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hat is DAKOTA? Executive Summary

- DAKOTA: Design and Analysis toolKit for Optimization and Terascale
Applications

Under development at SNL since 1994

State of the art tools for performing engineering “what if’ studies:
* Uncertainty quantification, sensitivity analysis, computer model calibration, design
optimization, etc.
+ Extensive support for parallel computing — PCs to supercomputers
Works as a “black-box” with your simulation code(s):
« Data transferred via file read/write operations
* Works on LINUX/UNIX, Mac OS, Windows
In use at SNL, LLNL, LANL, ORNL, Navy, NASA, Lockheed-Martin, 3M,
Kodak, Goodyear, etc. and at numerous universities
Freely available worldwide via GNU General Public License
+ ~3000 downloads, approx several hundred “serious” users
DAKOTA team receives significant return on investment from external users:
* Bug reports, compilations on new computer systems, suggestions for future R&D,
research collaborations
DAKOTA enables sensitivity analysis, optimization, and uncertainty
quantification w/ high-fidelity simulation tools on massively-parallel
supercomputers.

*roughly 500k lines of code total, with ~100k in DAKOTA “core” ) eiona
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i
) What is the Role of

AKOTA in Engineering/Science Applications?

- DAKOTA enables sensitivity analysis, optimization, and uncertainty
quantification (UQ) to help answer “what if...” questions.

— What happens to my cost (or safety margin or performance level or ...) if |
change parameter X?”

— How reliable is my design?
— How safe is my design?
— What is the best design?

- DAKOTA assists the analyst/designer in understanding and
managing complex computer models.

— Automate typical “parameter variation” studies.

— Discover/predict nonlinear interactions among many parameters.

* Interactions that might be missed with traditional “change one parameter
at a time” studies.

— Support experimental testing efforts:

« Examine many accident conditions with computer models, then physically
test only a few of the worst-case conditions.
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\ DAKOTA Overview

iterative DAKOTA

5

analyszs optlmlzatlon uncertainty quant ]
‘ parameter est., sensitivity analys1

Goal: answer fundamental engineering questions

* What is the best design? How safe is it?

« How much confidence do | have in my answer?
Challenges

« Software: reuse tools and common interfaces

* Algorithm R&D: nonsmooth/discontinuous/multimodal,

Safety Margin

mixed variables, unreliable gradients, costly sim. failures . T S I
« Scalable parallelism: ASCI-scale apps & architectures Nominal Optimized
Impact: Tool for DOE labs and external partners, broad application

deployment, free via GNU GPL (~3000 download registrations) mh E}E&AM




DAKOTA Framework

Iterator Model:
DoE LeastSq
— = Design Application Functions
[DDACE[[CCD/BB] INLssoL] | [GN| continuous system objectives
EI | discrete fork constraints
QMC/CVT L250L Uncertain direct least sq. terms
—— ParamStudy normaliiogn grid generic
Optimizer . uniformilogu  Approximation  Gradients
ILHS/MC]| DSTE| | !ect0r| IEIS‘[| betalgamma global numerical
T - - EV I, I 10 poly 1/2/3, NN, GP, Ivti
IRellablhtyl |SFEM enterl IIVIUltlDl histogram krig.ing,_MARS, RBF Hea::iya:s
interval multipoint — TANA3 numerical
State local — Taylor series analytic
ti hierarchical -
IDOT|(CONMIN|NPSOL|INLPQL|(OPT++|COLINY|JEGA| contintious mon quasi
Strategy: control of multiple iterators and models
Coordination: Strategy
Iterator Nested
Layered / \
Model Cascaded
Concurrent |Opt1mlzat10n ncertalnty

Iterator

N

Model

-

Iterator

R

Model

]

Adaptive/lnteractive

Parallelism:

Asynchronous local
Message passing
Hybrid

4 nested levels with

Master-slave/dynamic
Peer/static

IM' |OthnderUnc| Vo

ncOfOptima

|an0rderProb|

Pareto/MStart

IBranch&Bound/PICO|
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}- DAKOTA Execution & Info Flow

* What files go into DAKOTA?
 What files come out of DAKOTA?

