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Talk outline

1. Problems of interest

2. Generating set search background

3. Linear constraints

4. Nonlinear equality constraints

5. Numerical results
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Why use derivative-free?

Answer: Sometimes you don’t have choice

Derivative-based if ...

• Function evaluations quick

• All points in Ω finite/defined

• Continous and smooth in Ω

• Little to no noise

• Looking for nearest local min

Derivative-free if ...

• Function evaluations slow

• Points in Ω may be undefined

• Discontinous, nonsmooth, okay

• Noise okay

• Wanting something more global

Derivative-based methods place stronger restrictions on f(x) and Ω but require

fewer function evaluation to reach solution

.........

............

...............

...................

......................

..........................

.............................

.................................

....................................

........................................





Should I

take the
or the ?

Computational Sciences and Mathematics Research Slide 3 August 7, 2006



Problems we are interested in
• Function evaluations CPU-intensive, often a single

evaluations requires multiple processors and may take
hours/days to compute

• The objective is often based upon large simulation based
codes that can periodically crash, returning an undefined
point

• If derivatives exists, noise limits ability to estimate

• Because function evaluations are simulation-based, access
to objective exists through shell script interfaces
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Sandia optimization problem (supporting nuclear safety
studies)

Goal: Determine if accidental

drop could jeopardize integrity

of internal components.

1. Model developed to simulate drop

from different angles.

2. Optimization problem: determine

angle that maximizes damage.

3. Single function eval involves:

• Rotating/remeshing: 2-5 min.

• Simulating drop: 1 to 15 hrs.
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Generating Set Search and
APPSPACK
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APPSPACK developed for following problem types

We will consider problems of the form

minimize
x∈Rn

f(x)

subject to c(x) = 0

Ax ≤ b

where f : Rn → R, c : Rn → Rp, and A is an m× n matrix.

• linear equalities permitted

• derivatives unavailable

• number of variables relatively small (≤ 100)
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Generating set search algorithms

Generating set search algorithms explore the feasible region with a set of
search directions

positively spanning Rn (in unconstrained case), with the property that no
matter where the direction of steepest descent lies in Rn, at least one
search direction lies within 90◦.
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Generating set search algorithms

Generating set search algorithms explore the feasible region with a set of
search directions

positively spanning Rn (in unconstrained case), with the property that no
matter where the direction of steepest descent lies in Rn, at least one
search direction lies within 90◦.

This property ensures us that if derivative’s happen to exists we will
converge to a local minimum.
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Basic synchronous framework (unconstrained)

• Trial point generation:

X = {x + ∆d(i) : d(i) ∈ search pattern}

and send to evaluation queue.

• Trial point evaluation: Collect evaluated points Y = X .

• Decision: If a point y ∈ Y is determined to be “better than” x,
iteration is considered successful.

• Successful: x← y

• Unsuccessful: ∆← .5∆

• Stop: if ∆ < ∆tol
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Basic synchronous framework (unconstrained)

• Trial point generation:

X = {x + ∆d(i) : d(i) ∈ search pattern}

and send to evaluation queue.

• Trial point evaluation: Collect evaluated points Y = X .

• Decision: If a point y ∈ Y is determined to be “better than” x,
iteration is considered successful.

• Successful: x← y

• Unsuccessful: ∆← .5∆

• Stop: if ∆ < ∆tol
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We enforce a sufficient decrease

conditions based on step size ∆

f(y) ≤ f(x)− α∆2
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Basic synchronous framework (unconstrained)

• Trial point generation:

X = {x + ∆d(i) : d(i) ∈ search pattern}

and send to evaluation queue.

• Trial point evaluation: Collect evaluated points Y = X .

• Decision: If a point y ∈ Y is determined to be “better than” x,
iteration is considered successful.

• Successful: x← y

• Unsuccessful: ∆← .5∆

• Stop: if ∆ < ∆tol

@
@

@
@I

Step where asynchronous

algorithms wins in parallel

Y 6= X
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Asynchronous framework (unconstrained)

• Trial point generation:

X = {x + ∆(i)d(i) : d(i) ∈ search pattern and inactive}

and submit to the evaluation queue.

