SAND2006- 5209C

An asynchronous parallel derivative-free
algorithm for handling general constraints

Josh Griffin

Computational Sciences and Mathematics Research
Sandia National Laboratories

Livermore, California USA

Second International Congress on Mathematical Software
Castro Urdiales, SPAIN

September 1-3, 2006

Joint work with Tammy Kolda, Robert Michael Lewis, and Virginia Torczon

Computational Sciences and Mathematics Research Slide 1 August 7, 2006

Talk outline
1. Problems of interest
2. Generating set search background
Linear constraints

Nonlinear equality constraints

ovoo W

Numerical results

Computational Sciences and Mathematics Research Slide 2 August 7, 2006

Why use derivative-free?

Answer: Sometimes you don’t have choice

Derivative-based if ... Derivative-free if ...
e Function evaluations quick e Function evaluations slow
e All points in Q finite/defined e Points in {2 may be undefined
e Continous and smooth in 2 e Discontinous, nonsmooth, okay
e Little to no noise e Noise okay
e Looking for nearest local min e Wanting something more global

Should 1
take the

Derivative-based methods place stronger restrictions on f(z) and € but require

fewer function evaluation to reach solution

Computational Sciences and Mathematics Research Slide 3

August 7, 2006

Problems we are interested in
e Function evaluations CPU-intensive, often a single

evaluations requires multiple processors and may take

hours/days to compute

point

o If derivatives exists, noise limits ability to estimate | |

|
| ~ N
.l—"'. L -~
L . \

S / J
e Because function evaluations are simulation-based, access

to objective exists through shell script interfaces

Computational Sciences and Mathematics Research Slide 4 August 7, 2006

Sandia optimization problem (supporting nuclear safety

studies)

Goal: Determine if accidental

drop could jeopardize integrity

of internal components.

1. Model developed to simulate drop
from different angles.

2. Optimization problem: determine

angle that maximizes damage.

3. Single function eval involves:
e Rotating/remeshing: 2-5 min.

e Simulating drop: 1 to 15 hrs.

Computational Sciences and Mathematics Research

EMMICAN
Time = 0.0030002

Slide 5

August 7, 2006

Generating Set Search and
APPSPACK

Computational Sciences and Mathematics Research Slide 6 August 7, 2006

@ APPSPACK developed for following problem types

We will consider problems of the form

minimize f(x)

subject to ¢(x) =0
Ax <b
where f : R" - R, ¢: R" — RP, and A is an m X n matrix.
e linear equalities permitted
e derivatives unavailable

e number of variables relatively small (< 100)

Computational Sciences and Mathematics Research Slide 7 August 7, 2006

)

Generating set search algorithms explore the feasible region with a set of

Generating set search algorithms

search directions

positively spanning R™ (in unconstrained case), with the property that no
matter where the direction of steepest descent lies in R™, at least one
search direction lies within 90°.

Computational Sciences and Mathematics Research Slide 8 August 7, 2006

)

Generating set search algorithms explore the feasible region with a set of

Generating set search algorithms

search directions

positively spanning R™ (in unconstrained case), with the property that no
matter where the direction of steepest descent lies in R™, at least one
search direction lies within 90°.

Computational Sciences and Mathematics Research Slide 8 August 7, 2006

)

Generating set search algorithms explore the feasible region with a set of

Generating set search algorithms

search directions

positively spanning R™ (in unconstrained case), with the property that no
matter where the direction of steepest descent lies in R™, at least one
search direction lies within 90°.

Computational Sciences and Mathematics Research Slide 8 August 7, 2006

)

Generating set search algorithms explore the feasible region with a set of

Generating set search algorithms

search directions

4
J

positively spanning R™ (in unconstrained case), with the property that no
matter where the direction of steepest descent lies in R™, at least one
search direction lies within 90°.

Computational Sciences and Mathematics Research Slide 8 August 7, 2006

)

Generating set search algorithms explore the feasible region with a set of

Generating set search algorithms

search directions

positively spanning R™ (in unconstrained case), with the property that no
matter where the direction of steepest descent lies in R™, at least one
search direction lies within 90°.

Computational Sciences and Mathematics Research Slide 8 August 7, 2006

)

Generating set search algorithms explore the feasible region with a set of

Generating set search algorithms

search directions

positively spanning R™ (in unconstrained case), with the property that no
matter where the direction of steepest descent lies in R™, at least one
search direction lies within 90°.

