
An asynchronous parallel derivative-free
algorithm for handling general constraints

Josh Griffin
Computational Sciences and Mathematics Research

Sandia National Laboratories

Livermore, California USA

Second International Congress on Mathematical Software

Castro Urdiales, SPAIN

September 1–3, 2006

Joint work with Tammy Kolda, Robert Michael Lewis, and Virginia Torczon

Computational Sciences and Mathematics Research Slide 1 August 7, 2006

SAND2006-5209C

Talk outline

1. Problems of interest

2. Generating set search background

3. Linear constraints

4. Nonlinear equality constraints

5. Numerical results

Computational Sciences and Mathematics Research Slide 2 August 7, 2006

Why use derivative-free?

Answer: Sometimes you don’t have choice

Derivative-based if ...

• Function evaluations quick

• All points in Ω finite/defined

• Continous and smooth in Ω

• Little to no noise

• Looking for nearest local min

Derivative-free if ...

• Function evaluations slow

• Points in Ω may be undefined

• Discontinous, nonsmooth, okay

• Noise okay

• Wanting something more global

Derivative-based methods place stronger restrictions on f(x) and Ω but require

fewer function evaluation to reach solution

.........

............

...............

...................

......................

..........................

.............................

.................................

....................................

..

.

.

Should I

take the
or the ?

Computational Sciences and Mathematics Research Slide 3 August 7, 2006

Problems we are interested in
• Function evaluations CPU-intensive, often a single

evaluations requires multiple processors and may take
hours/days to compute

• The objective is often based upon large simulation based
codes that can periodically crash, returning an undefined
point

• If derivatives exists, noise limits ability to estimate

• Because function evaluations are simulation-based, access
to objective exists through shell script interfaces

Computational Sciences and Mathematics Research Slide 4 August 7, 2006

Sandia optimization problem (supporting nuclear safety
studies)

Goal: Determine if accidental

drop could jeopardize integrity

of internal components.

1. Model developed to simulate drop

from different angles.

2. Optimization problem: determine

angle that maximizes damage.

3. Single function eval involves:

• Rotating/remeshing: 2-5 min.

• Simulating drop: 1 to 15 hrs.

Computational Sciences and Mathematics Research Slide 5 August 7, 2006

Generating Set Search and
APPSPACK

Computational Sciences and Mathematics Research Slide 6 August 7, 2006

APPSPACK developed for following problem types

We will consider problems of the form

minimize
x∈Rn

f(x)

subject to c(x) = 0

Ax ≤ b

where f : Rn → R, c : Rn → Rp, and A is an m× n matrix.

• linear equalities permitted

• derivatives unavailable

• number of variables relatively small (≤ 100)

Computational Sciences and Mathematics Research Slide 7 August 7, 2006

Generating set search algorithms

Generating set search algorithms explore the feasible region with a set of
search directions

positively spanning Rn (in unconstrained case), with the property that no
matter where the direction of steepest descent lies in Rn, at least one
search direction lies within 90◦.

Computational Sciences and Mathematics Research Slide 8 August 7, 2006

Generating set search algorithms

Generating set search algorithms explore the feasible region with a set of
search directions

positively spanning Rn (in unconstrained case), with the property that no
matter where the direction of steepest descent lies in Rn, at least one
search direction lies within 90◦.

Computational Sciences and Mathematics Research Slide 8 August 7, 2006

Generating set search algorithms

Generating set search algorithms explore the feasible region with a set of
search directions

positively spanning Rn (in unconstrained case), with the property that no
matter where the direction of steepest descent lies in Rn, at least one
search direction lies within 90◦.

Computational Sciences and Mathematics Research Slide 8 August 7, 2006

Generating set search algorithms

Generating set search algorithms explore the feasible region with a set of
search directions

positively spanning Rn (in unconstrained case), with the property that no
matter where the direction of steepest descent lies in Rn, at least one
search direction lies within 90◦.

Computational Sciences and Mathematics Research Slide 8 August 7, 2006

Generating set search algorithms

Generating set search algorithms explore the feasible region with a set of
search directions

positively spanning Rn (in unconstrained case), with the property that no
matter where the direction of steepest descent lies in Rn, at least one
search direction lies within 90◦.