 How does DAKOTA interact with my simulation
code?
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D

AKOTA Execution & Info Flow

DAKOTA Input File:
-Commands

-Options

-Parameter definitions
-File names

————>

DAKOTA
Optimization
Uncertainty Quant.
Parameter Est.
Sensitivity Analysis

e T~

—>»| -Sensitivity info

DAKOTA Output Files:
-Raw data (all x-values & f-values)

-Statistics on f-values
-Optimality info

DAKOTA Parameters Fﬂe:

DAKOTA Results File:

{x1 =123.4}
{x2 = -33.3}, etc.

999.888 f1
777.666 f2, etc.

Use a script such as

APREPRO to cut-and-paste
x-values into code input file

Code
Input File

DAKOTA executes
“‘my_sim_code_script”
to launch a simulation
job

(CALORE thermal analysis \

ALEGRA shock physics
SALINAS structural dynamics
Premo high speed flow

(your code here)

User-supplied automatic
post-processing of code
output data into f-values

Code
Output File
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Questions to Consider
Before Using DAKOTA

2

1. What do | want to find out?

— Sensitivity study? Optimization study? UQ study?

2. How many runs of my simulation code can | afford?

—10’s,100’s, 1000’s, more?

— How many processors per simulation code run?

3. Where am | going to run the simulation code?
— On my PC? On my Mac?
— On my Linux/Sun/SGI/IBM workstation?
— On a network of workstations?
— On a Linux/Sun/SGI/IBM cluster?
— On a special supercomputer?

Of these, #1 and #2 are the most critical!

Sandia
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f' Overview:

odel-based Uncertainty Quantification

Forward propagation: quantify the effect that uncertain
(nondeterministic) input variables have on model output

Input Variables
(physics parameters,
geometry, initial and
\boundary conditions)J
(possibly given distributions)

Potential Goals:

« based on uncertain inputs (UQ), determine variance of outputs
and probabilities of failure (reliability metrics)

* identify parameter correlations/local sensitivities, robust
optima

* identify inputs whose variances contribute most to output
variance (global sensitivity analysis)

« quantify uncertainty when using calibrated model to predict
Methods:

 Aleatoric/irreducible: sampling (Monte Carlo, LHS, CVT),
reliability analysis (mean value, FORM, algorithmic variants)

- Epistemic/reducible: 2" order probability, Dempster-Shafer Sonti
10 Theory of Evidence ) Natora
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DACE Methods

* Design of Computer Experiments
— Usually, we do not assume distributional forms for the inputs

— DDACE - Developed at SNL-CA (Monica Martinez-Canales)
« Orthogonal arrays
« Central Composite
 Box-Behnken
* Grid sampling
 LHS and pure MC
* Orthogonal LHS
« Can calculate main effects for OAs
« Can use in Variance Based Decomposition, Quality Metrics
— FSUDACE - Developed by Florida State University, Max
Gunzburger and John Burkardt
» Halton sequences
« Hammersley sequences
Centroidal Voronoi tesselation
Can “Latinize” these methods
Can use in Variance Based Decomposition, Quality Metrics

Fair amount of control in terms of where you want to start the
sequence, what prime bases are used, etc.

Sandia
m National
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Quasi Monte Carlo Methods

* Quasi-Monte Carlo sequences are deterministic
sequences determined by a series of prime
bases. They are designed to produce uniform
random numbers on the interval [0,1].

 E.g., Halton sequence:

Sample Number Base 2 Base 3 Base 5 Base 7
1 0.5000 0.3333 0.2000 0.1429
2 0.2500 0.6667 0.4000 0.2857
3 0.7500 0.1111 0.6000 0.4286
4 0.1250 0.4444 0.8000 0.5714
5 0.6250 0.7778 0.0400 0.7143
6 0.3750 0.2222 0.2400 0.8571
7 0.8750 0.5556 0.4400 0.0204
8 0.0625 0.8889 0.6400 0.1633
9 0.5625 0.0370 0.8400 0.3061

-
o

0.3125 0.3704 0.0800 0.4490
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Example: Halton Set

Base 2 and Base 3

B Halton 25 points
B Halton 10 points

0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1

0.1

0.2

0.3

0.4

B Halton 100 points
B Halton 25 points
B Halton 10 points

Base 2 and Base 3

0.5 0.6 0.7 0.8 0.9 1

Sandia
National
Laboratories




14

\

Quasi Monte Carlo Methods

* The quasi-Monte Carlo (QMC) and Centroidal Voronoi Tesselation
(CVT) methods are designed with the goal of low discrepancy.