Computational Sciences and Mathematics Research Slide 8 August 7, 2006

)

Generating set search algorithms explore the feasible region with a set of

Generating set search algorithms

search directions

positively spanning R™ (in unconstrained case), with the property that no
matter where the direction of steepest descent lies in R™, at least one
search direction lies within 90°.

This property ensures us that if derivative’s happen to exists we will

converge to a local minimum.

Computational Sciences and Mathematics Research Slide 8 August 7, 2006

Basic synchronous framework (unconstrained)

e Trial point generation:
X = {z+ Ad? : d9 € search pattern}

and send to evaluation queue.
e Trial point evaluation: Collect evaluated points Y = X.

e Decision: If a point y €) is determined to be “better than” z,

iteration is considered successful.
e Successful: x « y
e Unsuccessful: A «— 5A

o Stop: if A < Aol

Computational Sciences and Mathematics Research Slide 9 August 7, 2006

Basic synchronous framework (unconstrained)

e Trial point generation:
X = {z+ Ad? : d9 € search pattern}

and send to evaluation queue.

e Trial point evaluation: Collect evaluated points Y = X.

e Decision: If a point y €) is determined to be | “better than”

iteration is considered successful.

e Successful: x «— y

e Unsuccessful: A «— BHA We enforce a sufficient decrease

conditions based on step size A

° StOpI if A < AtoI fly) < f(x) — a\?

Computational Sciences and Mathematics Research Slide 9

August 7, 2006

Basic synchronous framework (unconstrained)

e Trial point generation:
X = {z+ Ad? : d9 € search pattern}

and send to evaluation queue.

e Trial point evaluation: | Collect evaluated points)V = X.

e Decision: If a point y €)V is determined to be “better than” x,

iteration is considered successful.

e Successful: x «— y Step where asynchronous

algorithms wins in parallel

e Unsuccessful: A «— 5A V£ X

o Stop: if A < Aol

Computational Sciences and Mathematics Research Slide 9 August 7, 2006

Asynchronous framework (unconstrained)
e Trial point generation:
X ={z+ ADdW : 40 ¢ search pattern and inactive}
and submit to the evaluation queue.
e 'Trial point evaluation: Collect a nonempty set of evaluated point).

e Decision: If a point y €)V is determined to be “better than” x, iteration is

considered successful.

e Successful: x < y, reset Al = max(Anmin, step that generated y). Prune evaluation

queue.

e Unsuccessful: AY) — B5A0) for all direction indices corresponding to points in Y.

e Stop: If Al < Ay for all 4

Here A, denotes minimum step-size. Must be > Ai.

Computational Sciences and Mathematics Research Slide 10 August 7, 2006

Unconstrained optimization demo

Trial pomnts
best: a
pending: b cde
evaluated:

pruned:

Computational Sciences and Mathematics Research Slide 11 August 7, 2006

Unconstrained optimization demo

best: a
pending: b cde
evaluated:

pruned:

Computational Sciences and Mathematics Research Slide 12 August 7, 2006

Unconstrained optimization demo

best: a
pending: c¢ d
evaluated: b e

pruned:

Computational Sciences and Mathematics Research Slide 13 August 7, 2006

Unconstrained optimization demo

best: a
pending: fgcd
evaluated:

pruned:

Computational Sciences and Mathematics Research Slide 14 August 7, 2006

Unconstrained optimization demo

best: a
pending: c¢ d
evaluated: f g

pruned:

Computational Sciences and Mathematics Research Slide 15 August 7, 2006

Unconstrained optimization demo

Computational Sciences and Mathematics Research Slide 16 August 7, 2006

best: f
pending: hijkcd
evaluated:

pruned:

Unconstrained optimization demo

Ol

®

)

Computational Sciences and Mathematics Research

best: f
pending: 1k
evaluated: c¢ jh

pruned: d

Slide 17 August 7, 2006

Unconstrained optimization demo

best: ¢
pending: Ilmmnoik
evaluated:
pruned:

Computational Sciences and Mathematics Research Slide 18 August 7, 2006

Unconstrained optimization demo

best: c
pending: n k
evaluated: 1 m o 1

pruned:

Computational Sciences and Mathematics Research Slide 19 August 7, 2006

Unconstrained optimization demo

@
o@g

Computational Sciences and Mathematics Research

best:
pending:
evaluated:

pruned:

Slide 20

pqgrsnk

August 7, 2006

Unconstrained optimization demo

@
EQ

Computational Sciences and Mathematics Research Slide 21 August 7, 2006

best: 1
pending: pqr s

evaluated: n k

pruned:

Unconstrained optimization demo

@ @

Computational Sciences and Mathematics Research Slide 22 August 7, 2006

best: 1
pending: pqr s

evaluated:

pruned:

Handling linear constraints:

Same algorithm, different directions

Computational Sciences and Mathematics Research Slide 23 August 7, 2006

Computing conforming search directions

- o
-

)
: Q
)
I \
A-</‘ ' >
—V f(x) Y ‘
Slide 24 August 7, 2006

Computational Sciences and Mathematics Research

Locally conforming directions

We want the ability to move

parallel to active constraints

Computational Sciences and Mathematics Research Slide 25 August 7, 2006

Locally conforming directions

We want the ability to move

parallel to active constraints

We also want the ability to move

parallel to “nearby” constraints

Computational Sciences and Mathematics Research Slide 25 August 7, 2006

e-active constraints

We place a ball of radius € about current best point.

Constraints passing through this e-ball are considered e-active constraints.

Computational Sciences and Mathematics Research Slide 26 August 7, 2006

e-active constraints

We place a ball of radius € about current best point.

e-active constraints

Constraints passing through this e-ball are considered e-active constraints.

Computational Sciences and Mathematics Research Slide 26 August 7, 2006

Conforming directions

We then compute corresponding conforming search directions

Computational Sciences and Mathematics Research Slide 27 August 7, 2006

e-tangent cone

The positive-span of conforming directions forms an e-tangent cone

Computational Sciences and Mathematics Research Slide 28 August 7, 2006

Summarizing

Punch-line: generating directions in this manner ensures that we can
always travel a distance of at least € along each search direction and

remain feasible.

Thus it makes sense to set € equal to the current step size:
e = A.
In asynchronous mode we have multiple step size:
A(i), 1=1,...,p.

Thus we must work with multiple tangent cones.

Computational Sciences and Mathematics Research Slide 29 August 7, 2006

@ Normal and tangent cones definitions

e Lewis & Torczon (2000) define the e-normal cone to be the cone
generated by the outward pointing normals of the linear constraints

within a distance € of x:

Ty — b,
N (x, €) = positive span {ai cA: |aZHx H d < e}
a;

e Define the e-tangent cone, 7 (x, €), to be the polar of the normal cone:

T (z,€) = N(z,€)°

Finding generators for N (xz, €) easy

Finding generators for 7 (z, €) not so easy

Computational Sciences and Mathematics Research Slide 30 August 7, 2006

)

Conforming directions derived from tangent cones of nearby constraints:

Linearly constrained optimization

e nondegenerate case: basic linear algebra sufficient, generators
computed with | LAPACK |.

e degenerate case: basic linear algebra insufficient, generators formed
with C-library | cddlib |:

— Double description method of Motzkin et al. written by Komei
Fukuda.

Computational Sciences and Mathematics Research Slide 31 August 7, 2006

Synchronous framework for linear constraints

Choose €max > Aiol-

Form conforming search directions for e-active constraints, € = min(A, €max)-

Trial point generation:

X = {z + Ad® : d¥) ¢ search pattern}, A € [0, A]
and send to evaluation queue.
Trial point evaluation: Collect evaluated points YV (= X).

Decision: If a point y €) is determined to be “better than” x, iteration is
considered successful.

Successful: x «— y
Unsuccessful: A «— 5A
Stop: if A < Ay

Note: Theoretically, we need emax > Ay to ensure convergence. Choosing emax to large

can limit step size however.

Computational Sciences and Mathematics Research Slide 32

August 7, 2006

Asynchronous tricky
e Multiple step sizes implies multiple tangent cones may be relevant.

e In the synchronous case, only one tangent cone per iteration has
theoretical importance.
— Thus, merely swap out cone generators whenever the tangent cone

changes.

e In the asynchronous case, extra bookkeeping is needed to keep track of

when we can swap and when we must append search directions.

e Ultimately, we must ensure that at each iteration, the search

directions contain generators for

U T, AD)UT (2, emax)
{7;: A(7;)§'€max}

Computational Sciences and Mathematics Research Slide 33 August 7, 2006

Asynchronous framework for linear constraints

Choose €max > Atol-
e Trial point generation: X = {x + A()d) : d(?) € search pattern and inactive}
e Trial point evaluation: Collect a nonempty set of evaluated point)

e Decision: If a point y € YV is determined to be “better than” x, iteration is
considered successful

e Successful: « y, reset Al) = A = max(step(y), Amin). Set € = min(A, emax). New

set of search direction = 7 (x, €). Note: One step-size = one relevant tangent cone

e Unsuccessful: AD) — 5A0) for all direction indices corresponding to points in Y.
Append search directions if min(€max, min; A(i)) has decreased to ensure search

directions contain generators for

g T (2, ADY U T (2, €max)
{e: A(7;)§€max}

e Stop: if A < A, for all i

Computational Sciences and Mathematics Research Slide 34 August 7, 2006

)