Computational Sciences and Mathematics Research Slide 8 August 7, 2006

Generating set search algorithms

Generating set search algorithms explore the feasible region with a set of
search directions

positively spanning Rn (in unconstrained case), with the property that no
matter where the direction of steepest descent lies in Rn, at least one
search direction lies within 90◦.

Computational Sciences and Mathematics Research Slide 8 August 7, 2006

Generating set search algorithms

Generating set search algorithms explore the feasible region with a set of
search directions

positively spanning Rn (in unconstrained case), with the property that no
matter where the direction of steepest descent lies in Rn, at least one
search direction lies within 90◦.

This property ensures us that if derivative’s happen to exists we will
converge to a local minimum.

Computational Sciences and Mathematics Research Slide 8 August 7, 2006

Basic synchronous framework (unconstrained)

• Trial point generation:

X = {x + ∆d(i) : d(i) ∈ search pattern}

and send to evaluation queue.

• Trial point evaluation: Collect evaluated points Y = X .

• Decision: If a point y ∈ Y is determined to be “better than” x,
iteration is considered successful.

• Successful: x← y

• Unsuccessful: ∆← .5∆

• Stop: if ∆ < ∆tol

Computational Sciences and Mathematics Research Slide 9 August 7, 2006

Basic synchronous framework (unconstrained)

• Trial point generation:

X = {x + ∆d(i) : d(i) ∈ search pattern}

and send to evaluation queue.

• Trial point evaluation: Collect evaluated points Y = X .

• Decision: If a point y ∈ Y is determined to be “better than” x,
iteration is considered successful.

• Successful: x← y

• Unsuccessful: ∆← .5∆

• Stop: if ∆ < ∆tol

�
�

�
��

We enforce a sufficient decrease

conditions based on step size ∆

f(y) ≤ f(x)− α∆2

Computational Sciences and Mathematics Research Slide 9 August 7, 2006

Basic synchronous framework (unconstrained)

• Trial point generation:

X = {x + ∆d(i) : d(i) ∈ search pattern}

and send to evaluation queue.

• Trial point evaluation: Collect evaluated points Y = X .

• Decision: If a point y ∈ Y is determined to be “better than” x,
iteration is considered successful.

• Successful: x← y

• Unsuccessful: ∆← .5∆

• Stop: if ∆ < ∆tol

@
@

@
@I

Step where asynchronous

algorithms wins in parallel

Y 6= X

Computational Sciences and Mathematics Research Slide 9 August 7, 2006

Asynchronous framework (unconstrained)

• Trial point generation:

X = {x + ∆(i)d(i) : d(i) ∈ search pattern and inactive}

and submit to the evaluation queue.

• Trial point evaluation: Collect a nonempty set of evaluated point Y.

• Decision: If a point y ∈ Y is determined to be “better than” x, iteration is

considered successful.

• Successful: x← y, reset ∆(i) = max(∆min, step that generated y). Prune evaluation

queue.

• Unsuccessful: ∆(i) ← .5∆(i) for all direction indices corresponding to points in Y.

• Stop: If ∆(i) < ∆tol for all i

Here ∆min denotes minimum step-size. Must be ≥ ∆tol.

Computational Sciences and Mathematics Research Slide 10 August 7, 2006

Unconstrained optimization demo

best: a

pending: b c d e

evaluated:

pruned:

Trial points
�
�
�
�
�
�
�
��

A
A
AAU

Current best point
�

�
�

�	︸ ︷︷ ︸
∆

Step size
@

@I

Computational Sciences and Mathematics Research Slide 11 August 7, 2006

Unconstrained optimization demo

best: a

pending: b c d e

evaluated:

pruned:

Computational Sciences and Mathematics Research Slide 12 August 7, 2006

Unconstrained optimization demo

best: a

pending: c d

evaluated: b e

pruned:

Computational Sciences and Mathematics Research Slide 13 August 7, 2006

Unconstrained optimization demo

best: a

pending: f g c d

evaluated:

pruned:

