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Outline/Agenda

• DAKOTA history and background

• DAKOTA methods
– Parameter study

– Uncertainty quantification

– Optimization

• DAKOTA input/output/script files

• Uncertainty Quantification

– Design of Computer Experiments

– Analytic Reliability Methods

– Epistemic Uncertainty

• Engineering applications
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What is DAKOTA? Executive Summary

• DAKOTA: Design and Analysis toolKit for Optimization and Terascale 
Applications
– Under development at SNL since 1994

– State of the art tools for performing engineering “what if” studies:
• Uncertainty quantification, sensitivity analysis, computer model calibration, design 

optimization, etc.

• Extensive support for parallel computing – PCs to supercomputers

– Works as a “black-box” with your simulation code(s):
• Data transferred via file read/write operations

• Works on LINUX/UNIX, Mac OS, Windows

– In use at SNL, LLNL, LANL, ORNL, Navy, NASA, Lockheed-Martin, 3M, 
Kodak, Goodyear, etc. and at numerous universities

– Freely available worldwide via GNU General Public License
• ~3000 downloads, approx several hundred “serious” users

– DAKOTA team receives significant return on investment from external users:
• Bug reports, compilations on new computer systems, suggestions for future R&D, 

research collaborations

– DAKOTA enables sensitivity analysis, optimization, and uncertainty 
quantification w/ high-fidelity simulation tools on massively-parallel 
supercomputers.

*roughly 500k lines of code total, with ~100k in DAKOTA “core”
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What is the Role of 
DAKOTA in Engineering/Science Applications?

• DAKOTA enables sensitivity analysis, optimization, and uncertainty 
quantification (UQ) to help answer “what if...” questions.
– What happens to my cost (or safety margin or performance level or ...) if I 

change parameter X?”

– How reliable is my design?

– How safe is my design?

– What is the best design?

• DAKOTA assists the analyst/designer in understanding and 
managing complex computer models.

– Automate typical “parameter variation” studies.

– Discover/predict nonlinear interactions among many parameters.
• Interactions that might be missed with traditional “change one parameter 

at a time” studies.

– Support experimental testing efforts:
• Examine many accident conditions with computer models, then physically 

test only a few of the worst-case conditions.
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DAKOTA Overview

Goal: answer fundamental engineering questions

• What is the best design?  How safe is it?

• How much confidence do I have in my answer?

Challenges

• Software: reuse tools and common interfaces

• Algorithm R&D: nonsmooth/discontinuous/multimodal, 
mixed variables, unreliable gradients, costly sim. failures

• Scalable parallelism: ASCI-scale apps & architectures

Impact: Tool for DOE labs and external partners, broad application 
deployment, free via GNU GPL (~3000 download registrations)

Nominal Optimized

iterative 
analysis…

Computational Model
• Black box: Sandia or commercial 

simulation codes
• Semi-intrusive: SIERRA multi-physics,

SALINAS, Xyce, Matlab, ModelCenter

response 
metrics

DAKOTA
optimization, uncertainty quant, 

parameter est., sensitivity analysis
parameters
(design, UC, 

state)
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Iterator 

Model 

Strategy: control of multiple iterators and models

Iterator 

Model 

Iterator 

Model 

Coordination:
Nested
Layered
Cascaded
Concurrent
Adaptive/Interactive

Parallelism:
Asynchronous local
Message passing
Hybrid
4 nested levels with

Master-slave/dynamic
Peer/static

DAKOTA Framework

Parameters

Model:

Design
continuous
discrete

Uncertain
normal/logn
uniform/logu
triangular
beta/gamma
EV I, II, III
histogram
interval

State
continuous
discrete

Application
system
fork
direct
grid

Approximation
global

poly 1/2/3, NN, GP,
kriging, MARS, RBF

multipoint – TANA3

local – Taylor series

hierarchical
ROM

Functions
objectives
constraints
least sq. terms
generic

ResponsesInterfaceParameters

Hybrid

SurrBased

OptUnderUnc

Branch&Bound/PICO

Strategy

Optimization Uncertainty

2ndOrderProb

UncOfOptima

LHS/MC

Iterator 

Optimizer
ParamStudy

COLINYNPSOLDOT OPT++

LeastSqDoE

GN

Vector

MultiD

List

DDACE CCD/BB

UQ

Reliability

DSTE

JEGA

Pareto/MStart

CONMIN

NLSSOL

NL2SOLQMC/CVT

Gradients
numerical
analytic

Hessians
numerical
analytic
quasiNLPQL

CenterSFEM
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DAKOTA Execution & Info Flow

• What files go into DAKOTA?