» Discrepancy refers to the nonuniformity of the sample points
within the hypercube. Discrepancy is defined as the difference
between the actual number and the expected number of points
one would expect in a particular set B (such as a hyper-rectangle
within the unit hypercube), maximized over all such sets.

* Low discrepancy sequences tend to cover the unit hypercube
reasonably uniformly.

« CVT does very well volumetrically, however the lower-dimension
(such as 1-D) projections of CVT can have high discrepancy.

« CVT developed as part of unstructured meshing techniques for
irregular domains

» Centroidal Voronoi diagrams subdivide arbitrarily shaped
domains into arbitrary numbers of nearly uniform subvolumes

« Sample points returned are the centers of the Voronoi region
« CVT good choice for high dimensional sampling

Sandia
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i CVT Performance

Placement of X1, X2 in one CVT sample

No

o 1B o
A |.¢ hd
".0 MRS ¢ "
X, *e
.
@5
TS
o~ ‘OI 9 % * o
X Py 0‘ * ?‘

N

*This clustering may contribute to the method performing relatively well over
all the space but poorly at the edges, which the RMSE metric emphasizes.

*Note that there is an approach which “latinizes™ or stratifies the CVT samples
to give them better 1-D marginal densities, which may improve their potential
use in response surface modeling.
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i Sampling Methods

— Latin Hypercube Sampling

* Distribution types supported: normal, lognormal, uniform,
loguniform, triangular, gamma, gumbel, frechet, weibull,

histogram, interval
 Also can specify plain MC

 Correlations between inputs supported with Iman and
Conover’s restricted pairing algorithm

G
@
H
I [ ]
@
J
®
K
®
L
—00 A B C D 00
A Two-Dimensional Representation of One Possible LHS of size 5 _
Utilizing X1 (normal) and X2 (uniform) |I'| ﬁaa?igﬁal
Laboratories
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%6 Hydrocarbon Fire QMU Study

Component Temperature Responses
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DAKOTA UQ Study:

Presto Simulations vs. Z-Accelerator Data

Tungsten wire array & Z pinch

X-Ray Induced Thermomechanical Shock
Modeled w/ Presto

(VAN 4
[AVAVaW 2
[aVaVAV 2
X-rays \
4 mil
]fl?pto” 1 mm 16 um
tter 6061-T6  Epoxy bo
Absorber
PCD yield — 0.32 calfcm2 +/-1% rho
0.8 y y ' T +/-5% Co
+ Dakota/Presto — 2000 +/_ 5% US/Up S|Ope
387 .
- ] +/- 15% Gruneisen
' a77 +/- 20% fluence
479
485
- 04fF — PRESTO -rom 9 total parameters =
8 randomly varied 2
a P
@ 0.2 | ﬁ
w ®
=] Y ———
ST 5
-0z} 1
G4 i ; i A i .
1 ( 150 160 170 180 190 200 210 220
! Time (ns)

Signal proportional
To stress difference

> £ ctvveen quartz

Summary:
*UQ study on Presto sims. of

thermomechanical shock.
*DAKOTA generated 2000
Presto runs; run on 1500’s

surfaces. network of workstations
*Compared Presto vs. Z Shot
px10 uncertainty bands.
*First-ever UQ study gives info
;(mmt on design margins. Need for
_Cu .
nd  quartz !:’rest.o. model improvement was
identified.
*Contacts: Tony Giunta, 1533 &
Joel Lash, 1514
PCD yield — 0.48 cal/cm2
15 T T T T T
- Dakota/Presto — 1500 runs
454
552
555
556
LY
= PRESTO - nominal
05
0.0
) ) ) . . lia
_0'5150 160 170 180 190 200 210 ;le:?(lmes

Time (ns)
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Analytic Reliability Methods

* Define limit state function g(x) for response metric (model
output, e.g., F.;,) of interest, where x are uncertain variables.

* Reliability methods either

— map specified response levels g(x) = z (perhaps corr. to a
failure condition) to reliability index B8 or probability p; or

— map specified probability or reliability levels to the
corresponding response levels.