Computational Sciences and Mathematics Research Slide 14 August 7, 2006

Unconstrained optimization demo

best: a

pending: c d

evaluated: f g

pruned:

Computational Sciences and Mathematics Research Slide 15 August 7, 2006

Unconstrained optimization demo

best: f

pending: h i j k c d

evaluated:

pruned:

Computational Sciences and Mathematics Research Slide 16 August 7, 2006

Unconstrained optimization demo

best: f

pending: i k

evaluated: c j h

pruned: dx

Computational Sciences and Mathematics Research Slide 17 August 7, 2006

Unconstrained optimization demo

best: c

pending: l m n o i k

evaluated:

pruned:

Computational Sciences and Mathematics Research Slide 18 August 7, 2006

Unconstrained optimization demo

best: c

pending: n k

evaluated: l m o i

pruned:

Computational Sciences and Mathematics Research Slide 19 August 7, 2006

Unconstrained optimization demo

best: l

pending: p q r s n k

evaluated:

pruned:

Computational Sciences and Mathematics Research Slide 20 August 7, 2006

Unconstrained optimization demo

best: l

pending: p q r s

evaluated: n k

pruned:

Computational Sciences and Mathematics Research Slide 21 August 7, 2006

Unconstrained optimization demo

best: l

pending: p q r s

evaluated:

pruned:

Computational Sciences and Mathematics Research Slide 22 August 7, 2006

Handling linear constraints:
Same algorithm, different directions

Computational Sciences and Mathematics Research Slide 23 August 7, 2006

Computing conforming search directions

�
�

�
�

�
�@

@
@

@
@

@
�

�
�

�
�

�

@
@

@
@

@
@

Ω

�
�

�
�

�
�@

@
@

@
@

@
�

�
�

�
�

�

@
@

@
@

@
@

Ω

∗ ∗
6

-

?

� �
��

@
@R

@
@I

�����)

�����)

.....
.....
.....
.....
.....
.....
.....
.....
......
.....
.....
...

−∇f(x)

.....
.....
.....
.....
.....
.....
.....
.....
......
.....
.....
...

−∇f(x)

Computational Sciences and Mathematics Research Slide 24 August 7, 2006

Locally conforming directions

We want the ability to move

parallel to active constraints

Computational Sciences and Mathematics Research Slide 25 August 7, 2006

Locally conforming directions

We want the ability to move

parallel to active constraints

We also want the ability to move

parallel to “nearby” constraints

Computational Sciences and Mathematics Research Slide 25 August 7, 2006

ε-active constraints

We place a ball of radius ε about current best point.

Constraints passing through this ε-ball are considered ε-active constraints.

ε

Computational Sciences and Mathematics Research Slide 26 August 7, 2006

ε-active constraints

We place a ball of radius ε about current best point.

Constraints passing through this ε-ball are considered ε-active constraints.

ε
ε-active constraints

.
..................................

................................

...............................

.............................
............................

..........................
.........................

...................
....

................
........

................
...........

...............
...............

...............
...............
...

.

................
................

........

................
................

.....

..................
..................

...................
...............

....................
............

.......................
........

..........................
...

...........................
......................

......................

R

�

Computational Sciences and Mathematics Research Slide 26 August 7, 2006

Conforming directions

We then compute corresponding conforming search directions

Computational Sciences and Mathematics Research Slide 27 August 7, 2006

ε-tangent cone

The positive-span of conforming directions forms an ε-tangent cone

Computational Sciences and Mathematics Research Slide 28 August 7, 2006

Summarizing

Punch-line: generating directions in this manner ensures that we can
always travel a distance of at least ε along each search direction and
remain feasible.

Thus it makes sense to set ε equal to the current step size:

ε = ∆.

In asynchronous mode we have multiple step size:

∆(i), i = 1, ..., p.

Thus we must work with multiple tangent cones.

