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Abstract

We consider two optimization formulations of the hydraulic capture (HC) problem. One
is more exact but computationally expensive. The other requires fewer computational
resources but entails difficult calibrations to ensure correctness. In an effort to extort the
positive aspects of each model, we apply a multifidelity optimization (MFO) algorithm.
This approach takes advantage of the interactions between multifidelity models and results
in a dynamic and computational time saving optimization algorithm. We present the HC
problem, two models of differing fidelity, and the MFO method. We describe how the
algorithm was applied to the HC problem and give some preliminary numerical results.

1. INTRODUCTION AND MOTIVATION

The objective of the hydraulic capture (HC) method for optimal groundwater remedi-
ation design is containment of a contaminant plume at minimal cost. To reach this goal,
barrier wells are placed such that the direction of groundwater flow is reversed. Addi-
tionally, the wells are installed and operated as cheaply as possible. Finding a solution to
the HC problem involves applying optimization algorithms in conjunction with simulators
for groundwater flow and possibly for contaminant transport. The formulation of the ob-
jective function and its corresponding constraints dictate which optimization algorithms
are appropriate for finding the optimal well field design. Computational efficiency and
accuracy further influence the choice of solution method.

Many models of the HC problem have been proposed. Some are more exact but require
extensive computational resources to simulate. Others are less computational intensive
but may not capture the contaminant plume correctly. In this study, we consider two such
models and examine the applicability of a method of multifidelity optimization (MFO).
The MFO algorithm was designed to improve computational speed and efficiency of the
optimization by taking advantage of the interactions between multifidelity models.

The problem studied here is motivated by a HC application proposed as part of a suite
of benchmarking test problems in [14]. In Section 2, we state two formulations of the
problem. Section 3 includes a general description of the MFO algorithm. The particulars
of how this algorithm is applied specifically to the HC problem are given in Section 4.
Finally, in Section 5, we present and discuss some numerical results.
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2. TWO MODELS OF HYDRAULIC CAPTURE

In this study, the two models of hydraulic capture considered are: transport-based
concentration control (TBCC) and flow-based hydraulic control (FBHC). For both models,
the optimization problem is min

u∈Ω
J(u) (1)

where u is a vector of decision variables and Ω is the feasible region of u and is represented
by a set of constraint equations that we describe later. For this work, the decision variables
are the number of wells, n ≤ N, the pumping rates, {Qi}n

i=1(m
3/s), and the well locations,

{(xi, yi)}n
i=1(m). Here, N is the maximum possible number of wells in the final design.

The objective function J is the sum of the capital (or installation) cost J c and the
operational cost Jo and can be stated as follows [14, 13]:

J =
n∑

i=1

c0d
b0
i +

∑

Qi<0.0

c1|Qm
i |b1(zgs − hmin)b2

︸ ︷︷ ︸
Jc

+
∫ tf

0


 ∑

i,Qi<0.0

c2Qi(hi − zgs) +
∑

i,Qi>0.0

c3Qi


 dt

︸ ︷︷ ︸
Jo

.

(2)
In J c, the first term accounts for drilling and installing each well, and the second term

represents the additional cost for pumps for extraction wells. In Jo, the term pertaining to
the extraction wells includes the lift cost associated with raising the water to the surface.
Note that a negative pumping rate means a well is extracting and a positive pumping
rates means a well is injecting. Injection wells are assumed to operate under gravity
feed conditions. More specifically, in (2) cj and bj are cost coefficients and exponents,
respectively, di = zgs is the depth of well i, Qm

i is the design pumping rate, and hmin is
the minimum allowable head.

The hydraulic heads, hi(m) for well i, vary with the decision variables, and obtaining
their values at each iteration requires a solution to equations that model saturated flow.
This model is given by

Ss
∂h

∂t
= ∇ · (K · ∇h) + S̄, (3)

where Ss(1/m) is the specific storage coefficient, h(m) is the hydraulic head, K(m/s) is
the hydraulic conductivity tensor, and S̄(m3/s) is a fluid source term that incorporates the
decision variables into the state equation for the HC problem. Numerically, the simulator
MODFLOW2000 [16] is used to find a solution to (3).

