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Abstract

The mechanical properties of materials systems are highly influenced by various features at the

microstructural level. The ability to capture these heterogeneities and incorporate them into

continuum-scale frameworks of the deformation behavior is considered a key step in the devel-

opment of complex non-local models of failure. In this study, we present a modeling framework

that incorporates physically-based realizations of polycrystalline aggregates from a phase field (PF)

model into a crystal plasticity finite element (CP-FE) framework. Simulated annealing via the PF

model yields ensembles of materials microstructures with various grain sizes and shapes. With

the aid of a novel FE meshing technique, FE discretizations of these microstructures are gener-

ated, where several key features, such as conformity to interfaces, and triple junction angles, are

preserved. The discretizations are then used in the CP-FE framework to simulate the mechanical

response of polycrystalline α-iron. It is shown that the conformal discretization across interfaces

reduces artificial stress localization commonly observed in voxelated FE discretizations. The work

presented herein is a first step towards incorporating physically-based microstructures in lieu of

the overly simplified heretofore ones commonly used. In broader terms, the proposed framework

provides future avenues to explore bridging models of materials processes, e.g., additive manufac-

turing and microstructure evolution of multi-phase multi-component systems, into continuum-scale

frameworks of the mechanical properties.
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1. Introduction

It is universally accepted that the physical properties of conventional metallic systems and al-

loys are attributed to several features, inhomogeneities, at the microstructural level, such as grains

with distinct crystallographic orientations, phases of varying compositions, precipitates and their

respective topological features (spatial distribution and sizes), internal interfaces and structural

defects (Phillips, 2001; Holm and Battaile, 2001; Arzt, 1998); all of which are not generally in

global thermodynamic equilibrium. For instance, several metallurgical routes can be followed to

strengthen a metallic system, such as alloying (solid solution strengthening), incorporation of sec-

ond phase particles (hard obstacles or penetrable coherent precipitates), or grain size refinement

via the classic Hall-Petch effect (Arzt, 1998; Dieter, 1986; Hirth and Lothe, 1982). In ferromagnetic

materials, magnetic microstructures with uniform magnetization form which are separated by do-

main walls, whose thickness depends on the crystal anisotropy and quantum-mechanical exchange

interaction. The interaction of domain walls with non-magnetic particles affects the net coercive

force and therefore the magnetic pressure that moves domain walls (Arzt, 1998; Haasen, 1972).

The role of microstructural features, which span many length scales, on the properties at the

macroscopic scale falls naturally within the structure-process-property paradigm and has triggered

many research efforts across various disciplines to develop microstructure-informed modeling frame-

works (Steinhauser and Hiermaier, 2009; Steinhauser, 2008). With regard to the mechanical prop-

erties of polycrystalline metals, traditional continuum models do not explicitly account for hetero-

geneities and effective materials properties are used instead (Nemat-Nasser and Hori, 1993). On the

other hand, crystal plasticity (CP) frameworks use constitutive descriptions applied to individual

grains in a polycrystalline system and thus microstructural effects, such as grain morphology (grain

size and shape) and texture (grain orientation), are directly considered. CP models are widely im-

plemented numerically in finite element frameworks (CP-FE) and are used to predict the mechanical

response and texture evolution of polycrystalline aggregates (Peirce et al., 1982; Kalidindi et al.,

1992; Anand and Kalidindi, 1994; Delaire et al., 2000; Raabe et al., 2001; Dawson et al., 2003;

Zhao et al., 2008). In these models, synthetic microstructures are typically generated, where grain

shapes are the output of a tiling (partitioning) protocol such as Voronoi tessellation (VT) (Barbe

et al., 2001; Aoyagi and Shizawa, 2007; Zhang et al., 2007; Meier et al., 2014) or other variants
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based on it, e.g., multiplicatively weighted VT and k-order VT (Okabe et al., 2000; Boissonnat

and Yvinec, 1998). In these algorithms, the simulation domain is initially seeded with spatially

uncorrelated points (i.e., centers of fully penetrable disks, Poisson distributed points) (Torquato,

2002) or a spatial correlation is introduced, where seed points represent centers of randomly packed

hard spheres (mono-disperse or poly-disperse) (Bishop et al., 2015). Others use tessellation growth

models to generate realizations of microstructures, where the cells are allowed to grow/shrink with

prescribed velocities (Teferra and Graham-Brady, 2015).