Computational Sciences and Mathematics Research Slide 29 August 7, 2006

Normal and tangent cones definitions

• Lewis & Torczon (2000) define the ε-normal cone to be the cone
generated by the outward pointing normals of the linear constraints
within a distance ε of x:

N (x, ε) = positive span
{

ai ∈ A :
|aT

i x− bi|
‖ai‖

≤ ε

}
• Define the ε-tangent cone, T (x, ε), to be the polar of the normal cone:

T (x, ε)
4
= N (x, ε)◦

Finding generators for N (x, ε) easy

Finding generators for T (x, ε) not so easy

Computational Sciences and Mathematics Research Slide 30 August 7, 2006

Linearly constrained optimization

Conforming directions derived from tangent cones of nearby constraints:

• nondegenerate case: basic linear algebra sufficient, generators
computed with LAPACK .

• degenerate case: basic linear algebra insufficient, generators formed
with C-library cddlib :

– Double description method of Motzkin et al. written by Komei
Fukuda.

Computational Sciences and Mathematics Research Slide 31 August 7, 2006

Synchronous framework for linear constraints
Choose εmax > ∆tol.

• Form conforming search directions for ε-active constraints, ε = min(∆, εmax).

• Trial point generation:

X = {x + ∆̃d(i) : d(i) ∈ search pattern}, ∆̃ ∈ [0, ∆]

and send to evaluation queue.

• Trial point evaluation: Collect evaluated points Y (= X).

• Decision: If a point y ∈ Y is determined to be “better than” x, iteration is

considered successful.

• Successful: x← y

• Unsuccessful: ∆← .5∆

• Stop: if ∆ < ∆tol

Note: Theoretically, we need εmax > ∆tol to ensure convergence. Choosing εmax to large

can limit step size however.

Computational Sciences and Mathematics Research Slide 32 August 7, 2006

Asynchronous tricky

• Multiple step sizes implies multiple tangent cones may be relevant.

• In the synchronous case, only one tangent cone per iteration has
theoretical importance.

– Thus, merely swap out cone generators whenever the tangent cone
changes.

• In the asynchronous case, extra bookkeeping is needed to keep track of
when we can swap and when we must append search directions.

• Ultimately, we must ensure that at each iteration, the search
directions contain generators for⋃

{i: ∆(i)≤εmax}

T (x, ∆(i)) ∪ T (x, εmax)

Computational Sciences and Mathematics Research Slide 33 August 7, 2006

Asynchronous framework for linear constraints

Choose εmax > ∆tol.

• Trial point generation: X = {x + ∆̃(i)d(i) : d(i) ∈ search pattern and inactive}

• Trial point evaluation: Collect a nonempty set of evaluated point Y

• Decision: If a point y ∈ Y is determined to be “better than” x, iteration is

considered successful

• Successful: x← y, reset ∆(i) = ∆̂ = max(step(y), ∆min). Set ε = min(∆̂, εmax). New

set of search direction = T (x, ε). Note: One step-size ⇒ one relevant tangent cone

• Unsuccessful: ∆(i) ← .5∆(i) for all direction indices corresponding to points in Y.

Append search directions if min(εmax, mini ∆(i)) has decreased to ensure search

directions contain generators for[
{i: ∆(i)≤εmax}

T (x, ∆(i)) ∪ T (x, εmax)

• Stop: if ∆(i) ≤ ∆tol for all i

Computational Sciences and Mathematics Research Slide 34 August 7, 2006

Linear constrained optimization demo

best: a

pending: b c

evaluated:

Computational Sciences and Mathematics Research Slide 35 August 7, 2006

Linear constrained optimization demo

best: a

pending: b

evaluated: c

x

Computational Sciences and Mathematics Research Slide 35 August 7, 2006

Linear constrained optimization demo

best: c

pending: d e b

evaluated:

Computational Sciences and Mathematics Research Slide 35 August 7, 2006

Linear constrained optimization demo

best: c

pending: e b

evaluated: dx

Computational Sciences and Mathematics Research Slide 35 August 7, 2006

Linear constrained optimization demo

best: c

pending: f e b

evaluated:

Computational Sciences and Mathematics Research Slide 35 August 7, 2006

Linear constrained optimization demo

best: c

pending: e

evaluated: f b

x

x

Computational Sciences and Mathematics Research Slide 35 August 7, 2006

Linear constrained optimization demo

best: b

pending: g h e

evaluated:

