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} Introduction

« Contaminant transport in water-distribution pipe
networks is a growing concern

— Need to understand and predict contaminant
movement

* Need to understand how contaminants mix at pipe
junctions

— Water quality
— Interpretation of monitoring data
— Mitigation of contamination events
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 Many water distribution
models (e.g., EPANET)
assume complete
mixing at pipe junctions

Problem Statement

 Flow in actual pipe
joints yields incomplete
mixing
— Orear et al., 2005

— van Bloemen
Waanders et al., 2005

from Orear et al. (2005)
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« Conduct physical and

numerical simulations of
contaminant transport in pipe
joints

Understand impact of
parameters and processes on
mixing behavior

— Different flow rates

— Effective mass transfer at
impinging interface

Validate and calibrate models
with data from single and multi-
joint pipe configurations

Objectives

“Cross-Joint”

“Impinging
Interface”

“T-Joint”
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Single-Joint Tests

l Clean Water

Tracer
— | | —»
Cross-Joint
l - < S 74 Tracer fﬁ- :5., s
\ - ¥ By Wate In
| Tap Water . : iy i t s
'" Inlet
l Clean Water 1( i
Tracer

— - 450\ ] 4
“distance between T” . .
Tracer consists of NaCl solution

—_—
Tracer monitored continuously by electrical
conductivity sensors

Double-T Joint

Flow rate in each pipe was controlled

-«
[ )

Pipe diameters: 0.5”, 1", 2”
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Multi-Joint Tests

(Small-Scale Network)

(]’T Outlet 1
= O
Outlet 2
o} QL C
Conductivity
Sensors
, i . “_-__._'_'__:-_ ' - (
= ! - . Inlet 1
e & / - (tracer)
T _. - .! O
® «*Tracer InI@ ! +
\ Ay O O o—

S S -
Inlet 2 (clean)
« 3x3 array of cross joints with 3-foot pipe lengths

* Flow rates at inlets and outlets controlled

* Pipe diameter: 0.5”
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* Finite-element computational
fluid dynamics simulations
(CFdesign®)

— Mesh refinement: 50,000 to
>1M elements

V=V C3
« K-¢ turbulence model
— Ran turbulent flow to
convergence first
* Tracer simulation with
normalized scalar "

concentration el
— Scalar diffusivity varied
— D = eddy diffusivity = eddy
viscosity/Sc

* Turbulent Schmidt number,
Sc, varied from 0.001 to 1.0

Modeling Approach

V=V,,C=0

N\

D,
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Single-Joint Simulations

All inlet and outlet flows approximately equal

Junction Pioe Diameter Reynolds Velocity Boundary Turbulent Schmidt
Configuration P Number Conditions (V) Number

*Experiments were run for this configuration
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e Two simulations

— Tracer inlet flow > clean-water inlet flow
— Tracer inlet flow < clean-water inlet flow

Multi-Joint Simulations

Boundary Conditions Turbulent
Reynolds .
Tracer Inlet Clean Water | Outlet 1 Flow | Outlet 2 Flow Number Schmidt
Flow (0, .. Inlet Flow (Q_,,..) (0 (Q,..5) Number
31 mL/s
38 mL/s* (0.49 gpm) 33 mL/s 37 mL/s B
(0.61 gpm) (P =0 gage used as (0.52 gpm) (0.58 gpm) 4,000 9,000 0.01, 0.001
B.C.)
28 mL/s**
(0.44 gpm) 50 mL/s 32 mL/s 46 mL/s
(P =0 gage used (0.79 gpm) (0.50 gpm) (0.73 gpm) 7,000 - 11,000 0.01, 0.001
as B.C.)

