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Talk outline
1. Problems of interest
2. Generating set search background
Linear constraints

Nonlinear equality constraints

ovoo W

Numerical results
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Why use derivative-free?

Answer: Sometimes you don’t have choice

Derivative-based if ... Derivative-free if ...
e Function evaluations quick e Function evaluations slow
e All points in Q finite/defined e Points in {2 may be undefined
e Continous and smooth in 2 e Discontinous, nonsmooth, okay
e Little to no noise e Noise okay
e Looking for nearest local min e Wanting something more global

Should 1
take the

Derivative-based methods place stronger restrictions on f(z) and € but require

fewer function evaluation to reach solution
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Problems we are interested in
e Function evaluations CPU-intensive, often a single

evaluations requires multiple processors and may take

hours/days to compute

point

o If derivatives exists, noise limits ability to estimate | |

|
| ~ N
.l—"'. L -~
L . \

S / J
e Because function evaluations are simulation-based, access

to objective exists through shell script interfaces
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Sandia optimization problem (supporting nuclear safety

studies)

Goal: Determine if accidental

drop could jeopardize integrity

of internal components.

1. Model developed to simulate drop
from different angles.

2. Optimization problem: determine

angle that maximizes damage.

3. Single function eval involves:
e Rotating/remeshing: 2-5 min.

e Simulating drop: 1 to 15 hrs.
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Generating Set Search and
APPSPACK
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@ APPSPACK developed for following problem types

We will consider problems of the form

minimize f(x)

subject to ¢(x) =0
Ax <b
where f : R" - R, ¢: R" — RP, and A is an m X n matrix.
e linear equalities permitted
e derivatives unavailable

e number of variables relatively small (< 100)
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)

Generating set search algorithms explore the feasible region with a set of

Generating set search algorithms

search directions

positively spanning R™ (in unconstrained case), with the property that no
matter where the direction of steepest descent lies in R™, at least one
search direction lies within 90°.
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Generating set search algorithms explore the feasible region with a set of

Generating set search algorithms

search directions
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positively spanning R™ (in unconstrained case), with the property that no
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search direction lies within 90°.
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)

Generating set search algorithms explore the feasible region with a set of

Generating set search algorithms

search directions

positively spanning R™ (in unconstrained case), with the property that no
matter where the direction of steepest descent lies in R™, at least one
search direction lies within 90°.

This property ensures us that if derivative’s happen to exists we will

converge to a local minimum.
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Basic synchronous framework (unconstrained)

e Trial point generation:
X = {z+ Ad? : d9 € search pattern}

and send to evaluation queue.
e Trial point evaluation: Collect evaluated points Y = X.

e Decision: If a point y € ) is determined to be “better than” z,

iteration is considered successful.
e Successful: x « y
e Unsuccessful: A «— 5A

o Stop: if A < Aol
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Basic synchronous framework (unconstrained)

e Trial point generation:
X = {z+ Ad? : d9 € search pattern}

and send to evaluation queue.

e Trial point evaluation: Collect evaluated points Y = X.

e Decision: If a point y € ) is determined to be | “better than”

iteration is considered successful.

e Successful: x «— y

e Unsuccessful: A «— BHA We enforce a sufficient decrease

conditions based on step size A

° StOpI if A < AtoI fly) < f(x) — a\?
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Basic synchronous framework (unconstrained)

e Trial point generation:
X = {z+ Ad? : d9 € search pattern}

and send to evaluation queue.

e Trial point evaluation: | Collect evaluated points )V = X.

e Decision: If a point y € )V is determined to be “better than” x,

iteration is considered successful.

e Successful: x «— y Step where asynchronous

algorithms wins in parallel

e Unsuccessful: A «— 5A V£ X

o Stop: if A < Aol
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Asynchronous framework (unconstrained)
e Trial point generation:
X ={z+ ADdW : 40 ¢ search pattern and inactive}
and submit to the evaluation queue.
e 'Trial point evaluation: Collect a nonempty set of evaluated point ).