Linear constrained optimization demo

best: a

pending: b c

evaluated:

Computational Sciences and Mathematics Research Slide 35 August 7, 2006

Linear constrained optimization demo

""\ best: a

- b pending: b
h evaluated: c

Computational Sciences and Mathematics Research Slide 35 August 7, 2006

Linear constrained optimization demo

~
(>
t’a

b
I

Le

Computational Sciences and Mathematics Research

best:
pending:

evaluated:

Slide 35

C

deb

August 7, 2006

Linear constrained optimization demo

-

S
=N
o \e

b

Le

Computational Sciences and Mathematics Research

best:
pending:

evaluated:

Slide 35

August 7, 2006

Linear constrained optimization demo

best: ¢
b pending: feb
evaluated:

ol

Computational Sciences and Mathematics Research Slide 35 August 7, 2006

Linear constrained optimization demo

best: ¢
b pending: e
evaluated: f b
O
SN
N\

Computational Sciences and Mathematics Research Slide 35 August 7, 2006

Linear constrained optimization demo

best: b
b h pending: g h e
evaluated:

ol

Computational Sciences and Mathematics Research Slide 35 August 7, 2006

Linear constrained optimization demo

best: b
b h pending: h

evaluated: g e

Computational Sciences and Mathematics Research Slide 35 August 7, 2006

Linear constrained optimization demo

Computational Sciences and Mathematics Research

best:
pending:

evaluated:

Slide 35

U

o ©
Qi o

August 7, 2006

Linear constrained optimization demo

k o best: b
b h pending: 1j k
i] evaluated: h

Computational Sciences and Mathematics Research Slide 35 August 7, 2006

Linear constrained optimization demo

k best: b
b I pending: 11ijk
i] evaluated:

Computational Sciences and Mathematics Research Slide 35 August 7, 2006

Asynchronous convergence theory

A useful measure of optimality

_ _ T
x(z) = ﬁT‘%‘f Vi(z) w.

Can show that x(x) > 0, x(z) is continuous, and x(z) = 0 iff = is first-order optimal
Conn, Gould, Sartenaer, and Toint. (1996)

(a) Under assumptions always satisfied before APPSPACK terminates, we can show
||PT($,A)(—VJC($))|| < ClA
x(z) < CoA

where A equals the current maximum step size

(b) liminfA =0
(a) and (b) together imply global convergence to a first-order optimal point

PT(m,A)(—Vf(x)) denotes projection of —V f(z) onto local tangent cone T (z, A)

C1 and C5 depend on properties of f and A

Computational Sciences and Mathematics Research Slide 36 August 7, 2006

APPSPACK numerical results for general linear constraints
Details:

e Tested on linearly constrained CUTEr (Constrained and Unconstrained Testing

Environment, revisited) (non-trivial) problems with n < 1000 variables

e All problems tested asynchronously in parallel on Sandia’s Institutional Computing
Cluster (ICC)

— 20 proc for n < 10,
— 40 proc for 10 < n < 100
— 60 proc for 100 < n < 1000

Motivation:

e Stress test APPSPACK’s new linear constraint capabilities
— CUTEr problem known to be difficult even for derivative-based methods

e Verify new asynchronous theory numerically

— At risk of doing a large number of function evaluations, set stopping tolerance
unusually high to see how well we could do

Computational Sciences and Mathematics Research Slide 37 August 7, 2006

Numerical results: problem sizes

Scatter plot: M wvs. M
2500
ﬂ 2000 < <
=
m
=
2 1500
]
[
‘s
= 1000 90 = <
o L
E o
=
500 < 4
G
<
iﬁf AP
e o
l:l L} ﬁ L} T
0 200 400 600 B00
Mumber of variables

Computational Sciences and Mathematics Research Slide 38 August 7, 2006

Numerical results: accuracy

80

70

60

50

40

30

Number of problems

20

10

O bogus
B failed to converge
O converged

M rel. err. < le-6

0-10 11-100 101-1,000

Number of variables

Computational Sciences and Mathematics Research Slide 39

August 7, 2006

Numerical results: accuracy

100% r
B failed to converge

0% - O converged
= 0 B rel. err. < le-6
1
£
5 60% r
ks Largest problem solved:
Y]
%ﬂ 40% - 505 variables,
§ 1010 simple bounds, and
1
P 20% | 1008 constraints