Finite element realizations based on the aforementioned tessellation protocols typically suffer

from two shortcomings, which may prove important especially when local effects are used in models

of failure/damage, i.e., nucleation of cracks or voids. First, these realizations, albeit easy to gener-

ate, are based on tiling algorithms that are not informed by the energetics and thermodynamics of

materials processes. With respect to grains in polycrystalline systems, such processes are driven by

internal interfaces, i.e., grain boundaries (GBs), whose evolution leads to the reduction of the total

free energy, ∆G, via ∆G = ∆(γA), where γ and A are the interface energy and area, respectively.

Various details emerge from this GB-driven process, such as the Young-Herring condition (Herring,

1951) that sets the angles at triple junctions, where three grains meet, the von Neumann-Mullins

kinetic law in two-dimensional isotropic systems (Mullins, 1956; von Neumann, 1952), and its ex-

tension to three and higher dimensions by MacPherson and Srolovitz (MacPherson and Srolovitz,

2007). The lack of these thermodynamic considerations in such tiling algorithms results in realiza-

tions of microstructures with distributions for the grain volumes and various topological features

that do not agree with either experimental observations or meso-scale models of grain microstruc-

tures (Lazar et al., 2011, 2010). The second is related to the numerical discretization, within the

FE framework, of these microstructures, which yields non-smooth voxelated interfaces between

adjoining grains (Barbe et al., 2001). These so-called wedding-cake irregularities in the interface

profiles can lead to artificial stress localization, i.e., act as stress concentration sites. Attempts have

been focused on the first aspect but not the second (Fromm et al., 2012).

Several models have been developed to investigate interface-driven processes in polycrystalline

metallic systems and alloys. These include Potts (Anderson et al., 1984; Srolovitz et al., 1984b,a),

level set (Osher and Sethian, 1988), vertex (Kawasaki et al., 1989), phase field (Krill and Chen,

2002; Chen and Yang, 1994; Chen, 2002), Cellular Automata (Liu et al., 1996; Wolfram, 1984),
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and front-tracking (Glimm et al., 1998; Hyman, 1984; Lazar et al., 2011, 2010) models. A typ-

ical output of these frameworks is realizations of grain microstructures subject to the boundary

conditions and interface properties (energy and mobility) used as inputs. In this work, we uti-

lize a recently developed phase field framework for the microstructural evolution of polycrystalline

metals to generate ensembles of grain microstructures at several simulated annealing times, and

thus various average grain sizes. In contrast to the tetrahedral FE discretization used by Pyle et

al. (Pyle et al., 2012), a novel meshing technique is utilized to generate FE discretizations of these

microstructures with eight-noded hexahedral elements that conform to the inherent grain topology

and ensure smoothness across GBs. The FE-discretized microstructures are then used to simulate

the mechanical properties of polycrystalline α-iron via the CP-FE framework. Simulation results

of two- (2D) and three-dimensional (3D) systems highlight the effects of the conformal mesh across

interfaces on the local mechanical response. In broader terms, our modeling approach provides a

first step towards bridging models of materials processes to ones of properties.

The rest of the manuscript is organized as follows: In Sec. 2, an outline is presented of the phase

field model for the generation of grain microstructures, conformal meshing technique, and crystal

plasticity framework for the mechanical response of polycrystalline materials. Simulations results

of various 2D and 3D systems are presented and discussed in Sec. 3. Finally, concluding remarks

are presented in Sec. 4

2. Modeling Approach

The theoretical and numerical frameworks used in this work are presented. Our modeling ap-

proach is comrpised of three steps. First, the phase field framework is used for simulated annealing,

where realizations of grain microstructures are obtained at various simulation times, thus allowing

for ensembles with various grain sizes. Next, the novel conformal meshing technique is used to

generate FE numerical discretizations, from the phase field results, that preserve grain topologies

and ensure smoothness across interfaces between adjoining grains, thus avoiding wedding-cake inter-

faces. Finally, with the aid of the CP-FE framework, FE discretizations of materials microstructures

are used to simulate the mechanical response of polycrystalline α-iron.
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2.1. Phase field model for grain microstructures