e Decision: If a point y € )V is determined to be “better than” x, iteration is

considered successful.

e Successful: x < y, reset Al = max(Anmin, step that generated y). Prune evaluation

queue.

e Unsuccessful: AY) — B5A0) for all direction indices corresponding to points in Y.

e Stop: If Al < Ay for all 4

Here A, denotes minimum step-size. Must be > Ai.
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Unconstrained optimization demo

Trial pomnts
best: a
pending: b cde
evaluated:

pruned:
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Unconstrained optimization demo

best: a
pending: b cde
evaluated:

pruned:
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Unconstrained optimization demo

best: a
pending: c¢ d
evaluated: b e

pruned:
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Unconstrained optimization demo

best: a
pending: fgcd
evaluated:

pruned:
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Unconstrained optimization demo

best: a
pending: c¢ d
evaluated: f g

pruned:
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Unconstrained optimization demo
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best: f
pending: hijkcd
evaluated:

pruned:




Unconstrained optimization demo

Ol

®

)
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best: f
pending: 1k
evaluated: c¢ jh

pruned: d
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Unconstrained optimization demo

best: ¢
pending: Ilmmnoik
evaluated:
pruned:
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Unconstrained optimization demo

best: c
pending: n k
evaluated: 1 m o 1

pruned:
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Unconstrained optimization demo

@
o@g
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best:
pending:
evaluated:

pruned:
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Unconstrained optimization demo

@
EQ
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best: 1
pending: pqr s

evaluated: n k

pruned:




Unconstrained optimization demo

@ @
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best: 1
pending: pqr s

evaluated:

pruned:




Handling linear constraints:

Same algorithm, different directions
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Computing conforming search directions
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Locally conforming directions

We want the ability to move

parallel to active constraints
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Locally conforming directions

We want the ability to move

parallel to active constraints

We also want the ability to move

parallel to “nearby” constraints
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e-active constraints

We place a ball of radius € about current best point.

Constraints passing through this e-ball are considered e-active constraints.
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e-active constraints

We place a ball of radius € about current best point.

e-active constraints

Constraints passing through this e-ball are considered e-active constraints.
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Conforming directions

We then compute corresponding conforming search directions
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e-tangent cone

The positive-span of conforming directions forms an e-tangent cone
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Summarizing

Punch-line: generating directions in this manner ensures that we can
always travel a distance of at least € along each search direction and

remain feasible.

Thus it makes sense to set € equal to the current step size:
e = A.
In asynchronous mode we have multiple step size:
A(i), 1=1,...,p.

Thus we must work with multiple tangent cones.
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@ Normal and tangent cones definitions

e Lewis & Torczon (2000) define the e-normal cone to be the cone
generated by the outward pointing normals of the linear constraints

within a distance € of x:

Ty — b,
N (x, €) = positive span {ai cA: |aZHx H d < e}
a;

e Define the e-tangent cone, 7 (x, €), to be the polar of the normal cone:

T (z,€) = N(z,€)°

Finding generators for N (xz, €) easy

Finding generators for 7 (z, €) not so easy
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Conforming directions derived from tangent cones of nearby constraints:

Linearly constrained optimization

e nondegenerate case: basic linear algebra sufficient, generators
computed with | LAPACK |.

e degenerate case: basic linear algebra insufficient, generators formed
with C-library | cddlib |:

— Double description method of Motzkin et al. written by Komei
Fukuda.

Computational Sciences and Mathematics Research Slide 31 August 7, 2006



Synchronous framework for linear constraints

Choose €max > Aiol-

Form conforming search directions for e-active constraints, € = min(A, €max)-

Trial point generation:

X = {z + Ad® : d¥) ¢ search pattern}, A € [0, A]
and send to evaluation queue.
Trial point evaluation: Collect evaluated points YV (= X).

Decision: If a point y € ) is determined to be “better than” x, iteration is
considered successful.

