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“There are but four phases in any campaign: 
survey, plan, marshal, execute.”

-- Cicero
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Part 1: The focus today

 Scientific Transformation: the emergence of predictive simulation 
as a third scientific approach on par with theory and experiment

 Engineering Transformation: the change from a primarily test-
based approach in engineering to a primarily simulation-based 
approach

 National drivers (one perspective)
A. Loss of nuclear testing capability

B. Things we’ve never been able to fully test

C. Emerging security challenges post 9/11

D. Understanding high consequence events

E. Sustaining economic competitiveness

F. Accelerating scientific discovery
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A. Loss of underground testing
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B. Things we’ve never been able to fully test 

Abnormal thermal environments:

 Need to simulate

 Thermal loads on objects

 Heat transfer within objects

 Can’t test full system

 Many possible scenarios
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C. Emerging security challenges post 9/11

 SPR historically critical to certification for hostile environments

 Provides unique combination of high fluence, short pulse width, mixed 
radiation, and high volume

 Being removed from service due to security concerns post 9/11

 Replacing SPR implies petascale computation

“… after operations of three years or perhaps less, the 
Sandia Pulsed Reactor will no longer be needed, since 
computer simulations will be able to assume its mission.”   

- Secretary of Energy Abraham, 2004
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D. Understanding high consequence events
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Simulation of foam hitting shuttle wing
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Physical validation test
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 Each layer can be 
approximated with a large 
number of “finite” 
elements

 Most of the elements have 
non-linear material 
properties

Liner

Ply

Bead

Apex 

BeltsTread

Sidewall

Chafer

Finite Element Analysis (FEA) Computer Modeling of Tires

 A tire is a composite 
structure of at least 8 
layers of different 
materials

E. Sustaining economic competitiveness
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Simulation based product design

Wear simulation using 
Sandia derived tools
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How much deeper can we go?
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A very “simple” MEMS example

 Polycrystalline silicon beams
 Used in accelerometers, switches etc.

 Specs: 100 by 20 by 2 microns; 10-100 kHz

 “diving boards for bacteria”

 Gas dynamics critical to performance

 Material properties not homogenous

 Physical intuition often wrong

Problem
•3-d geometry
•Moving boundary
•Transient gas flow
•Full oscillation

Current simulation
•2-d geometry
•Static boundary
•Steady-state gas flow
•Distinct points in oscillation
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F. Accelerating scientific discovery

B

B

Observed
Predicted

50 atoms wide

Engineering at the nanoscale
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Dynamic hohlraum pinch stagnation on central
foam showing 18-fold azimuthal structure

High energy density physics
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High impact environmental science

 Polar vortex breakdown 
modeling

 Ocean simulation at 
10km resolution

High Resolution Simulation Observations
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Part 2: The differentiating toolset

Infrastructure & Operations

Programmatics & Politics
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Normally Open

Switchable Node 
Sections

Disconnect Cabinets

Normally Secure

Red Storm: a state of the art capability system
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Users
/home

Parallel FSCompute

Service

Network I/O
Interactive

Visualization

Functional architecture
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Topological architecture
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Compute node architecture

CPU
AMD

Opteron 
(2.0 Gz)

DRAM 2-4 Gbyte

ASIC
NIC +
Router

Six Links
To Other

Nodes in X, Y, Z

6.4 GB/sec peak 
bidirectional

7.6 GB/sec peak 
bidirectional    

CPU to Memory
AMD Integrated Memory Controller
128-bit (parallel 64-bit interfaces)

CPU to Interconnect
AMD HyperTransport

16-bit (dual 8-bit interfaces)

5.3 GBs/sec peak 
bidirectional        
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Design philosophy

 Scalability

 Usability

 Reliability

 Economy

“SURE” architectural principles
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Scalability: a simple model

 E.g. nearest neighbor 2D relaxation

 Interior values updated by computation 

each iteration

 Boundary values must be 

communicated each iteration

 Overhead is proportional to ratio of 

boundary to interior points

 Overhead is inversely proportional to 

communication/computation rate

 Hence efficiency goes like …
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Basic Parallel Efficiency Model
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Scalability per HPCC benchmarks

System HPL PTRANS RANDOM FFT STREAM

Red Storm 
(SNL)