0%

0-10 11-100 101-1,000

Number of variables

Computational Sciences and Mathematics Research Slide 40 August 7, 2006

Numerical results: function evaluations

70

60

50

40

30

Number of problems

20

10

Computational Sciences and Mathematics Research

0-10

BEOC0OCEN

11-100

other

eval < 100n"2
eval < 60n”2
eval < 40n"2
eval < 20n"2
eval < 10n”2

101-1,000

Number of variables

Using finite-difference
Newton to minimize a convex

quadratic one would expect

O(n?) evaluations.

Slide 41 August 7, 2006

Sync vs. Async

Time(sec)

9 midrange problems
selected. 5-15 seconds
added randomly to
each evaluation.

27 comparisons made

Function Evaluations

Computational Sciences and Mathematics Research

16,000
14,000
12,000
10,000
8,000
6,000
4,000
2,000

5,000
4,500
4,000
3,500
3,000
2,500
2,000
1,500
1,000

500

I I
B Synchronous 5

B Asynchronous 10
E.Synchronous 20- - ... -
B Asynchronous 20

FCCU

Slide 42

PORTFLI

PORTFL2

August 7, 2006

)

Handling nonlinear constraints

A sequence of linearly constrained problems

Computational Sciences and Mathematics Research Slide 43 August 7, 2006

)

We solve a series of linearly constrained subproblems for Mg, ux fixed:

The subproblem

min O ()

reR™

subject to Ax <b

where)
Op(z) = f(z) + Ape() + %HC(%‘)HZ

Each subproblem is solved approximately using APPSPACK.

Key feature: Algorithm can be shown to be globally convergent to

first-order optimal points without accessing/estimating derivatives.

Computational Sciences and Mathematics Research Slide 44 August 7, 2006

Conclusions

Computational Sciences and Mathematics Research Slide 45 August 7, 2006

Conclusions and Summary

e APPSPACK with linear constraints:
— Globally convergent to a KKT point.
— Works well in practice.
— Stable version currently available for download.
— Corresponding paper “Asynchronous parallel generating set search for
linearly-constrained optimization” to be submitted to SISC.
e APPSPACK with general equality constraints:
— Globally convergent to a KKT point.
— Software in place; currently fine tuning and debugging.

— Stable release by end of next month.
Can download latest stable and developmental version here (LGPL license):

http:/ /software.sandia.gov/appspack

Computational Sciences and Mathematics Research Slide 46

August 7, 2006

@ Future work

e (Categorical variables:

minimize P
wc€Q>$d63 f(©’ d)

subject to Q C R”

S = red, blue, green, etc.

e Nonlinear inequality constraints solved with slacks:
minimize f(x)
Hh
h(x) <0,

subject to
c(xr) =0, Ax <b

e Globalization of APPSPACK

e Support for oracle points

Computational Sciences and Mathematics Research Slide 47

August 7, 2006

@ Future work

e (Categorical variables:

minimize P
CCCEQ>CUdE$ f(©’ d)

subject to Q C R”

S = red, blue, green, etc.

e Nonlinear inequality constraints solved with slacks:

minimize f(x)
X,z

h(x)+z=0, =z<0

subject to
c(z) =0, Ax <b

e Globalization of APPSPACK

e Support for oracle points

Computational Sciences and Mathematics Research Slide 48

August 7, 2006

Why asynchronous?

Computational Sciences and Mathematics Research Slide 49 August 7, 2006

Sandia optimization problem (supporting nuclear safety

studies)

Goal: Determine if accidental

drop could jeopardize integrity

of internal components.

1. Model developed to simulate drop
from different angles.

2. Optimization problem: determine

angle that maximizes damage.

3. Single function eval involves:
e Rotating/remeshing: 2-5 min.

e Simulating drop: 1 to 15 hrs.

Computational Sciences and Mathematics Research

EMMICAN
Time = 0.0030002

Slide 50

August 7, 2006

)

D\

Sandia “Can Crush” problem configuration

Four evaluations performed

in parallel.

Computational Sciences and Mathematics Research

Slide 51 August 7, 2006

Sandia “Can Crush” problem configuration

Each evaluation performed

on 10 processors.