*Test period from 19-20 minutes in Orear et al. (2005)

**Test period from 8-9 minutes in Orear et al. (2005)
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} Simulated Velocity Profiles

v

Cross l Double-T
v ~J\

— P =0 gage

Vv

 Diameter: 0.5”
 Re =20,000
« Spacing between double-T joints is 2.5 diameters
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Simulated Mixing

0.5” Cross Joint, Re = 10K, Sc =1

(100 Scalar wariable

Frame: 1/4 f Frame: 1/4
2 | gad case 260 ! | V Q‘ Load case: 260 V
Step 260 I A Step 260
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Simulated Mixing

0.5” Cross Joint, Re = 10K, Sc = 0.001

Frame: 4/4

¥
Frame: 474 P, Q‘ Load case: 290 7
& | pad case: 290 Last lteration/Step
Last lteration/Step
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Normalized Scalar (Tracer) Flux at
Bottom Outlet

Single-Joi

nt Results
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Bottom Outlet
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(1) Velocity Magnitude -m/fs
09
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out,1

= 33 mL/s (0.52 gpm)

Network Hydraulic Results

Q

Qout, 2

= 37 mL/s (0.58 gp

m)

cer > ernan

((1:29"’2"’6' gzagl oot se B F))m)T | Qpraer = 38 mlJs (0.61 gpm

<+—

Tracer
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(1) Velocity Magnitude -mis

$ Q,ut 1= 32 mL/s (0.50 gpm)
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Qiean = 50 mLs (0.79 gpm)f

Qyacer = 28 mL/s (0.44 gp
(P =0 gage used as B.C.)
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Network Tracer Results

Qtracer > chean

(10) Scalar variable
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Network Tracer Results

chean > Qtracer

(10} Scalar variable
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} Conclusions

« Water flow and tracer transport were tested experimentally
and simulated using CFD models of turbulent flow

* A turbulent Schmidt number (turbulent diffusivity) was
calibrated using single-joint test results

— 0.001 < Sc <0.01

* Mixing in cross joints decreased slightly as the velocity was
increased for a fixed diameter pipe (~10,000 < Re < ~40,000)

— Increased momentum and reduced time of contact may
dampen and offset the tendency for instabilities to
increase mixing at the impinging interface at higher
velocities
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} Conclusions (cont.)

« A small network with 3x3 array of cross joints was tested
and simulated

— Incomplete mixing resulted even after several junctions

— Unequal inlet flow rates significantly affects mixing

* Increased momentum from the higher flow-rate inlet
allowed some fluid to cross over the junction into the
opposite outlet pipe

« Mixing is caused by both bulk flow (advection) and
turbulent diffusion at impinging interface

— Calibrated turbulent Schmidt numbers yielded good
agreement between data and simulations
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}' Next Steps

« Continue physical and numerical simulations

— Evaluate mixing in more complex configurations
and networks

— Evaluate the effects of transient oscillations and
storage on mixing in pipe networks
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Mesh Refinement

Model Configuration Element Size Nl:ETet:ﬁ;r?:s
Single-Joint Cross 2.5 mm (pipe) 46.352
1.27 cm (0.5”) diameter pipe 1.5 mm (junction) ’
Single-Joint Cross 10 mm (pipe) 46.352
5.08 cm (27) diameter pipe 6 mm (junction) ’
Single-Joint Double-T 2.5 mm (pipe)
1.27 cm (0.5”) diameter pipe el GUECption) 56,093
2.5 diameter spacing between T-fittings '
Single-Joint Double-T 2.5 mm (pipe)
1.27 cm (0.5”) diameter pipe il (qur:cption) 56,382
5 diameter spacing between T-fittings '
3x3 Network 2.5 mm (pipe) 1.190.163
1.27 cm (0.5”) diameter pipe 1.5 mm (junction) o
=, Sandia
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Simulated Eddy Viscosity

Re=5,000 Re=10,000

(11 Effective Viscosty -Pa-= e

0.03
I 0.02r1003
0.0242006

0.0213009

00154012 ! T
0.0155015 k-

0.0126M3

0.0097021
0.0065024
0.0038027

0.001 005

Simulated effective (eddy) viscosity [Pa-s] distribution for the 1.27 cm (0.5”) diameter cross-
joint configuration at two different Reynolds numbers: 5,000 (left) and 10,000 (right)
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