Mean Value (first order, second moment — MVFOSM)
determine mean and variance of limit state, translate to from p, 3:

pg = g(px) ™
B o dg dg
Tg = Z Z Cov(i, j) e, {.”'x)a{.“'x) simple approx.,
* 0 but widely used
3 _ Hg—Z . > by analysts; also
= 55 Fed Ty ol 5= g — Oygfeds second order
g g = Z - Iy " Z = g 4 gg.ﬁr.'f.‘f!f formulations
it oy = o .
! _/ ) o

19 Laboratories
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Analytic Reliability: MPP Search

Perform optimization in u-space (std normal space corr. to uncertain x-space)

to determine Most Probable Point (of response or failure occurring)

Reliability Index
Approach (RIA)

llT 8]

minimize
subject to G(u) =2
Find minimum distance to

G(u) level curve; used for
forward map z 2> por

2
w©
T

2
@
T

e
)
T

=
@
T

A

Cumulative Probability
[=]
o

I~
=
T

o MV
0O x-fu-space AMV

O x—fu-space AMV+ & FORM

+ 100k Latin hypercube samples

=
w
T

o
X
T

0.1F

| L |
0 05 1 15

G(u)

..should yield better
estimates of reliability
than Mean Value
methods

071

03r

Performance Measure
Approach (PMA)

+G(u)

subject to ulu = 32

minimize

Find minimum G(u) for
specified p radius; used for
inverse mappor > z

o MV
O x-/u-space AMY

© x-/u-space AMV+ & FORM

+ 100k Latin hypercube samples

1 I I 1
0.5 1 15 2




!hape Optimization of Compliant MEMS -

» Micro-electromechanical system (MEMS) made from silicon, polymers, and
metals; used as micro-scale sensors, actuators, switches, and machines

« MEMS designs are subject to substantial variabilities and lack historical
knowledge base

 Micromachining, photo lithography, etching processes yield uncertainty:
— Material properties, manufactured geometries, residual and yield stresses
— Material elasticity and geometry key for bistability
— Data can be obtained to inform probabilistic approaches

* Resulting part yields can be low or have poor cycle durability

» Goal: shape optimization for bistable switch to...
— Achieve prescribed reliability in actuation force
— Minimize sensitivity to uncertainties (robustness)

actuation force

uncertainties to be considered
(edge bias and residual stress)

anchors ‘ variable mean std. dev, | distribution
ey A -0.2 pm 0.08 normal
. Sy -11 Mpa 4.13 normal
bistable
MEMS

switch
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Tapered Beam Bistable Switch:
Performance Metrics

tapered beam

anchor

hd

——shuttle

N

actuation force

~—

new tapered beam design

force . key relationship: force
switce .

contact vs. displacement

Fm:lx_
. E, E,
. \
(lis‘l—;lacemenl

1:min_

y (L m)

13 design vars d:
W, L;, 6;

1 1 I 1 1
-100 -80 -60 -40 =20 0

Typical design specifications:
- actuation force F_;, reliably 5 uN
- bistable (F,.,> 0, F_;, < 0)

* maximum force: 50 < F

max

<150

max
* equilibrium E2 < 8 ym
e maximum stress < 1200 MPa
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Bistable Switch: Problem Formulation

;
w]

T & LT T s
— S 4

ultaneously reliable and robust designs

max E [Fmin(da X)]
st. 2 < Begr(d)
50 < E [Fmax(da X)] < 150
E [EQ(da X)] < 3
—» E[Shaz(d,x)] < 3000

combined RIA/PMA to control both tails (reliable/robust):
—>

max
s.t.

23

b s0 B
p=2

probability formulation — robust designs:
max P (—6.2 < F,,;n(d) < —-5.0)
nonlinear constraints

s.t.