• Trial point evaluation: Collect a nonempty set of evaluated point Y.

• Decision: If a point y ∈ Y is determined to be “better than” x, iteration is

considered successful.

• Successful: x← y, reset ∆(i) = max(∆min, step that generated y). Prune evaluation

queue.

• Unsuccessful: ∆(i) ← .5∆(i) for all direction indices corresponding to points in Y.

• Stop: If ∆(i) < ∆tol for all i

Here ∆min denotes minimum step-size. Must be ≥ ∆tol.
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Unconstrained optimization demo

best: a

pending: b c d e

evaluated:

pruned:

Trial points
�
�
�
�
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Current best point
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Step size
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Unconstrained optimization demo

best: a

pending: b c d e

evaluated:

pruned:
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Unconstrained optimization demo

best: a

pending: c d

evaluated: b e

pruned:
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Unconstrained optimization demo

best: a

pending: f g c d

evaluated:

pruned:
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Unconstrained optimization demo

best: a

pending: c d

evaluated: f g

pruned:
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Unconstrained optimization demo

best: f

pending: h i j k c d

evaluated:

pruned:
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Unconstrained optimization demo

best: f

pending: i k

evaluated: c j h

pruned: dx
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Unconstrained optimization demo

best: c

pending: l m n o i k

evaluated:

pruned:
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Unconstrained optimization demo

best: c

pending: n k

evaluated: l m o i

pruned:
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Unconstrained optimization demo

best: l

pending: p q r s n k

evaluated:

pruned:
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Unconstrained optimization demo

best: l

pending: p q r s

evaluated: n k

pruned:
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Unconstrained optimization demo

best: l

pending: p q r s

evaluated:

pruned:
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Handling linear constraints:
Same algorithm, different directions
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Computing conforming search directions
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Locally conforming directions

We want the ability to move

parallel to active constraints
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Locally conforming directions

We want the ability to move

parallel to active constraints

We also want the ability to move

parallel to “nearby” constraints
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ε-active constraints

We place a ball of radius ε about current best point.

Constraints passing through this ε-ball are considered ε-active constraints.

ε
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We place a ball of radius ε about current best point.

Constraints passing through this ε-ball are considered ε-active constraints.

ε
ε-active constraints
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Conforming directions

We then compute corresponding conforming search directions
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ε-tangent cone

The positive-span of conforming directions forms an ε-tangent cone
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Summarizing

Punch-line: generating directions in this manner ensures that we can
always travel a distance of at least ε along each search direction and
remain feasible.

Thus it makes sense to set ε equal to the current step size:

ε = ∆.

In asynchronous mode we have multiple step size:

∆(i), i = 1, ..., p.

Thus we must work with multiple tangent cones.
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Normal and tangent cones definitions

• Lewis & Torczon (2000) define the ε-normal cone to be the cone
generated by the outward pointing normals of the linear constraints
within a distance ε of x:

N (x, ε) = positive span
{

ai ∈ A :
|aT

i x− bi|
‖ai‖

≤ ε

}
• Define the ε-tangent cone, T (x, ε), to be the polar of the normal cone:

T (x, ε)
4
= N (x, ε)◦

Finding generators for N (x, ε) easy

Finding generators for T (x, ε) not so easy
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Linearly constrained optimization

Conforming directions derived from tangent cones of nearby constraints:

• nondegenerate case: basic linear algebra sufficient, generators
computed with LAPACK .

• degenerate case: basic linear algebra insufficient, generators formed
with C-library cddlib :

– Double description method of Motzkin et al. written by Komei
Fukuda.
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Synchronous framework for linear constraints
Choose εmax > ∆tol.

• Form conforming search directions for ε-active constraints, ε = min(∆, εmax).

• Trial point generation:

X = {x + ∆̃d(i) : d(i) ∈ search pattern}, ∆̃ ∈ [0, ∆]

and send to evaluation queue.

• Trial point evaluation: Collect evaluated points Y (= X ).