41   100 100 51 79

Blue Gene 
Light 

(LLNL)
100 19 6.5 100 97

Purple

(LLNL)
72 31 17 39 100

… percentage of best achieved so far on baseline benchmarks
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Scalability of some key engineering codes

Performance on Engineering Codes
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Other key scalability issues

 Light weight kernal

 Scalable system services

 Light weight file system

 Physical scalability

 Scalable enabling toolset

 … Scalability must permeate every aspect of the design 



Version 9 Oct06 

Usability, reliability and economy

 Usability

 Linux front end

 MPI programming model

 Scalable system response

 Reliability

 NOT high availability

 100 hrs. MTBI for hardware & software  … 500T working parts

 50 hrs. MTBI for apps  …  10^19 calculations w/o failure

 Independent RAS “immune” systems

 Highly redundant power supplies & memories

 Economy

 Leverage commodity markets for components

 Design for lifecycle costs

 Encourage a wider market for system
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Thunderbird:  state of the art capacity is essential
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Part 3: Looking forward five years

 “Moonshot” goals

 Predictive simulation across full system lifecycle

 Component design cycle times reduced from 7 to 2 years

 Rapid design of custom microsystems without prototyping

 Completely virtual test environments and facilities

 Scientific breakthroughs, e.g.

 target design for break-even fusion on Z   

 10km resolution climate simulation

 virtual cell modeling

 All require (at least) petascale computation
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A fearless forecast

By 2011:  

 Topology:  mesh

 Processors:  10k

 Cores:  1/3 million

 Peak:  10 TF

 Links:  10 GB/s

 Memory:  1/3 PB
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Part 4: Key challenges

 Not comprehensive

 Under appreciated (my view)

 Biased by my experience

 Some interesting highlights
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Application and system challenges

Infrastructure & Operations

Programmatics & Politics
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System challenges

 Scalability of computer hardware and system software

 Maintaining balance in the architecture

 Coping with the drive to multi-core

 Power consumption 

 Optical interconnect crossover point

 Resiliency despite growing system complexity

 Quantitative understanding of latency impact

 Processor design

 Much higher fraction of chip area devoted to processing

 Memory wall

 File system performance

 Viable LWFS
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Applications challenges 

 Maintaining parallel efficiency with a million threads

 New programming models

 Fractal approach?

 Implicit within socket, explicit without?

 Compelling non technical applications with similar needs

 Developing (accepting) better benchmarks

 Embracing V&V

 Tools, methodology, computing power and incentives
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 "I think that HPC probably won't drive the fundamental 
advancements in parallel programming. I think it had that 
opportunity, but that window of leadership is rapidly closing ….   
If these new [multicore] architectures are going to be successful, 
a lot of people are going to have to program them and they're not 
going to be satisfied with the kinds of tools available in HPC 
today.” 

Justin Rattner, Intel CTO

Extreme parallel programming
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Impact of a system balance

 Balance factors predict HPCC results pretty well

 Architectural balance with low system noise is key to a scalable performance
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Modern architecture example: 
The AMD Opteron
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Lightweight file systems

 Current PFS solutions do not provide 
scalable I/O

 General-purpose file systems have 
too much functionality

 Lustre, PVFS2, Panasas and most 
others use this model

Metadata Management

file layout

file
attributes

Consistency
Semantics

I/O Interface

Distribution
Policy

File System

naming

ownership
& perms

Access
Control
Policy

Resource
Management

Libraries Provide

Everything else

file layout

naming

file
attributes

Consistency
Semantics

I/O Interface

Distribution
Policy

ownership
& perms

Access
Control
Policy

Resource
Management

Lightweight File System CORE

Metadata

Libraries

Metadata

LWFS-core Provides

Direct Access to Storage

Scalable Security Model

Efficient Data Movement

Traditional FS

 Lightweight approach has promise
 only do what you have to do
 put the burden on the library, 

not the file system
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Enabling technology challenges

 Cracking “human in the loop” problems

 Geometry, meshing

 Visualization & interpretation (automating attention focus)

 Design through analysis

 Exquisite load balancing technology

 Solver scalability

 Hierarchical approach across data infrastructure
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Design to analysis

Simulation to DesignDesign

Design to Analysis Simulation

Maintain Original
Geometry Links

Propagate Attributes
(materials, interfaces, etc.)