Computational Sciences and Mathematics Research Slide 51 August 7, 2006

)

e For initial time step simulation could be unstable.

For each simulation

e Whenever simulation crashed, the time step was reduced and the

simulation ran again.
e Approximately 1 out every 5 simulations crashed for initial time step
e With initial time step simulation takes 1-2 hours.

e With smaller time step simulation takes 10-15 hours.

Computational Sciences and Mathematics Research Slide 52 August 7, 2006

Worse case scenario for synchronous case

2hr || 2hr || 2hr || 2r 15hr || 2hr || 2hr || 2r 2hr || 15hr | 2hr || 2r
®

\ /\Q N\ /\Q f _/
-~ -~ -~

Iteration 1 Iteration 2 Iteration 3

Simulation crashes evenly spaced

between function evaluations

Computational Sciences and Mathematics Research Slide 53 August 7, 2006

)

2hr || 2hr || 2hr || 2r 15hr || 2hr || 2hr || 2r 2hr || 15hr | 2hr || 2r

Worse case scenario for synchronous case

Itera‘trion 1 Itera?trion 2 Itera?trion 3
Implication
e 4 out of b iterations take 15hrs.
e 1 out of 5 iterations takes 2hrs.

e 4 out of 5 iterations, 30 processors are left idle for 13 of the 15 hours.

Punchline Approximately 84% of clock-time, 75% of available processors

are not being used!

Asynchronous algorithms can greatly reduced time processors spend idle

Computational Sciences and Mathematics Research Slide 54 August 7, 2006

)

Handling nonlinear constraints

A sequence of linearly constrained problems

Computational Sciences and Mathematics Research Slide 55 August 7, 2006

)

Consider the following problem

Nonlinearly constraints

minimize f(x)
. Arx < b
subject to
c(r) = 0

Implementation based upon

e Conn, Gould, and Toint. (1996)
e Lewis and Torczon. (2002)

e Kolda, Lewis, and Torczon . (Pending)

Computational Sciences and Mathematics Research Slide 56 August 7, 2006

)

We solve a series of linearly constrained subproblems for Mg, ux fixed:

The subproblem

min O ()

reR™

subject to Ax <b

where)
Op(z) = f(z) + Ape() + %HC(%‘)HZ

Each subproblem is solved approximately using APPSPACK.

Key feature: Algorithm can be shown to be globally convergent to

first-order optimal points without accessing/estimating derivatives.

Computational Sciences and Mathematics Research Slide 57 August 7, 2006

)

while not converged do

Basic frame work with derivatives

Solve subproblem approximately until
1P7, (= Vo ®p(2))]| < Cuw
Pr. (+) denotes projection onto 7 (x, wg).
Update A\, ug.
if ||c(xk)|| < &, (infeasibility sufficiently reduced)
Ait1 = Ak + c(xk) /i (Hestenes-Powell)
otherwise ;1 = Tug. (increase penalty)

end

Conn, Gould, Sartenaer, Toint (1996).

Computational Sciences and Mathematics Research Slide 58

August 7, 2006

)

while not converged do

Basic frame work with derivatives

Solve subproblem approximately until
1P (=V2®p(2))]] < Cwy
Pr. (+) denotes projection onto 7 (x, wg).

Update A\, ug.
if ||c(xk)|| < &, (infeasibility sufficiently reduced)

A1 = A + c(xg) /i (Hestenes-Powell)
otherwise ;1 = Tug. (increase penalty)
end

Main problem: no access to first derivatives.

Computational Sciences and Mathematics Research Slide 58

August 7, 2006

)

We know that at unsuccessful iterations

Borrowing from linearly constrained optimization theory

N\

[Pr (. 2)(=Va®p)|| < C(Pk, A)A
Recall we need a bound of the form
HPT(:U,wk;)(_vx(bk)H < ka

where C' is independent of k. Dependence on k£ removed by normalizing
wrt |[Ax|| and 1/pp:

1
W .
T+ el + 1/ s

choose step tolerance <

Computational Sciences and Mathematics Research Slide 59 August 7, 2006

Preliminary numerical results

e Current test suite consists of 18 Hock and Schittkowski CUTEr
problems that have nonlinear equality constraints and < 10 variables

e Current implementation caches f(z) and ¢(x)

18

16 .
Stopping criteria: 14}]
Ak o) < 1077 %12]
()|l < 1074 |
S 8+ i

=
4t i
) |

-0.5 0 0.5 1
Relative difference in objective values

Computational Sciences and Mathematics Research Slide 60 August 7, 2006