Computational Sciences and Mathematics Research Slide 35 August 7, 2006

Linear constrained optimization demo

best: b

pending: h

evaluated: g ex
x

Computational Sciences and Mathematics Research Slide 35 August 7, 2006

Linear constrained optimization demo

best: b

pending: i j k h

evaluated:

Computational Sciences and Mathematics Research Slide 35 August 7, 2006

Linear constrained optimization demo

best: b

pending: i j k

evaluated: h

x

Computational Sciences and Mathematics Research Slide 35 August 7, 2006

Linear constrained optimization demo

best: b

pending: l i j k

evaluated:

Computational Sciences and Mathematics Research Slide 35 August 7, 2006

Asynchronous convergence theory

.
.........................

.......................

.....................

....................

....................

...................

...................

...................

......................

.........................
...........................

..............................
.................................

...................................
......................................

... -

A useful measure of optimality

χ(x) = max
x+ω∈Ω
‖w‖≤1

−∇f(x)Tw.

Can show that χ(x) ≥ 0, χ(x) is continuous, and χ(x) = 0 iff x is first-order optimal

Conn, Gould, Sartenaer, and Toint. (1996)

(a) Under assumptions always satisfied before APPSPACK terminates, we can show

‖PT (x,∆̂)(−∇f(x))‖ ≤ C1∆̂

χ(x) ≤ C2∆̂

where ∆̂ equals the current maximum step size

(b) lim inf ∆̂ = 0

(a) and (b) together imply global convergence to a first-order optimal point

PT (x,∆̂)(−∇f(x)) denotes projection of −∇f(x) onto local tangent cone T (x, ∆̂)

C1 and C2 depend on properties of f and A

Computational Sciences and Mathematics Research Slide 36 August 7, 2006

APPSPACK numerical results for general linear constraints

Details:

• Tested on linearly constrained CUTEr (Constrained and Unconstrained Testing

Environment, revisited) (non-trivial) problems with n ≤ 1000 variables

• All problems tested asynchronously in parallel on Sandia’s Institutional Computing

Cluster (ICC)

– 20 proc for n ≤ 10,

– 40 proc for 10 < n ≤ 100

– 60 proc for 100 < n ≤ 1000

Motivation:

• Stress test APPSPACK’s new linear constraint capabilities

– CUTEr problem known to be difficult even for derivative-based methods

• Verify new asynchronous theory numerically

– At risk of doing a large number of function evaluations, set stopping tolerance

unusually high to see how well we could do

Computational Sciences and Mathematics Research Slide 37 August 7, 2006

Numerical results: problem sizes

Computational Sciences and Mathematics Research Slide 38 August 7, 2006

Numerical results: accuracy

 bogus
 failed to converge
 converged
 rel. err. < 1e−6

 0

 10

 20

 30

 40

 50

 60

 70

 80

0−10 11−100 101−1,000

N
um

be
r o

f p
ro

bl
em

s

Number of variables

Computational Sciences and Mathematics Research Slide 39 August 7, 2006

Numerical results: accuracy

Largest problem solved:

505 variables,

1010 simple bounds, and

1008 constraints

Computational Sciences and Mathematics Research Slide 40 August 7, 2006

Numerical results: function evaluations

 other
 eval < 100n^2
 eval < 60n^2
 eval < 40n^2
 eval < 20n^2
 eval < 10n^2

 0

 10

 20

 30

 40

 50

 60

 70

0−10 11−100 101−1,000

N
um

be
r o

f p
ro

bl
em

s

Number of variables

Using finite-difference

Newton to minimize a convex

quadratic one would expect

O(n2) evaluations.

Computational Sciences and Mathematics Research Slide 41 August 7, 2006

 0
 500

 1,000
 1,500
 2,000
 2,500
 3,000
 3,500
 4,000
 4,500
 5,000

FC
C

U

H
S1

18

H
S1

19

L
O

T
SC

H
D

PO
R

T
FL

1

PO
R

T
FL

2

PO
R

T
FL

3

PO
R

T
FL

4

PO
R

T
FL

6

 F
un

ct
io

n
E

va
lu

at
io

ns

Synchronous 5
Asynchronous 5
Synchronous 10
Asynchronous 10
Synchronous 20
Asynchronous 20

 0

 2,000

 4,000

 6,000

 8,000

 10,000

 12,000

 14,000

 16,000

 T
im

e(
se

c)

Sync vs. Async

9 midrange problems

selected. 5-15 seconds

added randomly to

each evaluation.