In HC models, constraints on the decision variables typically include bounds on the
well capacities and the hydraulic head at each well location. For example, we incorporate
the inequalities Qemax ≤ Qi ≤ Qimax(m3/s), i = 1, ..., n (4)

hmax ≥ hi ≥ hmin(m), i = 1, ..., n (5)

where, Qemax is the maximum extraction rate at any well, Qimax is the maximum injection
rate at any well, hmax and hmin are the maximum and minimum allowable head, respec-
tively. Note that assessing whether or not (5) holds requires a solution to (3). In addition
to (4) and (5), the HC problem constrains the net pumping rate using the inequality

QT =
n∑

i=1

Qi ≥ Qmax
T , (6)
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where Qmax
T (m3/s) is the maximum allowable total extraction rate. This constraint is

enforced to avoid dewatering of the aquifer.
This is a challenging optimization problem in that it is a black-box, mixed integer

problem. Evaluation of the objective function and constraints requires a groundwater
flow simulation, and there are both integer and real-valued decision variables. Inclusion
of the installation term, J c allows the removal of a well from the design. Although
this can lead to a large decrease in cost, it also makes objective function discontinuous.
We apply optimization algorithms that are equipped to handle discontinuities, but we
include an added constraint to avoid explicitly using the integer variable for the number
of wells. Specifically, if, in the course of the optimization, a well rate satisfies the inequality
|Qi| ≤ 10−6(m3/s), that well is removed from the design space and excluded from all other
calculations. Furthermore, we assume that all wells have a fixed depth, but that their
location can vary in the x − y plane. These well locations, {(xi, yi)}n

i=1 are also decision
variables, but do not explicitly appear in the objective function.

2.1. Flow-based Hydraulic Control (FBHC). Flow-based hydraulic control is a tech-
nique for plume containment that enforces head gradient constraints around the perimeter
of the plume. In the particular model we consider, a head gradient constraint is formu-
lated as a constraint on the difference in hydraulic head values at specified locations.
Consider hk

1 − hk
2 ≥ d(m), k = 1 . . . M (7)

where M is the number of head gradient constraints imposed around the boundary, h1, h2

are hydraulic head values at specified, adjacent nodes for each constraint k, and d is the
bound on the difference. This set of constraints can be used to enforce head gradients
vertically or horizontally. For example, in the simple case where h1 are h2 are aligned at
a distance of distance ∆x apart, then dividing (7) by ∆x yields

(
hk

1 − hk
2

∆x

)
≥ d

∆x
(m/s). (8)

The FBHC approach to the HC problem is minimizing the objective function J subject
to (4), (5), (6) and (7). Use of this method is attractive because it is relatively inexpensive.
However, it requires (7) to be calibrated to ensure that the contaminant plume is properly
captured and to avoid excessive pumping [15].

2.2. Transport Based Concentration Control (TBCC). A direct approach for plume
containment is to impose constraints on the concentration at specified locations. This
constraint can be expressed as Cj ≤ Cmax

j (kg/m3) (9)

where Cj is the concentration at some observation node j, and Cmax
j is the maximum

allowable concentration. Evaluation of this constraint requires a solution to the contami-
nant transport equation

∂(θαCι)

∂t
= ∇ · (θαDι · ∇Cι)−∇ · (qCι) + I ι + Rι + Sι, (10)

where Cι(kg/m3) is the concentration of species ι in the aqueous phase, θα is the volume
fraction of the aqueous phase, D is a hydrodynamic dispersion tensor, v(m/s) is the
mean pore velocity, q(m/s) is the Darcy velocity, and I ι, Rι, Sι represent interphase mass
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transfer, biogeochemical reactions, and source of mass respectively. Numerically, the
simulator MT3DMS [17] is used to obtain a solution to the transport equation.

Solving the HC problem using the TBCC model is minimizing the cost function J with
respect to (4), (5), (6), and (9). Therefore, the TBCC approach requires a solution to
both (10) and (3) making it computationally expensive. Moreover, objective functions
and constraints involving concentrations are nonconvex in some situations [4, 2], making
the minimization problem more difficult.

3. MULTIFIDELTIY OPTIMIZATION (MFO)

The MFO scheme used in this study is based on a direct search optimization algorithm
and space mapping techniques. It is applicable to a wide range of problems [5].

3.1. Asynchronous Parallel Pattern Search (APPS). The derivative-free optimiza-
tion used by the MFO method is called Asynchronous Parallel Pattern Search (APPS)[10,
11]. Direct search methods, such as APPS, are appropriate for problems in which the de-
rivative of the objective function is unavailable and approximations are unreliable. Pattern
searches use a predetermined pattern of points to sample a given function domain. It has
been shown that if certain requirements on the form of the points in this pattern are fol-
lowed and if the objective function is suitably smooth, convergence to a stationary point
is guaranteed [6].