Successful: x «— y
Unsuccessful: A «— 5A
Stop: if A < Ay

Note: Theoretically, we need emax > Ay to ensure convergence. Choosing emax to large

can limit step size however.
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Asynchronous tricky
e Multiple step sizes implies multiple tangent cones may be relevant.

e In the synchronous case, only one tangent cone per iteration has
theoretical importance.
— Thus, merely swap out cone generators whenever the tangent cone

changes.

e In the asynchronous case, extra bookkeeping is needed to keep track of

when we can swap and when we must append search directions.

e Ultimately, we must ensure that at each iteration, the search

directions contain generators for

U T, AD)UT (2, emax)
{7;: A(7;)§'€max}
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Asynchronous framework for linear constraints

Choose €max > Atol-
e Trial point generation: X = {x + A()d) : d(?) € search pattern and inactive}
e Trial point evaluation: Collect a nonempty set of evaluated point )

e Decision: If a point y € YV is determined to be “better than” x, iteration is
considered successful

e Successful:  « y, reset Al) = A = max(step(y), Amin). Set € = min(A, emax). New

set of search direction = 7 (x, €). Note: One step-size = one relevant tangent cone

e Unsuccessful: AD) — 5A0) for all direction indices corresponding to points in Y.
Append search directions if min(€max, min; A(i)) has decreased to ensure search

directions contain generators for

g T (2, ADY U T (2, €max)
{e: A(7;)§€max}

e Stop: if A < A, for all i
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Linear constrained optimization demo

best: a

pending: b c

evaluated:
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Linear constrained optimization demo

""\ best: a

- b pending: b
h evaluated: c
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Linear constrained optimization demo

~
(>
t’a

b
I

Le

Computational Sciences and Mathematics Research

best:
pending:

evaluated:
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Linear constrained optimization demo
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best:
pending:

evaluated:
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Linear constrained optimization demo

best: ¢
b pending: feb
evaluated:

ol
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Linear constrained optimization demo

best: ¢
b pending: e
evaluated: f b
O
SN
N\
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Linear constrained optimization demo

best: b
b h pending: g h e
evaluated:

ol
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Linear constrained optimization demo

best: b
b h pending: h

evaluated: g e
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Linear constrained optimization demo
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best:
pending:

evaluated:
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Linear constrained optimization demo

k o best: b
b h pending: 1j k
i ] evaluated: h
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Linear constrained optimization demo

k best: b
b I pending: 11ijk
i ] evaluated:

Computational Sciences and Mathematics Research Slide 35 August 7, 2006



Asynchronous convergence theory

A useful measure of optimality

_ _ T
x(z) = ﬁT‘%‘f Vi(z) w.

Can show that x(x) > 0, x(z) is continuous, and x(z) = 0 iff = is first-order optimal
Conn, Gould, Sartenaer, and Toint. (1996)

(a) Under assumptions always satisfied before APPSPACK terminates, we can show
||PT($,A)(—VJC($))|| < ClA
x(z) < CoA

where A equals the current maximum step size

(b) liminfA =0
(a) and (b) together imply global convergence to a first-order optimal point

PT(m,A)(—Vf(x)) denotes projection of —V f(z) onto local tangent cone T (z, A)

C1 and C5 depend on properties of f and A
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APPSPACK numerical results for general linear constraints
Details:

e Tested on linearly constrained CUTEr (Constrained and Unconstrained Testing

Environment, revisited) (non-trivial) problems with n < 1000 variables

e All problems tested asynchronously in parallel on Sandia’s Institutional Computing
Cluster (ICC)

— 20 proc for n < 10,
— 40 proc for 10 < n < 100
— 60 proc for 100 < n < 1000

Motivation:

e Stress test APPSPACK’s new linear constraint capabilities
— CUTEr problem known to be difficult even for derivative-based methods

e Verify new asynchronous theory numerically

— At risk of doing a large number of function evaluations, set stopping tolerance
unusually high to see how well we could do
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Numerical results: problem sizes