27 comparisons made

Computational Sciences and Mathematics Research Slide 42 August 7, 2006

Handling nonlinear constraints
A sequence of linearly constrained problems

Computational Sciences and Mathematics Research Slide 43 August 7, 2006

The subproblem

We solve a series of linearly constrained subproblems for λk, µk fixed:

min
x∈Rn

Φk(x)

subject to Ax ≤ b

where
Φk(x)

4
= f(x) + λT

kc(x) +
1

2µk
‖c(x)‖2

Each subproblem is solved approximately using APPSPACK.

Key feature: Algorithm can be shown to be globally convergent to
first-order optimal points without accessing/estimating derivatives.

Computational Sciences and Mathematics Research Slide 44 August 7, 2006

Conclusions

Computational Sciences and Mathematics Research Slide 45 August 7, 2006

Conclusions and Summary

• APPSPACK with linear constraints:

– Globally convergent to a KKT point.

– Works well in practice.

– Stable version currently available for download.

– Corresponding paper “Asynchronous parallel generating set search for

linearly-constrained optimization” to be submitted to SISC.

• APPSPACK with general equality constraints:

– Globally convergent to a KKT point.

– Software in place; currently fine tuning and debugging.

– Stable release by end of next month.

Can download latest stable and developmental version here (LGPL license):

http://software.sandia.gov/appspack

Computational Sciences and Mathematics Research Slide 46 August 7, 2006

Future work

• Categorical variables:

minimize
xc∈Ω,xd∈S

f(xc, xd)

subject to Ω ⊂ Rn

S = red, blue, green, etc.

• Nonlinear inequality constraints solved with slacks:

minimize
x

f(x)

subject to
h(x) ≤ 0,

c(x) = 0, Ax ≤ b

• Globalization of APPSPACK

• Support for oracle points

Computational Sciences and Mathematics Research Slide 47 August 7, 2006

Future work

• Categorical variables:

minimize
xc∈Ω,xd∈S

f(xc, xd)

subject to Ω ⊂ Rn

S = red, blue, green, etc.

• Nonlinear inequality constraints solved with slacks:

minimize
x,z

f(x)

subject to
h(x)+z = 0, z ≤ 0

c(x) = 0, Ax ≤ b

• Globalization of APPSPACK

• Support for oracle points

Computational Sciences and Mathematics Research Slide 48 August 7, 2006

Why asynchronous?

Computational Sciences and Mathematics Research Slide 49 August 7, 2006

Sandia optimization problem (supporting nuclear safety
studies)

Goal: Determine if accidental

drop could jeopardize integrity

of internal components.

1. Model developed to simulate drop

from different angles.

2. Optimization problem: determine

angle that maximizes damage.

3. Single function eval involves:

• Rotating/remeshing: 2-5 min.

• Simulating drop: 1 to 15 hrs.

Computational Sciences and Mathematics Research Slide 50 August 7, 2006

Sandia “Can Crush” problem configuration

Four evaluations performed

in parallel.
�

�
�

�	

�

Computational Sciences and Mathematics Research Slide 51 August 7, 2006

Sandia “Can Crush” problem configuration

Each evaluation performed

on 10 processors.����)

Computational Sciences and Mathematics Research Slide 51 August 7, 2006

For each simulation

• For initial time step simulation could be unstable.

• Whenever simulation crashed, the time step was reduced and the
simulation ran again.

• Approximately 1 out every 5 simulations crashed for initial time step

• With initial time step simulation takes 1-2 hours.

• With smaller time step simulation takes 10-15 hours.

Computational Sciences and Mathematics Research Slide 52 August 7, 2006

Worse case scenario for synchronous case

2hr 2hr 2hr 2r︸ ︷︷ ︸
Iteration 1

15hr 2hr 2hr 2r︸ ︷︷ ︸
Iteration 2

2hr 15hr 2hr 2r︸ ︷︷ ︸
Iteration 3

. . .