A detailed procedural version of APPS is given in [9], and a complete mathematical
description and analysis is available in [11]. Omitting the implementation details, the
basic APPS algorithm can be simply outlined as follows:

(1) Generate a set of trial points T to be evaluated.
(2) Send the set T to the conveyor for evaluation, and collect a set of evaluated

points, E, from the conveyor. (The conveyor is a mechanism for shuttling trial
points through the process of being evaluated.)

(3) Process the set E and see if it contains a new best point. If E contains such a
point, then the iteration is successful; otherwise, it is unsuccessful.

(4) If the iteration is successful, replace the current best point with the new best
point (from E). Optionally, regenerate the set of search directions and delete any
pending trial points in the conveyor.

(5) If the iteration is unsuccessful, reduce certain step lengths as appropriate. In
addition, check for convergence based on the step lengths.

APPSPACK version 4.0 is [9] an open source software implementation of this algorithm.
It can be executed in serial or parallel. For this work, we consider the parallel version.

3.2. Space Mapping. Space mapping [3] is a numerical technique that allows linking
design spaces of models with similar functionality but varying fidelities. In this paper,
we refer to the model that is more exact but more computationally expensive as the
high fidelity model. The low fidelity model is less exact but requires less computational
resources. The relationship between the models can be defined by a mapping P from the
high fidelity model design space, ~xH , to the low fidelity design space, ~xL, such that

fL (P ( ~xH)) ≈ fH ( ~xH) , (11)
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where fH and fL are the high and low fidelity model responses respectively. Equation
(11) can be restated the minimization problem

min

{
N∑

i=1

‖fL (P (xi))− fH(xi)‖2

}
(12)

where N is the number of high fidelity design points xi. The appropriate formulation for
P is highly problem dependent. One option is

P (xH) = αxβ
H + γ (13)

where α, β, and γ are determined by solving (12).
Note that ~xH and ~xL need not be equivalent in size or type. This is an important

feature of space mapping since it is often the case that a low fidelity model has fewer
design parameters to characterize than a corresponding higher fidelity model. This MFO
scheme uses eliminates the requirement of a one-to-one correspondence between the design
space of models by incorporating space mapping.

3.3. The APPS/Space Mapping Scheme. The APPS/Space Mapping approach to
MFO can be described in terms of two loops– an outer loop and an inner loop. The main
purpose of the outer loop is the application of the APPS algorithm to the high fidelity
model. However, it also has the added task of maintaining a set of trial points and their
corresponding response values. These are used by the inner loop to map the high fidelity
space to the low fidelity space. The inner loop then uses this space mapping to optimize
the low fidelity model. The complete MFO procedure is:

(1) Start the outer loop.
• Optimize the high fidelity model fH using the APPS algorithm.
• While optimizing, collect a set of N pairs (xi, fH(xi))

(2) Start the inner loop
• Using the N high fidelity response pairs collected by the outer loop, obtain

the space mapping parameters. In other words, find α, β, and γ such that
N∑

i=1

∥∥fL(α(xi)
β + γ)− fH(xi)

∥∥2
. (14)

is minimized.
• Optimize the low fidelity model within the space mapped high fidelity space

by minimizing fL(αxβ + γ) with respect to x; obtain x∗.
(3) Return x∗ to the APPS algorithm and determine if it is a new best point.

The implementation of this algorithm is described in detail in [5].
The inner loop acts as an oracle or predictor of points at which a decrease in the ob-

jective function might be observed. In optimization, oracles are free to choose points by
any finite process. (See [12] and references therein.) Moreover, the selection of additional
candidate points does not adversely affect an algorithm’s convergence properties. There-
fore, this MFO approach is provably convergent under the same mild conditions, stated
in [11], required for convergence of the APPS algorithm.
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4. SOLVING THE HC PROBLEM USING MFO

To apply the MFO approach to the HC problem, we use the FBHC model as the low
fidelity model and the TBCC model as the corresponding high fidelity model. In order
to test the effectiveness of the MFO approach, we compare results for the HC problem
included in [14]. For the simple domain of this problem, the FBHC formulation has
been shown to be sufficient [8]. However, other approaches are needed for more realistic
domains [1].

In the HC problem used here, the physical domain is a 1000×1000×30(m) unconfined
aquifer. Since the aquifer is unconfined, the head constraint (5), depends nonlinearly on
the pumping rates. For the hydraulic conductivity field, we use the simple homogeneous
case with K = 5.01× 10−5(m/s). Paired with the saturated flow equation (3), we use the
following boundary and initial conditions:

∂h

∂x

∣∣∣∣
x=0

=
∂h

∂y

∣∣∣∣
y=0

=
∂h

∂z

∣∣∣∣
z=0

= 0, t > 0

qz(x, y, z = h, t > 0) = −1.903x10−8(m/s), where qz = −K
∂h

∂z
,

h(1000, y, z, t > 0) = 20− 0.001y(m); h(x, 1000, z, t > 0) = 20− 0.001x(m).