• What files come out of DAKOTA?

• How does DAKOTA interact with my simulation 
code?
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DAKOTA Execution & Info Flow

DAKOTA
Optimization
Uncertainty Quant.
Parameter Est.
Sensitivity Analysis

DAKOTA Input File:
-Commands
-Options
-Parameter definitions
-File names

DAKOTA Output Files:
-Raw data (all x-values & f-values)
-Sensitivity info
-Statistics on f-values
-Optimality info

CALORE thermal analysis
ALEGRA shock physics
SALINAS structural dynamics
Premo high speed flow
... ...
(your code here)

Code
Input File

Code
Output File

DAKOTA Parameters File:
{x1 = 123.4}
{x2 = -33.3}, etc.

Use a script such as 
APREPRO to cut-and-paste 
x-values into code input file

User-supplied automatic 
post-processing of code 
output data into f-values 

DAKOTA executes 
“my_sim_code_script” 
to launch a simulation 
job

DAKOTA Results File:
999.888 f1
777.666 f2, etc.
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Questions to Consider 
Before Using DAKOTA

1. What do I want to find out?

– Sensitivity study? Optimization study? UQ study? 

2. How many runs of my simulation code can I afford?

– 10’s, 100’s, 1000’s, more?

– How many processors per simulation code run?

3. Where am I going to run the simulation code?

– On my PC? On my Mac?

– On my Linux/Sun/SGI/IBM workstation?

– On a network of workstations?

– On a Linux/Sun/SGI/IBM cluster?

– On a special supercomputer?

Of these, #1 and #2 are the most critical!
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• based on uncertain inputs (UQ), determine variance of outputs 
and probabilities of failure (reliability metrics)

• identify parameter correlations/local sensitivities, robust 
optima

• identify inputs whose variances contribute most to output 
variance (global sensitivity analysis)

• quantify uncertainty when using calibrated model to predict

Overview:
Model-based Uncertainty Quantification

Forward propagation: quantify the effect that uncertain 
(nondeterministic) input variables have on model output

Potential Goals:

Input Variables
(physics parameters, 
geometry,  initial and 
boundary conditions)

Computational
Model

Variable 
Performance

Measures

(possibly given distributions)

• Aleatoric/irreducible: sampling (Monte Carlo, LHS, CVT), 
reliability analysis (mean value, FORM, algorithmic variants)

• Epistemic/reducible: 2nd order probability, Dempster-Shafer 
Theory of Evidence

Methods:
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DACE Methods

• Design of Computer Experiments
– Usually, we do not assume distributional forms for the inputs
– DDACE – Developed at SNL-CA (Monica Martinez-Canales)

• Orthogonal arrays
• Central Composite
• Box-Behnken
• Grid sampling
• LHS and pure MC
• Orthogonal LHS 
• Can calculate main effects for OAs
• Can use in Variance Based Decomposition, Quality Metrics

– FSUDACE – Developed by Florida State University, Max 
Gunzburger and John Burkardt

• Halton sequences
• Hammersley sequences
• Centroidal Voronoi tesselation
• Can “Latinize” these methods
• Can use in Variance Based Decomposition, Quality Metrics
• Fair amount of control in terms of where you want to start the 

sequence, what prime bases are used, etc.
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Quasi Monte Carlo Methods

• Quasi-Monte Carlo sequences are deterministic 
sequences determined by a series of prime 
bases.  They are designed to produce uniform 
random numbers on the interval [0,1]. 

• E.g., Halton sequence: 

Sample Number Base 2 Base 3 Base 5 Base 7
1 0.5000 0.3333 0.2000 0.1429

2 0.2500 0.6667 0.4000 0.2857
3 0.7500 0.1111 0.6000 0.4286
4 0.1250 0.4444 0.8000 0.5714

5 0.6250 0.7778 0.0400 0.7143
6 0.3750 0.2222 0.2400 0.8571

7 0.8750 0.5556 0.4400 0.0204
8 0.0625 0.8889 0.6400 0.1633
9 0.5625 0.0370 0.8400 0.3061

10 0.3125 0.3704 0.0800 0.4490
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Example:  Halton Set

Base 2 and Base 3
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Quasi Monte Carlo Methods

• The quasi-Monte Carlo (QMC) and Centroidal Voronoi Tesselation 
(CVT) methods are designed with the goal of low discrepancy. 