Scalable Algorithms
Multiple Mesh Instances

Piecewise Unification

Geometry Based
Multiple Instances
Numerous Codes

• D2A dominates simulation 
cycle time, typically by an 
order of magnitude

• Majority of the time is spent in 
geometric manipulation

• Years are spent in some 
cases; 6 mos. Is not unusual

• The difficulty scales with 
resolution

Geometry

Simplified Model

Decomposition
Mesh

BC, Materials,
Job Control
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Radiation Transport Exec. Time
(Problem size scaled ; 10000 photons/Proc)
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Magnetic Solve Exec. Time
(Problem size scaled; 10000 Elements/Proc)
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• Improvements in memory 
usage and load balance 
(via coarse grid 
repartition) of the multi-
level solver resulted in 17x 
reduction in execution 
time at scale

 Improvements in IMC 
radiation algorithm using 
non-blocking exchange 
resulted in 4x reduction in 
execution time on 1,200 
processors
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Hierarchical data architecture

1.  Geometric Representation

2.  Decomposition for Meshing

3.  Mesh Decomposition for Load Balance

4.  Coarse Grid Generation

5.  Mesh Refinement

6.  Dynamic Load Rebalance

7.  Decomposition for Visualization
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Operational challenges

 Power load (really function of scale as well)

 20MW is pushing practical limit

 ~$12M/yr alone for power

 Petascale networking infrastructure

 25X – 250X current network capability 

 An MP system in the infrastructure as well

 Getting the portfolio right

 Capability vs. capacity mix

 Rapid integration

 Scalable user support model (for 10X more users)

 Merging with enterprise computing
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Setting a cost effective machine portfolio 
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Leadership challenges

 Delivering systems that really work

 Honoring the value proposition (impact v. viewgraphs)

 Examining computing and architectural model 

 engineering v. science v. informatics

 Combating the misuse of benchmarks

 A scalable user support model

 Projecting the future

 Maintaining political and public support
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A scalable user support model

 Rollout Common Engineering Environment (CEE)

 Study and segment the market

 Partner with engineering communities to select best tools

 Design mission specific operating environments 

 Integrate with Design through Analysis environment (DART)

 Deploy via Software Acquisition/Management System (SAMS)

 Architectural changes to desktop

 Extend CSU business model to cover CEE in depth

 Tier 1: CCHD

 Tier 2: In office support from simulation technicians

 Tier 3: Route to 4300 applications specialists

 Tier 4: Route to code development team, e.g. 1500

 Lower barriers …  scalable architecture, corporately branded
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The future: Sic itur ad astra

1 Zettaflops

100 Exaflops

10 Exaflops

1 Exaflops

100 Petaflops

10 Petaflops

1 Petaflops

100 Teraflops

System 
Performance

2000 2010 2020 2030 Year 

  Red Storm/Cluster

Technology

 Nanotech +
Reversible Logic P 

(green) best-case logic 
(red) 

 Quantum Computing
Requires Rescaled

Graph (see later slide)

 Architecture: IBM 
Cyclops, FPGA, PIM

2000 20202010

No schedule provided by 
source

Applications

[Jardin 03] S.C. Jardin, “Plasma Science Contribution to the SCaLeS Report,” Princeton Plasma Physics Laboratory, PPPL-3879 UC-70, available on Internet.
[Malone 03] Robert C. Malone, John B. Drake, Philip W. Jones, Douglas A. Rotman, “High-End Computing in Climate Modeling,” contribution to SCaLeS report.
[NASA 99] R. T. Biedron, P. Mehrotra, M. L. Nelson, F. S. Preston, J. J. Rehder, J. L. Rogers, D. H. Rudy, J. Sobieski, and O. O. Storaasli, “Compute as Fast as the Engineers Can Think!”
NASA/TM-1999-209715, available on Internet.
[SCaLeS 03] Workshop on the Science Case for Large-scale Simulation, June 24-25, proceedings on Internet a http://www.pnl.gov/scales/.
[DeBenedictis 04], Erik P. DeBenedictis, “Matching Supercomputing to Progress in Science,” July 2004. Presentation at Lawrence Berkeley National Laboratory, also published as
Sandia National Laboratories SAND report SAND2004-3333P. Sandia technical reports are available by going to http://www.sandia.gov and accessing the technical library.
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