We employ a recently developed phase field (PF) model of grain microstructures to generate

polycrystalline systems with various distributions of grain shapes and sizes. The model is briefly

outlined here and the reader is referred to (Abdeljawad and Foiles, 2015; Abdeljawad et al., 2014)

for more details on the model. The starting point of the phase field model for grain microstructures

is the introduction of structural order parameters (OPs) {φi(r, t), i = 1, · · · , nφ} that describe

grains with various crystallographic orientations. Here, r, t, nφ denote the position vector, time

and number of OPs needed to resolve the microstructure, respectively. Next, a coarse-grained free

energy functional of a polycrystalline system, Ftot, is given by

Ftot =

∫
dr

[
Wφfgrain(φi) +

nφ∑
i

ε2i
2
|∇φi|2

]
, (1)

where fgrain(φi) = fgrain({φi(r, t), i = 1, · · · , nφ}) is the homogeneous free energy density and Wφ is

a parameter that sets the energy scale. The second term on the right hand side of Eq. (1) describes

grain boundary (GB) energy, where under the isotropy assumption εi = ε. The OPs are conveniently

chosen such that the equilibrium values within a grain {φi(r, t) = 1, φj 6=i(r, t) = 0, i, j = 1, · · · , nφ}.

Herein, we adopt the following form for the free energy density of a grain microstructure

fgrain =
4

3

1− 4

nφ∑
i=1

φ3i + 3

( nφ∑
i=1

φ2i

)2
 , (2)

where again the minima of fgrain are located at {φi} = {1, 0, · · · , 0} = · · · = {0, 0, · · · , 1}.

Within the Ginzburg-Landau formalism and with the aid of variational principles, the spatio-

temporal evolution of the OPs {φi(r, t), i = 1, · · · , nφ} follows from the Allen-Cahn equation (Allen

and Cahn, 1979):

∂φi
∂t

= −Li
(
δFtot
δφi

)
, i = 1, · · · , nφ, (3)

where the model parameters Li, one for each φi, control GB mobility. Here, the isotropy assumption

of GB properties is invoked, where we set Li = L. Within this treatment, the GB energy, γgb, width,
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δgb, and mobility, Mgb, are uniquely determined via (Abdeljawad and Foiles, 2015).

γgb =
2
√

2

3
ε
√
Wφ, (4)

δgb '
1.1√

2

ε√
Wφ

, (5)

Mgbγgb = Lε2. (6)

Systems are discretized to produce a uniform grid of Nx×Ny×Nz voxels in 3D (Nx×Ny pixels

in 2D), where the voxel size is ∆x = ∆y = ∆z = 1.0, along the x, y and z directions, respectively.

Here, ε and Wφ are chosen such that the interface width is resolved by six grid points, which

provides a good compromise between accuracy and computational tractability. The PF governing

equations, i.e., Eqs. 3, are solved using explicit Euler method for the time derivatives and central

finite differencing with the Moore stencil for spatial gradients. Periodic boundary conditions along

all spatial dimensions for all fields are used. In all PF simulations presented in this work, we set

(ε,Wφ, L) = (2.0, 0.25, 1.0) and unless otherwise stated the phase fields were initialized by setting

φi(r, t = 0) = 0.5 + ξ(r), where ξ ∈ [−0.2, 0.2] is a random number. A typical output of these

simulations is a realization of grains in a polycrystalline system, where the vector of the phase

fields {φi(r, t), i = 1, · · · , nφ} is resolved at each voxel in the simulation domain.

2.2. Conformal meshing technique

To generate a conformal mesh from a uniform grid of PF data, the Sculpt meshing tool (Owen

et al., 2011) is used. Sculpt is a companion application to the Cubit Meshing and Geometry Toolkit

developed at Sandia National Laboratories. It is a parallel all-hex tool that utilizes an overlay grid

procedure where smooth conforming grain interfaces are extracted from PFs. In this work, the

PF values are treated as volume fractions of grains, where we note that φi = 0 or 1 corresponds

to equilibrium bulk grain regions, while φi ∈ (0, 1) define GBs, where for simplicity φi = 0.5 is

used to locate the center of the GB. The procedure is briefly outlined in panels (a) through (d)

of Fig. 1. Figure 1 (a) shows an example of a Cartesian grid of volume fractions where vi is the

volume fraction of the ith grain contained within each grid cell. Thus,
∑
vi = 1.0 is satisfied. Grain

interfaces are approximated using a procedure described in (Owen et al., 2011) and grid nodes are

moved to the interfaces as shown in Fig. 1 (b). A layer of hexahedra is inserted on both sides of
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the grain interfaces by projecting orthogonally from the local interface tangent plane. To improve

mesh quality, a smoothing step is performed to improve both smoothness of the interface planes

and the quality of the hexahedra as shown in Fig. 1 (d). Figure 2 shows schematics of the pillowing

procedure that improves mesh quality at interfaces.