• Discrepancy refers to the nonuniformity of the sample points 
within the hypercube. Discrepancy is defined as the difference 
between the actual number and the expected number of points 
one would expect in a particular set B (such as a hyper-rectangle 
within the unit hypercube), maximized over all such sets. 

• Low discrepancy sequences tend to cover the unit hypercube 
reasonably uniformly. 

• CVT does very well volumetrically, however the lower-dimension 
(such as 1-D) projections of CVT can have high discrepancy.

• CVT developed as part of unstructured meshing techniques for 
irregular domains 

• Centroidal Voronoi diagrams subdivide arbitrarily shaped 
domains into arbitrary numbers of nearly uniform subvolumes

• Sample points returned are the centers of the Voronoi region
• CVT good choice for high dimensional sampling
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CVT Performance

Placement of X1, X2 in one CVT sample

-2
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-1
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X
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•This clustering may contribute to the method performing relatively well over 
all the space but poorly at the edges, which the RMSE metric emphasizes.  

•Note that there is an approach which “latinizes” or stratifies the CVT samples 
to give them better 1-D marginal densities, which may improve their potential 
use in response surface modeling. 
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Sampling Methods

– Latin Hypercube Sampling

• Distribution types supported:  normal, lognormal, uniform, 
loguniform, triangular, gamma, gumbel, frechet, weibull, 
histogram, interval

• Also can specify plain MC

• Correlations between inputs supported with Iman and 
Conover’s restricted pairing algorithm

A B C D

G

H

I

J

K

L
 

A Two-Dimensional Representation of One Possible LHS of size 5 
Utilizing X1 (normal)  and X2 (uniform)
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W76 Hydrocarbon Fire QMU Study
Component Temperature Responses

Time (s)

T
e

m
p

e
ra

tu
re

(o
K

)

0 1000 2000 3000 4000

300

400

500

600

700

800

900

1000

1100

fireBCset = 3

fireBCset = 1

fireBCset = 2

Time (s)

T
e

m
p

e
ra

tu
re

(o
K

)

0 1000 2000 3000 4000

300

400

500

600

700

800

900

1000

1100

fireBCset = 3

fireBCset = 1

fireBCset = 2

Intent SL

Auxiliary capacitor WL

30 CALORE runs

F ir e  M o d e lin g  
U n c e rta in ty

T o ta l 
M o d e lin g

U n c e r t a in tyW e a p o n  M o d e l 
U n c e rta in ty

T e m p e r a t u re

R e s u lta n t  u n c e r ta in ty  
d is t r ib u t io n  o n  S L  
fa ilu re  t im e

R e s u lta n t u n c e r ta in ty  
d is tr ib u tio n  o n  W L  
fa ilu r e  tim e

U n c e rta in t y  
d is t r ib u tio n  

o f W L  fa i lu r e  
te m p e ra tu r e

U n c e r ta in ty  
d is tr ib u t io n  

o f  S L  fa ilu r e  
te m p e r a tu r e

P r e d ic te d  S L  
re s p o n s e  

w ith  p ro je c t e d  
u n c e r ta in ty

F ir e  M o d e lin g  
U n c e rta in ty

T o ta l 
M o d e lin g

U n c e r t a in tyW e a p o n  M o d e l 
U n c e rta in ty

T e m p e r a t u re

R e s u lta n t  u n c e r ta in ty  
d is t r ib u t io n  o n  S L  
fa ilu re  t im e

R e s u lta n t u n c e r ta in ty  
d is tr ib u tio n  o n  W L  
fa ilu r e  tim e

U n c e rta in t y  
d is t r ib u tio n  

o f W L  fa i lu r e  
te m p e ra tu r e

U n c e r ta in ty  
d is tr ib u t io n  

o f  S L  fa ilu r e  
te m p e r a tu r e

P r e d ic te d  S L  
re s p o n s e  

w ith  p ro je c t e d  
u n c e r ta in ty



18

DAKOTA UQ Study: 
Presto Simulations vs. Z-Accelerator Data

X-rays

1 mm
6061-T6
Absorber

X-Ray Induced Thermomechanical Shock
Modeled w/ Presto

4 mil
Kapton
filter

16 um
Epoxy bond

1mm
X-cut
quartz

Signal proportional
To stress difference
Between quartz 
surfaces.

