oI _g’ 3| _g!’ | | | | | | 1 1 | | O‘ | (\II |
- Mid T Mid T q Mid & g Mid & 9 Mid B q Mid B q Md B T Md & Mid &b
T T =n) =) =n) T T
vi v2 v3 v4 v5 v6 v7 v8 v9
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- DAKOTA UQ Study:
' Underground Target Defeat (4 of 4)

 Take home messages:
— This statistical design/analysis approach yielded new insights:

« Some parameters though to be important actually were not
important

« We found some multi-parameter interactions that were not
obvious

— We are exploiting the statistical tools in DAKOTA and in JMP to
obtain greater insights out of our simulation runs.

— These same statistical tools can be applied to many projects
underway at SNL.
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A
Mhat’s New for DAKOTA version 4.0?

» User Interface:
— New DAKOTA input file syntax (pros & cons)
— New graphical user interface “JAGUAR”
— New manuals (including a version 4.0 User’s Manual!!!)

* Optimization:
— New non-gradient methods for both local and global
optimization
— General penalty function capability for handling
constraints in non-gradient optimization methods

* Uncertainty Quantification:

— Several new probability distribution types (triangular,
beta, gamma, gumbel, frechet, etc.)

— Dempster-Shafer theory method operational
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& Summary

« DAKOTA Capabilities:
— Both time-tested and state-of-the-art methods for
sensitivity analysis, optimization, and uncertainty
quantification.

« DAKOTA Software Support:

— Working to improve manuals & user support.
— Lots of one-on-one training in FY05 and FY06

— Working to pass on “philosophy” of sensitivity/Opt/UQ
studies to SNL staff.

* Goal:

— DAKOTA to become a widely used tool at Sandia, within the
DOE/NNSA Tri-Laboratory community, and with key
industrial partners.

* Much progress, but more to be done
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