Scatter plot: M wvs. M
2500
ﬂ 2000 < <
=
m
=
2 1500
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Mumber of variables
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Numerical results: accuracy

80
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30

Number of problems
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O bogus
B failed to converge
O converged

M rel. err. < le-6

0-10 11-100  101-1,000

Number of variables
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Numerical results: accuracy

100% r
B failed to converge

0% - O converged
= 0 B rel. err. < le-6
1
£
5 60% r
ks Largest problem solved:
Y]
%ﬂ 40% - 505 variables,
§ 1010 simple bounds, and
1
P 20% | 1008 constraints

0%

0-10 11-100 101-1,000

Number of variables
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Numerical results: function evaluations

70

60

50

40

30

Number of problems
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10

Computational Sciences and Mathematics Research

0-10

BEOC0OCEN

11-100

other

eval < 100n"2
eval < 60n”2
eval < 40n"2
eval < 20n"2
eval < 10n”2

101-1,000

Number of variables

Using finite-difference
Newton to minimize a convex

quadratic one would expect

O(n?) evaluations.
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Sync vs. Async

Time(sec)

9 midrange problems
selected. 5-15 seconds
added randomly to
each evaluation.

27 comparisons made

Function Evaluations

Computational Sciences and Mathematics Research
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1,500
1,000

500

I I
B Synchronous 5

B Asynchronous 10
E.Synchronous 20- - ... -
B Asynchronous 20

FCCU

Slide 42

PORTFLI

PORTFL2

August 7, 2006



)

Handling nonlinear constraints

A sequence of linearly constrained problems
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)

We solve a series of linearly constrained subproblems for Mg, ux fixed:

The subproblem

min O ()

reR™

subject to Ax <b

where )
Op(z) = f(z) + Ape() + %HC(%‘)HZ

Each subproblem is solved approximately using APPSPACK.

Key feature: Algorithm can be shown to be globally convergent to

first-order optimal points without accessing/estimating derivatives.
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Conclusions
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Conclusions and Summary

e APPSPACK with linear constraints:
— Globally convergent to a KKT point.
— Works well in practice.
— Stable version currently available for download.
— Corresponding paper “Asynchronous parallel generating set search for
linearly-constrained optimization” to be submitted to SISC.
e APPSPACK with general equality constraints:
— Globally convergent to a KKT point.
— Software in place; currently fine tuning and debugging.

— Stable release by end of next month.
Can download latest stable and developmental version here (LGPL license):

http:/ /software.sandia.gov/appspack
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@ Future work

e (Categorical variables:

minimize P
wc€Q>$d63 f( ©’ d)

subject to Q C R”

S = red, blue, green, etc.

e Nonlinear inequality constraints solved with slacks:
minimize  f(x)
Hh
h(x) <0,

subject to
c(xr) =0, Ax <b

e Globalization of APPSPACK

e Support for oracle points

Computational Sciences and Mathematics Research Slide 47

August 7, 2006



@ Future work

e (Categorical variables:

minimize P
CCCEQ>CUdE$ f( ©’ d)

subject to Q C R”

S = red, blue, green, etc.

e Nonlinear inequality constraints solved with slacks:

minimize  f(x)
X,z

h(x)+z=0, =z<0

subject to
c(z) =0, Ax <b

e Globalization of APPSPACK

e Support for oracle points
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Why asynchronous?
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Sandia optimization problem (supporting nuclear safety

studies)

Goal: Determine if accidental

drop could jeopardize integrity

of internal components.

1. Model developed to simulate drop
from different angles.

2. Optimization problem: determine

angle that maximizes damage.

3. Single function eval involves:
e Rotating/remeshing: 2-5 min.

e Simulating drop: 1 to 15 hrs.
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D\

Sandia “Can Crush” problem configuration

Four evaluations performed

in parallel.
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Sandia “Can Crush” problem configuration

Each evaluation performed

on 10 processors.
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e For initial time step simulation could be unstable.