�
�
�
��

S
S

S
S

S
So

Simulation crashes evenly spaced

between function evaluations

Computational Sciences and Mathematics Research Slide 53 August 7, 2006

Worse case scenario for synchronous case

2hr 2hr 2hr 2r︸ ︷︷ ︸
Iteration 1

15hr 2hr 2hr 2r︸ ︷︷ ︸
Iteration 2

2hr 15hr 2hr 2r︸ ︷︷ ︸
Iteration 3

. . .

Implication

• 4 out of 5 iterations take 15hrs.

• 1 out of 5 iterations takes 2hrs.

• 4 out of 5 iterations, 30 processors are left idle for 13 of the 15 hours.

Punchline Approximately 84% of clock-time, 75% of available processors
are not being used!

Asynchronous algorithms can greatly reduced time processors spend idle

Computational Sciences and Mathematics Research Slide 54 August 7, 2006

Handling nonlinear constraints
A sequence of linearly constrained problems

Computational Sciences and Mathematics Research Slide 55 August 7, 2006

Nonlinearly constraints

Consider the following problem

minimize
x∈Rn

f(x)

subject to
Ax ≤ b

c(x) = 0

Implementation based upon

• Conn, Gould, and Toint. (1996)

• Lewis and Torczon. (2002)

• Kolda, Lewis, and Torczon . (Pending)

Computational Sciences and Mathematics Research Slide 56 August 7, 2006

The subproblem

We solve a series of linearly constrained subproblems for λk, µk fixed:

min
x∈Rn

Φk(x)

subject to Ax ≤ b

where
Φk(x)

4
= f(x) + λT

kc(x) +
1

2µk
‖c(x)‖2

Each subproblem is solved approximately using APPSPACK.

Key feature: Algorithm can be shown to be globally convergent to
first-order optimal points without accessing/estimating derivatives.

Computational Sciences and Mathematics Research Slide 57 August 7, 2006

Basic frame work with derivatives

while not converged do

Solve subproblem approximately until

‖PTk
(−∇xΦk(x))‖ ≤ Cωk

PTk
(·) denotes projection onto T (x, ωk).

Update λk, µk.

if ‖c(xk)‖ ≤ ηk, (infeasibility sufficiently reduced)

λk+1 = λk + c(xk)/µk (Hestenes-Powell)

otherwise µk+1 = τµk. (increase penalty)

end

Conn, Gould, Sartenaer, Toint (1996).

Computational Sciences and Mathematics Research Slide 58 August 7, 2006

Basic frame work with derivatives

while not converged do

Solve subproblem approximately until

‖PTk
(−∇xΦk(x))‖ ≤ Cωk

PTk
(·) denotes projection onto T (x, ωk).

Update λk, µk.

if ‖c(xk)‖ ≤ ηk, (infeasibility sufficiently reduced)

λk+1 = λk + c(xk)/µk (Hestenes-Powell)

otherwise µk+1 = τµk. (increase penalty)

end

Main problem: no access to first derivatives.

Computational Sciences and Mathematics Research Slide 58 August 7, 2006

Borrowing from linearly constrained optimization theory

We know that at unsuccessful iterations

‖PT (x,∆̂)(−∇xΦk)‖ ≤ C(Φk, A)∆̂

Recall we need a bound of the form

‖PT (x,ωk)(−∇xΦk)‖ ≤ Cωk

where C is independent of k. Dependence on k removed by normalizing
wrt ‖λk‖ and 1/µk:

choose step tolerance ≤ ωk
1

1 + ‖λk‖+ 1/µk
.

Computational Sciences and Mathematics Research Slide 59 August 7, 2006

Preliminary numerical results

• Current test suite consists of 18 Hock and Schittkowski CUTEr
problems that have nonlinear equality constraints and ≤ 10 variables

• Current implementation caches f(x) and c(x)

Stopping criteria:

∆(k,tol) ≤ 10−4

‖c(x)‖ ≤ 10−4

Computational Sciences and Mathematics Research Slide 60 August 7, 2006