Tungsten wire array & Z pinch

+/- 1% rho
+/- 5% Co
+/- 5% Us/Up slope
+/- 15% Gruneisen
+/- 20% fluence

9 total parameters
randomly varied

Z shot 1211Z shot 1209

Summary:
•UQ study on Presto sims. of 
thermomechanical shock.
•DAKOTA generated 2000 
Presto runs; run on 1500’s 
network of workstations
•Compared Presto vs. Z Shot 
μ±1σ uncertainty bands.
•First-ever UQ study gives info 
on design margins. Need for 
Presto model improvement was 
identified.
•Contacts: Tony Giunta, 1533 & 
Joel Lash, 1514
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Analytic Reliability Methods

• Define limit state function g(x) for response metric (model 
output, e.g., Fmin) of interest, where x are uncertain variables.

• Reliability methods either

– map specified response levels (perhaps corr. to a 
failure condition) to reliability index β or probability p; or

– map specified probability or reliability levels to the 
corresponding response levels.

Mean Value (first order, second moment – MVFOSM)
determine mean and variance of limit state, translate to from p, β:

simple approx., 
but widely used 
by analysts; also 
second order 
formulations
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Analytic Reliability: MPP Search

Perform optimization in u-space (std normal space corr. to uncertain x-space) 
to determine Most Probable Point (of response or failure occurring)

G(u)

Reliability Index 
Approach (RIA)

Find minimum distance to 
G(u) level curve; used for 
forward map z  p or 

Performance Measure
Approach (PMA)

Find minimum G(u) for 
specified  radius; used for 
inverse map p or  z

...should yield better 
estimates of reliability 

than Mean Value 
methods
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Shape Optimization of Compliant MEMS 

• Micro-electromechanical system (MEMS) made from silicon, polymers, and 
metals; used as micro-scale sensors, actuators, switches, and machines

• MEMS designs are subject to substantial variabilities and lack historical 
knowledge base

• Micromachining, photo lithography, etching processes yield uncertainty:
– Material properties, manufactured geometries, residual and yield stresses

– Material elasticity and geometry key for bistability

– Data can be obtained to inform probabilistic approaches

• Resulting part yields can be low or have poor cycle durability

• Goal: shape optimization for bistable switch to…
– Achieve prescribed reliability in actuation force

– Minimize sensitivity to uncertainties (robustness)

bistable 
MEMS 
switch

uncertainties to be considered 
(edge bias and residual stress)
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Tapered Beam Bistable Switch: 
Performance Metrics

13 design vars d:
Wi, Li, i

σ
σ

key relationship: force 
vs. displacement

new tapered beam design

Typical design specifications:

• actuation force Fmin reliably 5 μN

• bistable (Fmax > 0, Fmin < 0)

• maximum force: 50 < Fmax < 150

• equilibrium E2 < 8 μm

• maximum stress < 1200 MPa 
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Bistable Switch: Problem Formulation

13 design vars d:  Wi, Li, qi

2 random variables x: ΔW, Sr

σ
σ

-5.0

simultaneously reliable and robust designs

-5.0

-5.0-6.2

-5.0

probability formulation – robust designs:

combined RIA/PMA to control both tails (reliable/robust):

(DAKOTA flexibly allows 
RIA/PMA combinations)
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Reliability Formulation Results

• significant improvement in minimum force
• β constraint active at optimal designs

RBDO with Mean Value, AMV2+, and FORM for reliability analysis
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Epistemic UQ

Second-order probability

– Two levels: distributions/intervals on 
distribution parameters

– Outer level can be epistemic (e.g., interval)

– Inner level can be aleatory (probability distrs)

– Strong regulatory history (NRC, WIPP).

Dempster-Shafer theory of evidence

– Basic probability assignment (interval-based)

– Solve opt. problems (currently sampling-based)

to compute belief/plausibility for output intervals
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Epistemic Uncertainty Quantification

• Epistemic uncertainty refers to the situation where one does not know 
enough to specify a probability distribution on a variable

• Sometimes it is referred to as subjective, reducible, or lack of knowledge 
uncertainty

• The implication is that if you had more time and resources to gather more 
information, you could reduce the uncertainty

• Initial implementation in DAKOTA uses Dempster-Shafer belief structures. 
For each uncertain input variable, one specifies “basic probability 

assignment” for each potential interval where this variable may exist.