• Decision: If a point y ∈ Y is determined to be “better than” x, iteration is

considered successful.

• Successful: x← y

• Unsuccessful: ∆← .5∆

• Stop: if ∆ < ∆tol

Note: Theoretically, we need εmax > ∆tol to ensure convergence. Choosing εmax to large

can limit step size however.
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Asynchronous tricky

• Multiple step sizes implies multiple tangent cones may be relevant.

• In the synchronous case, only one tangent cone per iteration has
theoretical importance.

– Thus, merely swap out cone generators whenever the tangent cone
changes.

• In the asynchronous case, extra bookkeeping is needed to keep track of
when we can swap and when we must append search directions.

• Ultimately, we must ensure that at each iteration, the search
directions contain generators for⋃

{i: ∆(i)≤εmax}

T (x, ∆(i)) ∪ T (x, εmax)
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Asynchronous framework for linear constraints

Choose εmax > ∆tol.

• Trial point generation: X = {x + ∆̃(i)d(i) : d(i) ∈ search pattern and inactive}

• Trial point evaluation: Collect a nonempty set of evaluated point Y

• Decision: If a point y ∈ Y is determined to be “better than” x, iteration is

considered successful

• Successful: x← y, reset ∆(i) = ∆̂ = max(step(y), ∆min). Set ε = min(∆̂, εmax). New

set of search direction = T (x, ε). Note: One step-size ⇒ one relevant tangent cone

• Unsuccessful: ∆(i) ← .5∆(i) for all direction indices corresponding to points in Y.

Append search directions if min(εmax, mini ∆(i)) has decreased to ensure search

directions contain generators for[
{i: ∆(i)≤εmax}

T (x, ∆(i)) ∪ T (x, εmax)

• Stop: if ∆(i) ≤ ∆tol for all i

Computational Sciences and Mathematics Research Slide 34 August 7, 2006



Linear constrained optimization demo

best: a

pending: b c

evaluated:
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Linear constrained optimization demo

best: a

pending: b

evaluated: c

x
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Linear constrained optimization demo

best: c

pending: d e b

evaluated:
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Linear constrained optimization demo

best: c

pending: e b

evaluated: dx
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Linear constrained optimization demo

best: c

pending: f e b

evaluated:
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Linear constrained optimization demo

best: c

pending: e

evaluated: f b

x

x
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Linear constrained optimization demo

best: b

pending: g h e

evaluated:
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Linear constrained optimization demo

best: b

pending: h

evaluated: g ex
x
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Linear constrained optimization demo

best: b

pending: i j k h

evaluated:
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Linear constrained optimization demo

best: b

pending: i j k

evaluated: h

x
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Linear constrained optimization demo

best: b

pending: l i j k

evaluated:
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Asynchronous convergence theory
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A useful measure of optimality

χ(x) = max
x+ω∈Ω
‖w‖≤1

−∇f(x)Tw.

Can show that χ(x) ≥ 0, χ(x) is continuous, and χ(x) = 0 iff x is first-order optimal

Conn, Gould, Sartenaer, and Toint. (1996)

(a) Under assumptions always satisfied before APPSPACK terminates, we can show

‖PT (x,∆̂)(−∇f(x))‖ ≤ C1∆̂

χ(x) ≤ C2∆̂

where ∆̂ equals the current maximum step size

(b) lim inf ∆̂ = 0

(a) and (b) together imply global convergence to a first-order optimal point

PT (x,∆̂)(−∇f(x)) denotes projection of −∇f(x) onto local tangent cone T (x, ∆̂)

C1 and C2 depend on properties of f and A
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APPSPACK numerical results for general linear constraints

Details:

• Tested on linearly constrained CUTEr (Constrained and Unconstrained Testing

Environment, revisited) (non-trivial) problems with n ≤ 1000 variables

• All problems tested asynchronously in parallel on Sandia’s Institutional Computing

Cluster (ICC)

– 20 proc for n ≤ 10,

– 40 proc for 10 < n ≤ 100

– 60 proc for 100 < n ≤ 1000

Motivation:

• Stress test APPSPACK’s new linear constraint capabilities

– CUTEr problem known to be difficult even for derivative-based methods

• Verify new asynchronous theory numerically

– At risk of doing a large number of function evaluations, set stopping tolerance

unusually high to see how well we could do
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Numerical results: problem sizes
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Numerical results: accuracy
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Numerical results: accuracy

Largest problem solved:

505 variables,

1010 simple bounds, and

1008 constraints
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Numerical results: function evaluations

 other
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Using finite-difference

Newton to minimize a convex

quadratic one would expect

O(n2) evaluations.