Here qz is the Darcy flux out of the domain, representing recharge into the aquifer that
could result from rainfall. The steady state solution to the flow problem without wells
is h(x, y, z, 0) = hs(m), and Ss = 2.0 × 10−1(1/m) is the specific yield of the unconfined
aquifer. The ground surface elevation is zgs = 30(m). In (2), we use hmin = 10(m),
Qm

i = ±0.0064(m3/s), and di = 30(m) for each pump i. The simulation time is tf = 5
years. Other pertinent cost data is given in [13].

A plume development was simulated using (10) from a finite source for five years with
a constant concentration of 1kg/m3 located in the region bounded by

[(200, 225); (475, 525), (h, h− 2)](m).

We chose the 5 × 10−5(kg/m3) contour line as the plume boundary and set Cmax
j =

5× 10−5(kg/m3) in (9). The MT3DMS [17] was used to generate this initial contaminant
plume, as described in [13].

For the FBHC approach, we use five head difference constraints (7) with d = 10−4.
Five concentration constraints (9) are used for the TBCC approach, enforced in the same
locations as (7) in the FBHC approach. The starting point includes two extraction and
two injection wells for a total of N = 4 candidate wells and initial pumping rates of
±Qi = 0.0064(m3/s).

5. NUMERICAL RESULTS AND DISCUSSION

The financial cost of the groundwater remediation at the initial iterate is J(u0) =
$78, 587. Table 1 shows the minimum financial cost found and the %-decrease for each
of the approaches– FBHC, TBCC, and MFO. Both the FBHC and TBCC models were
solved using APPSPACK 4.0, the same software customized for the APPS/Space Mapping
approach to MFO. Note that all three methods produce solutions with similar remediation
costs and overall percentage decreases.
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Model Cost % Decrease mf2k calls mt3d calls
FBHC $24,175 69.2% 117 0
TBCC $20,362 74.1% 188 160
MFO $22,428 71.5% 152 86

Table 1. Comparison of results from solving a groundwater remediation
problem using three different models. The first column gives the model
used, and the remaining four columns give performance information.
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Figure 1. Graph of the reduction in the remediation cost function per
APPSPACK iteration. The solid blue and green dashed lines correspond to
the TBCC and the FBHC models, respectively, as solved with APPSPACK
4.0. The red dot-dash line corresponds to the MFO approach, and the red
dot is the result of an inner loop calculation.

One way to view the computational performance of the algorithms is to consider
the number of function evaluations needed to reach the optimal point. As with most
simulation-based optimization problems, the majority of this computational cost is the
calls to the MODFLOW2000 and/or MT3DMS simulators. Note that if (6) is not satis-
fied, a flow simulation is not performed in any approach and likewise if (5) is not satisfied,
then no transport simulation is performed for the TBCC or MFO approaches. The fourth
and fifth columns in Table 1 show the number of times that MODFLOW2000 (mf2k) and
MT3DMS (mt3d) were called for each approach. For this problem, a MODFLOW2000
simulation takes approximately 2 seconds wall clock time, and a MT3DMS simulation
takes anywhere from 40 to 50 seconds wall clock time.

Figure 1 highlights the differences in the three approaches by illustrating their perfor-
mances over the course of the algorithm’s execution. All three approaches start off the
same. However, once the MFO approach receives the results of an inner loop calculation,
it is able to make a significant decrease in the overall cost more quickly.
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In [14], the lack of representative problems available for the testing and comparison
of methods for the optimal design of saturated flow and transport problem is discussed,
and a set of test problems is suggested. Although these test problems were developed
with considerable thought and are indicative of real world situations, their domains are
relatively simple. In this work, we consider one such simple, homogeneous case for which
the FBHC model has been shown to be sufficient and computationally cost-effective [7].
However, the introduction of heterogeneities or other complexities will likely require the
TBCC or other models in which the plume boundary is precisely defined. Since such
models may not be viable with respect to computational cost, we offer the MFO approach.
In this paper, we have shown the MFO approach to be comparable and hypothesize
that it may be a reasonable method for the solution of more complicated groundwater
remediation problems. To further investigate, we plan to extend our study to consider
more representative physical models and simulators and to incorporate real-site data.
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