• Intervals may be contiguous, overlapping, or have “gaps”

BPA=0.5 BPA=0.2

BPA=0.3 Variable 1

BPA=0.5 BPA=0.2BPA=0.3
Variable 2
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Epistemic Uncertainty Quantification

• Look at various combinations of intervals.  In each joint interval “box”, one needs to 
find the maximum and minimum value in that box (by sampling or optimization)

• Belief is a lower bound on the probability that is consistent with the evidence

• Plausibility is the upper bound on the probability that is consistent with the evidence

• Order these beliefs and plausibility to get CDFs

• Draws on the strengths of DAKOTA

– Requires surrogates

– Requires sampling and/or optimization for calculation of plausibility and belief 
within each interval “cell” 

– Easily parallelized

Variable 1

Variable 2

.5 .3 .2

0.1

0.2

0.7

Original LHS samples used 
To generate a surrogate

Million sample points 
generated from the 
surrogate, used to 
determine the max and 
min in each “cell” to 
calculate plausibility and 
belief
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ASC V&V Thermal Battery Assembly

Min-K:  Epistemic

Foam: Probabilistic

Thermal Battery 
Assembly (TBA)
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Thermal Battery Assembly
Epistemic UQ

• Treated the elastic property of min-K as an epistemic variable  
with 3 intervals:  [3.0, 3.2] (3.2,3.4], and (3.4, 3.5] 

• Treated the foam density as a probabilistic variable 

Min K Foam

Probabilistic

• Used a kernel density estimator 

based on actual data0.2      0.6                   0.2

3.0                 3.2                       3.4         3.5
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Thermal Battery Assembly
CCDFs for Belief and Plausibility
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Different Representation of 
the Epistemic Uncertainty

CCDFs for the random realizations of foam, 

conditioned on K
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K = 3.4 

K = 3.5

555

568

543
573.5

P(Freq > 555|K=3.2) =         1 if Freq < 554.8
0 if freq > 556.5
177.4 – 0.49F + 29.73 K

•Idea is to look at the range of the exceedence probability (CCDF value) 
given the epistemic structure on K



32

Bel/Pl for 

Exceeding 

Prob(Resp>
555)

Bel(     p)

Pl(      p )

Calculation of Belief and Plaus for 
K=3.2, q=555

p~

1

0                                                          0.8             1
Prob(Resp>555)

p~
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Optimization Under Uncertainty

Opt 

UQ 

Sim 

{d} {Su}

{u} {R
u
}

min

s.t.optimize, accounting for 
uncertainty metrics

(use any of UQ/reliability methods)

nested paradigm

Input design parameterization
• Uncertain variables augment design variables in simulation
• Inserted design variables: an optimization design variable 
may be a parameter of an uncertain distribution, e.g., design 
the mean of a normal.

Response metrics to design for…

…robustness:
min/constrain μ, σ2, 
moments or G(β)
range

…reliability:
max/constrain p/β
(minimize tail stats, 
failure)

…combined/other:
pareto tradeoff, LSQ: 
model calibration under 
uncertainty

da

di
ui

ua

M
o

d
el
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Conclusions

• The DAKOTA toolkit includes algorithms for 
uncertainty quantification and optimization with 
large-scale computational models.

• DAKOTA strategies enable combination of 
algorithms, use of surrogates and warm-starting, 
and leveraging massive parallelism.

• Uncertainty-aware design optimization is helpful 
in design where robust and/or reliable designs
are essential.

• DAKOTA provides capabilities to enable QMU 
studies (Quantification of Margins and 
Uncertainties)
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DAKOTA Team Contact Info

• Web site:
– http://endo.sandia.gov/DAKOTA
– Email: dakota@sandia.gov
– User’s Manual, Reference Manual, Developers Manual - online

• Team Members
– Mike Eldred, Principal Investigator (R&D)
– Tony Giunta, Product Manager (applications & training)
– Shane Brown, Support Manager (software issues)
– Laura Swiler
– Brian Adams
– Danny Dunlavy
– Dave Gay
– Bill Hart
– Jean-Paul Watson
– Many other technical contributors (SNL-CA, SNL-NM, academia,...)
– Scott Mitchell, Dept. 1411 manager
– Marty Pilch, Dept. 1533 manager
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DAKOTA

Parting Thoughts....