Computational Sciences and Mathematics Research Slide 41 August 7, 2006



  0
  500

  1,000
  1,500
  2,000
  2,500
  3,000
  3,500
  4,000
  4,500
  5,000

FC
C

U

H
S1

18

H
S1

19

L
O

T
SC

H
D

PO
R

T
FL

1

PO
R

T
FL

2

PO
R

T
FL

3

PO
R

T
FL

4

PO
R

T
FL

6

 F
un

ct
io

n 
E

va
lu

at
io

ns

 

Synchronous 5
Asynchronous 5
Synchronous 10
Asynchronous 10
Synchronous 20
Asynchronous 20

  0

  2,000

  4,000

  6,000

  8,000

  10,000

  12,000

  14,000

  16,000

 T
im

e(
se

c)
 

Sync vs. Async

9 midrange problems

selected. 5-15 seconds

added randomly to

each evaluation.

27 comparisons made

Computational Sciences and Mathematics Research Slide 42 August 7, 2006



Handling nonlinear constraints
A sequence of linearly constrained problems
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The subproblem

We solve a series of linearly constrained subproblems for λk, µk fixed:

min
x∈Rn

Φk(x)

subject to Ax ≤ b

where
Φk(x)

4
= f(x) + λT

kc(x) +
1

2µk
‖c(x)‖2

Each subproblem is solved approximately using APPSPACK.

Key feature: Algorithm can be shown to be globally convergent to
first-order optimal points without accessing/estimating derivatives.
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Conclusions
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Conclusions and Summary

• APPSPACK with linear constraints:

– Globally convergent to a KKT point.

– Works well in practice.

– Stable version currently available for download.

– Corresponding paper “Asynchronous parallel generating set search for

linearly-constrained optimization” to be submitted to SISC.

• APPSPACK with general equality constraints:

– Globally convergent to a KKT point.

– Software in place; currently fine tuning and debugging.

– Stable release by end of next month.

Can download latest stable and developmental version here (LGPL license):

http://software.sandia.gov/appspack
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Future work

• Categorical variables:

minimize
xc∈Ω,xd∈S

f(xc, xd)

subject to Ω ⊂ Rn

S = red, blue, green, etc.

• Nonlinear inequality constraints solved with slacks:

minimize
x

f(x)

subject to
h(x) ≤ 0,

c(x) = 0, Ax ≤ b

• Globalization of APPSPACK

• Support for oracle points
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Future work

• Categorical variables:

minimize
xc∈Ω,xd∈S

f(xc, xd)

subject to Ω ⊂ Rn

S = red, blue, green, etc.

• Nonlinear inequality constraints solved with slacks:

minimize
x,z

f(x)

subject to
h(x)+z = 0, z ≤ 0

c(x) = 0, Ax ≤ b

• Globalization of APPSPACK

• Support for oracle points
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Why asynchronous?
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Sandia optimization problem (supporting nuclear safety
studies)

Goal: Determine if accidental

drop could jeopardize integrity

of internal components.

1. Model developed to simulate drop

from different angles.

2. Optimization problem: determine

angle that maximizes damage.

3. Single function eval involves:

• Rotating/remeshing: 2-5 min.

• Simulating drop: 1 to 15 hrs.
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Sandia “Can Crush” problem configuration

Four evaluations performed

in parallel.
�

�
�

�	

�
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Sandia “Can Crush” problem configuration

Each evaluation performed

on 10 processors.����)
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For each simulation

• For initial time step simulation could be unstable.

