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Why is this important?

• A gain correction is needed to go from mode-
stirred chamber shielding effectiveness data to 
free-space data

– For transfer functions

– For susceptibility testing



Gain Corrections
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Gain correction for a single slot (from Warne, et. al at Sandia)

Gain correction for an intentional emitter [1]

Gain correction for an unintentional emitter for a planar cut [2]



Calculating chamber and test object interior 
fields
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The load voltage, VL, is measured.  Use 
the following values to calculate the 
normal electric field picked up by the 
monopole. 
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ZL = 50  load
Za = monopole radiation impedance
Voc = monopole open circuit voltage
heff = monopole effective height
En = normal electric field 
(quantity of interest)
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Monopole Sensors

Sensor in-situ

220 MHz – 18 GHz
Monopole sensor



Anechoic Chamber Diagram
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Mode-Stirred Chamber Diagram
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Mode-Stirred Chamber (MSC)



Mode-Stirred Chamber (MSC)

• MSC provides statistically 
uniform incident 
electromagnetic field

• A superposition of plane 
waves

• Bathes test object in 
electromagnetic field, 
which ensures leaks are 
found

• Cables do not need to be 
in a specific orientation

Performance Characteristics of Mode-
Stirred Chamber Test Facility

Dimension 4 x 7 x 11 m (HxWxL)

Design Welded Aluminum

Entrance Dimensions 3.7 x 3.7 m

Frequency 0.22 – 40 GHz

Input Power Solid State and TWT 
amplifiers

1000 W, 
220 MHz – 18 GHz

40 W, 
18 GHz – 40 GHz

Field Strength ~3000 V/m peak, 
220 MHz – 18 GHz

~600 V/m peak, 
18 – 40 GHz



Cylindrical Test Object



Single Slot Cylinder
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Single Slot Cylinder with Gain Correction

-80

-60

-40

-20

0

20

1 10
Gain_cylinders_MSC_and_AC

MSC - 1 Slot Gain Corrected
MSC - 1 Slot Gain Corrected 2
MSC - 1 Slot Gain Corrected 3
AC - 1 Slot

S
h

ie
ld

in
g

 E
ff

e
ct

iv
e

n
e

ss
 (

d
B

)

Frequency (GHz)
18



Gain Corrected and Smoothed
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Two Slot Cylinder
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Two Slot Cylinder with Gain Correction
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Gain Corrected and Smoothed
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Eight Slot Cylinder
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Eight Slot Cylinder with Gain Correction
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Gain Corrected and Smoothed
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Single Slot Cylinder – Low Q
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Single Slot Cylinder (Low Q) with Gain 
Correction
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Gain Corrected and Smoothed
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Conclusions

• High Q Cavities

– Single slot

• Good correlation on average was seen with gain correction 
at slot resonance and above with the Sandia equation and 
the equation from Ref #2.

– 2 slot

• MSC data appears to not need gain correction below 7 GHz.

• Above 9 GHz, Sandia equation and Ref #2 equation perform 
well.

– 8 slot

• MSC data appears to not need gain correction.

• Full pattern of test object needed in Anechoic chamber.



Conclusions (cont.)

• Low Q Cavities

– Single slot

• Good correlation on average was seen with gain 
correction below 3.5 GHz and above 10 GHz using the 
equation from Ref #1.  Between 3.5 and 10 GHz the 
gain was over compensated by less that 5 dB.

• Below 10 GHz Sandia equation and Ref #2 equation 
under compensated by 2 – 3 dB.
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