2 < Beear(d)
nin. constr.
—
/
Zﬁ=—2

W50 B
g=2

force

A switeh 13 designvarsd: W, L, q;
contact 2 random variables x: AW, S,
Fm'lt

\ U -
_/ displacement

(DAKOTA flexibly allows
RIA/PMA combinations)
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Reliability Formulation Results

RBDO with Mean Value, AMV2+, and FORM for reliability analysis

variable/metric MVFOSM AMV?+ FORM

l.b. name u.b. [ initial d° || optimal d%, | optimal d | optimal d%
10 L1 (um) 35 25.0 19.23 28.04 28.06
10 Lo (um) 35 25.0 28.44 24.42 24.45
10 L3z (um) 35 25.0 14.44 30.58 30.68
10 L4 (um) 35 25.0 35.00 30.55 30.66
0 61 (deg.) 5 1.0 2.733 4.200 4.189
0 6> (deg.) 5 3.0 2.260 2.481 2.488
0 03 (deg.) 5 3.0 2.719 2.465 2.478
0 9, (deg.) 5 1.0 3.230 2.384 2.390
1 Wo (um) 3 1.7 1.058 1.355 1.346
1 W1 (um) 3 1.2 2.038 1.275 1.265
2 Wo (pm) 5 3.2 2.390 3.481 3.488
1 W3 (um) 3 1.2 1.312 2.006 2.004
1 11/, ('u/rn\ e 1 7 1 000 1 3?2 1 3
E [Frin] (uN) -26.29 -5.896 -6.188 -6.292

- - . | 22 2Y 2 W ST - Y2~ S S CY2 Y2 S_—
50 E [Frnaz] (uN) 150 6 50.01 57.67 57.33
E[E>] (um) 8 .010 5.804 5.990 6.008
E [Smaz] (MPa) | 120 470 1563 1333 1329

AMVZ+ verified 3 L7 3.771 1.804 . -
COYMDON avifiaAd 2 771 1 707 1 704N

* significant improvement in minimum force

. . . . Sandi
- B constraint active at optimal designs ) tiiona

24




Epistemic UQ

Totat Normalized Releases: Replicate R1

Second-order probability \gn 100 Observatons, 10000 FuurssiObsanaon
— Two levels: distributions/intervals on e B 1
distribution parameters o b ]
— Outer level can be epistemic (e.g., interval) _;f;_wz r '; ]
— Inner level can be aleatory (probability distrs) f;w_, L
— Strong regulatory history (NRC, WIPP). Tl ]
; Frame 2a ]

10-% sttt o

105 104 10 102 10t 19 100 12
Normalized Release (EPA units}, R

Dempster-Shafer theory of evidence o
— Basic probability assignment (interval-based) H\ltL

— Solve opt. problems (currently sampling-based)
to compute belief/plausibility for output intervals

Fallure
Region

PI>Y) 3

BelY)-» PGY)

00 01 02 03 04 05 06 07 0.6 08 1.0

PI(>Y) or P(>Y) or Bel(>Y)
]

Source 1 —2k | - 20% . 4
SOUrCe 2 e 7070 P
33% | L 33%
T 1 I o 1 4 | 1 L 1 L 1 L 1 L L L
Source 3 33% mo_a 08 10 12 14 16 18 20 22

25 Y
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pistemic Uncertainty Quantification

Epistemic uncertainty refers to the situation where one does not know
enough to specify a probability distribution on a variable

Sometimes it is referred to as subjective, reducible, or lack of knowledge
uncertainty

The implication is that if you had more time and resources to gather more
information, you could reduce the uncertainty

Initial implementation in DAKOTA uses Dempster-Shafer belief structures.
For each uncertain input variable, one specifies “basic probability

assignment” for each potential interval where this variable may exist.
Intervals may be contiguous, overlapping, or have “gaps”

BPA=0.2 !
Variable 1

| |
BPA=0.5 BPA=0.3

Variable 2 Sandia
m National _
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istemic Uncertainty Quantification

* Look at various combinations of intervals. In each joint interval “box”, one needs to
find the maximum and minimum value in that box (by sampling or optimization)

- Belief is a lower bound on the probability that is consistent with the evidence
* Plausibility is the upper bound on the probability that is consistent with the evidence

» Order these beliefs and plausibility to get CDFs
* Draws on the strengths of DAKOTA
— Requires surrogates

— Requires sampling and/or optimization for calculation of plausibility and belief

within each interval “cell”
— Easily parallelized

0.1 o © © ©
Variable 2 0.2 ® ® @
o | Aa
071 © A‘ AA
° A o4s
S 3 2

27 Variable 1

@ Original LHS samples used
To generate a surrogate

Million sample points

generated from the

A surrogate, used to

determine the max and

min in each “cell” to

calculate plausibility and

belief

h
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ASC V&V Thermal Battery Assembly