• Whenever simulation crashed, the time step was reduced and the
simulation ran again.

• Approximately 1 out every 5 simulations crashed for initial time step

• With initial time step simulation takes 1-2 hours.

• With smaller time step simulation takes 10-15 hours.
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Worse case scenario for synchronous case

2hr 2hr 2hr 2r︸ ︷︷ ︸
Iteration 1

15hr 2hr 2hr 2r︸ ︷︷ ︸
Iteration 2

2hr 15hr 2hr 2r︸ ︷︷ ︸
Iteration 3

. . .

�
�
�
��

S
S

S
S

S
So

Simulation crashes evenly spaced

between function evaluations
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Worse case scenario for synchronous case

2hr 2hr 2hr 2r︸ ︷︷ ︸
Iteration 1

15hr 2hr 2hr 2r︸ ︷︷ ︸
Iteration 2

2hr 15hr 2hr 2r︸ ︷︷ ︸
Iteration 3

. . .

Implication

• 4 out of 5 iterations take 15hrs.

• 1 out of 5 iterations takes 2hrs.

• 4 out of 5 iterations, 30 processors are left idle for 13 of the 15 hours.

Punchline Approximately 84% of clock-time, 75% of available processors
are not being used!

Asynchronous algorithms can greatly reduced time processors spend idle

Computational Sciences and Mathematics Research Slide 54 August 7, 2006



Handling nonlinear constraints
A sequence of linearly constrained problems
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Nonlinearly constraints

Consider the following problem

minimize
x∈Rn

f(x)

subject to
Ax ≤ b

c(x) = 0

Implementation based upon

• Conn, Gould, and Toint. (1996)

• Lewis and Torczon. (2002)

• Kolda, Lewis, and Torczon . (Pending)
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The subproblem

We solve a series of linearly constrained subproblems for λk, µk fixed:

min
x∈Rn

Φk(x)

subject to Ax ≤ b

where
Φk(x)

4
= f(x) + λT

kc(x) +
1

2µk
‖c(x)‖2

Each subproblem is solved approximately using APPSPACK.

Key feature: Algorithm can be shown to be globally convergent to
first-order optimal points without accessing/estimating derivatives.
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Basic frame work with derivatives

while not converged do

Solve subproblem approximately until

‖PTk
(−∇xΦk(x))‖ ≤ Cωk

PTk
(·) denotes projection onto T (x, ωk).

Update λk, µk.

if ‖c(xk)‖ ≤ ηk, (infeasibility sufficiently reduced)

λk+1 = λk + c(xk)/µk (Hestenes-Powell)

otherwise µk+1 = τµk. (increase penalty)

end

Conn, Gould, Sartenaer, Toint (1996).
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Basic frame work with derivatives

while not converged do

Solve subproblem approximately until

‖PTk
(−∇xΦk(x))‖ ≤ Cωk

PTk
(·) denotes projection onto T (x, ωk).

Update λk, µk.

if ‖c(xk)‖ ≤ ηk, (infeasibility sufficiently reduced)

λk+1 = λk + c(xk)/µk (Hestenes-Powell)

otherwise µk+1 = τµk. (increase penalty)

end

Main problem: no access to first derivatives.
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Borrowing from linearly constrained optimization theory

We know that at unsuccessful iterations

‖PT (x,∆̂)(−∇xΦk)‖ ≤ C(Φk, A)∆̂

Recall we need a bound of the form

‖PT (x,ωk)(−∇xΦk)‖ ≤ Cωk

where C is independent of k. Dependence on k removed by normalizing
wrt ‖λk‖ and 1/µk:

choose step tolerance ≤ ωk
1

1 + ‖λk‖+ 1/µk
.
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Preliminary numerical results

• Current test suite consists of 18 Hock and Schittkowski CUTEr
problems that have nonlinear equality constraints and ≤ 10 variables

• Current implementation caches f(x) and c(x)

Stopping criteria:

∆(k,tol) ≤ 10−4

‖c(x)‖ ≤ 10−4
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