For each simulation

e Whenever simulation crashed, the time step was reduced and the

simulation ran again.
e Approximately 1 out every 5 simulations crashed for initial time step
e With initial time step simulation takes 1-2 hours.

e With smaller time step simulation takes 10-15 hours.
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Worse case scenario for synchronous case

2hr || 2hr || 2hr || 2r 15hr || 2hr || 2hr || 2r 2hr || 15hr | 2hr || 2r
®

\ /\Q N\ /\Q f _/
-~ -~ -~

Iteration 1 Iteration 2 Iteration 3

Simulation crashes evenly spaced

between function evaluations
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2hr || 2hr || 2hr || 2r 15hr || 2hr || 2hr || 2r 2hr || 15hr | 2hr || 2r

Worse case scenario for synchronous case

Itera‘trion 1 Itera?trion 2 Itera?trion 3
Implication
e 4 out of b iterations take 15hrs.
e 1 out of 5 iterations takes 2hrs.

e 4 out of 5 iterations, 30 processors are left idle for 13 of the 15 hours.

Punchline Approximately 84% of clock-time, 75% of available processors

are not being used!

Asynchronous algorithms can greatly reduced time processors spend idle

Computational Sciences and Mathematics Research Slide 54 August 7, 2006



)

Handling nonlinear constraints

A sequence of linearly constrained problems
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Consider the following problem

Nonlinearly constraints

minimize f(x)
. Arx < b
subject to
c(r) = 0

Implementation based upon

e Conn, Gould, and Toint. (1996)
e Lewis and Torczon. (2002)

e Kolda, Lewis, and Torczon . (Pending)
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We solve a series of linearly constrained subproblems for Mg, ux fixed:

The subproblem

min O ()

reR™

subject to Ax <b

where )
Op(z) = f(z) + Ape() + %HC(%‘)HZ

Each subproblem is solved approximately using APPSPACK.

Key feature: Algorithm can be shown to be globally convergent to

first-order optimal points without accessing/estimating derivatives.
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while not converged do

Basic frame work with derivatives

Solve subproblem approximately until
1P7, (= Vo ®p(2))]| < Cuw
Pr. (+) denotes projection onto 7 (x, wg).
Update A\, ug.
if ||c(xk)|| < &, (infeasibility sufficiently reduced)
Ait1 = Ak + c(xk) /i (Hestenes-Powell)
otherwise ;1 = Tug. (increase penalty)

end

Conn, Gould, Sartenaer, Toint (1996).
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)

while not converged do

Basic frame work with derivatives

Solve subproblem approximately until
1P (=V2®p(2))]] < Cwy
Pr. (+) denotes projection onto 7 (x, wg).

Update A\, ug.
if ||c(xk)|| < &, (infeasibility sufficiently reduced)

A1 = A + c(xg) /i (Hestenes-Powell)
otherwise ;1 = Tug. (increase penalty)
end

Main problem: no access to first derivatives.
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We know that at unsuccessful iterations

Borrowing from linearly constrained optimization theory

N\

[ Pr (. 2)(=Va®p)|| < C(Pk, A)A
Recall we need a bound of the form
HPT(:U,wk;)(_vx(bk)H < ka

where C' is independent of k. Dependence on k£ removed by normalizing
wrt |[Ax|| and 1/pp:

1
W .
T+ el + 1/ s

choose step tolerance <
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Preliminary numerical results

e Current test suite consists of 18 Hock and Schittkowski CUTEr
problems that have nonlinear equality constraints and < 10 variables

e Current implementation caches f(z) and ¢(x)

18

16 .
Stopping criteria: 14} ]
Ak o) < 1077 %12 ]
()|l < 1074 |
S 8+ i

=
4t i
) |

-0.5 0 0.5 1
Relative difference in objective values
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