Foam:Probabilistic

Thermal Battery Min-K: Epistemic

Assembly (TBA)

28

h
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Epistemic UQ

» Treated the elastic property of min-K as an epistemic variable
with 3 intervals: [3.0, 3.2] (3.2,3.4], and (3.4, 3.5]

» Treated the foam density as a probabilistic variable

Min K Foam
3.0 3.2 3.4 3.5 Probabilistic
| | | | « Used a kernel density estimator
| 02 | 06 | 02| based on actual data

29
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CC

Thermal Battery Assembly
DFs for Belief and Plausibility

CCDF

0ar

0.4r

0.7 r

0.6

0ar

04r

0ar

B:2:f

01r

Flausikility
Belief

240

1 1 1 1 1 1
245 250 255 1l ]t =70 575
Freguency, Hz
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' Different Representation

of

the Epistemic Uncertainty

CCDFs for the random realizations of foam,
conditioned on K

1.2 -
— 1 ]
o
£ 087 555 — K=30
A 543 '
a 0.6 - o 5735 | K=32
$ 04- K =34
2 02- ° 568 K=35
E 0 I I I |

_0.2540 550 560 570 580

Frequency
P(Freq > 555|K=3.2) = 1 if Freq < 554.8

0 if freq > 556.5
177.4—-0.49F + 29.73 K

Idea 1s to look at the range of the exceedence probability (CCDF value)

given the epistemic structure on K

Sandia
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z’“culatlon of Belief and Plaus for

K=3.2, Q=555

Bel/PI for

Exceeding

Prob(Resp> |
555)

Bel( p 2p)
PI(p 2p)

0.8 1

o__

Prob(Resp>555)

Sandia
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Optimization Under Uncertainty

OpT| < min  f(d) + Wsu(d)
{d}‘ S.} optimize, accounting for St 9 < g(d) < gu

U0 | uncertainty metrics h(d) = hy
{u} {R,}
I:Sim :I (use any of UQ/reliability methods) dp < d < du
a; < Ajsu(d) < ay
nested paradigm Ae su(d) = ay

Input design parameterization
* Uncertain variables augment design variables in simulation | 4
* Inserted design variables: an optimization design variable ¢
may be a parameter of an uncertain distribution, e.g., design d.
the mean of a normal. !

Response metrics to design for...

...robustness: ...reliability: ...combined/other:
min/constrain p, 02, max/constrain p/f8 pareto tradeoff, LSQ:
moments or G(3) (minimize tail stats, model calibration under

range A failure) A uncertainty
Sandia
m National _
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Conclusions

 The DAKOTA toolkit includes algorithms for
uncertainty quantification and optimization with
large-scale computational models.

- DAKOTA strategies enable combination of
algorithms, use of surrogates and warm-starting,
and leveraging massive parallelism.

* Uncertainty-aware design optimization is helpful
in design where robust and/or reliable designs
are essential.

 DAKOTA provides capabilities to enable QMU
studies (Quantification of Margins and
Uncertainties)

Sandia
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DAKOTA Team Contact Info

* Web site:
— http://lendo.sandia.gov/IDAKOTA
— Email: dakota@sandia.gov
— User’s Manual, Reference Manual, Developers Manual - online

« Team Members
— Mike Eldred, Principal Investigator (R&D)
— Tony Giunta, Product Manager (applications & training)
— Shane Brown, Support Manager (software issues)
— Laura Swiler
— Brian Adams
— Danny Dunlavy
— Dave Gay
— Bill Hart
— Jean-Paul Watson
— Many other technical contributors (SNL-CA, SNL-NM, academia,...)
— Scott Mitchell, Dept. 1411 manager
— Marty Pilch, Dept. 1533 manager
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Parting Thoughts....

TOUR OF DAKOTA

OVER HERE

WE HAVE OUR
RANDOM NUMBER
GENERATOR.

NINE NINE
NINE NINE
NINE NINE

4t
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f‘(gs THAT'S THE
hior R PROBLEM
WITH RAN-
THAT'S DOMNESS :
RANDOM? ‘
YOU CAN

NEVER BE
SURE.
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