(a) (b) (c) (d) 

Figure 1: Schematics of the conformal meshing procedure: (a) Volume fractions representing percent of grains filling
each cell in Cartesian grid, (b) grain interfaces are resolved and nodes projected to surfaces, (c) layer of hex element
inserted on both sides of interface surfaces and (d) smoothing performed on curves, surfaces and volume nodes.

We note that the projection procedure illustrated in Fig. 1 may result in hexahedra where

more than two nodes of a face are projected to a curve. In these cases, smoothing alone is unable

to improve mesh quality to an acceptable range. To accommodate this, an additional pillowing

(Mitchell and Tautges, 1995) procedure is employed. Figure 2 illustrates the procedure where a

continuous layer of hexes is inserted around groupings of hexes known as shrink sets. Each shrink

set is defined by the set of hexes immediately adjacent a common surface. With the pillow layers

inserted, additional smoothing is performed to optimize element quality.

The above procedure allows for cases where multiple grains meet at common interfaces. To

accommodate this, an underlying boundary representation (B-Rep) consisting of vertices, curves,

surfaces and volumes is constructed which serve as the basis for smoothing operations. Nodes on

curves are smoothed and projected to a Hermite approximation of the surrounding curve nodes. Sur-

faces are then smoothed using a Laplacian smoothing procedure. Volume nodes are then smoothed

using a combined Laplacian and Optimization-based procedure described in (Owen, 2013). Several

iterations of curve, surface and volume smoothing are performed until a minimum mesh quality

metric is achieved. As mesh quality is a critical factor in this procedure, we note instances where

the grain interfaces may intersect the domain boundary at very small angles consequently resulting

in hexes that also have very small dihedral angles as shown in Fig. 3 (a). To address this issue,
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(a) (b) 

Figure 2: Schematics of the pillowing procedure: (a) Initial mesh at curve interfaces may be poor. Note triangle
shaped quad faces between surfaces A and B. (b) Pillow layers of hexes are inserted srrounding all hexes sharing a
common surface. Darker hexes indicate pillow layers. Note improved quad faces at curve between surfaces A and B
compared to (a).

Fig. 3 (b) illustrates where additional layers of Cartesian cells can be added at the boundary of

the domain. To facilitate this, volume fractions from the original boundary are copied to the new

layers. This results in interfaces that intersect with the boundary at angles closer to ninety degrees,

resulting in improved quality hexes.

(a) (b) 

Figure 3: Mesh quality improvements: (a) Poor quality hexes may result where grain interfaces intersect domain
boundaries at small angles. (b) Additional layers of cells added to the domain boundaries result in improved quality
for case illustrated in (a).

2.3. Crystal plasticity finite element model

In this work, a BCC crystal plasticity finite element (CP-FE) model developed at Sandia Na-

tional Laboratories (Lim et al., 2013, 2015b) is used to simulate the mechanical behavior and plastic

deformation of polycrystalline α-iron. Crystal plasticity models use constitutive descriptions and
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crystal orientations applied to individual grains and impose plastic slip along specified slip systems.

The model used in this work is based on a well-established continuum formulation following a mul-

tiplicative decomposition of the deformation gradient (Lee, 1969; Rice, 1971; Hill and Rice, 1972;

Peirce et al., 1982; Dingreville et al., 2010; Lim et al., 2014, 2015a). Assuming plastic deformation

is caused by dislocation slip, the plastic part of the velocity gradient, Lp, can be written as (Peirce

et al., 1982):

Lp =
∑
α

γ̇αsα0 ⊗ nα0 , (7)

where sα0 and nα0 are the initial slip direction and the slip plane normal direction on the α-th slip

system, respectively. Here, 24 {110} 〈111〉 slip systems are used and for simplicity, non-Schmid

effects are neglected. The slip rate on α-th slip system, γ̇α, is represented as a power-law function

of resolved shear stress, τα, and slip resistance, gα (Hutchinson, 1976):

γ̇α = γ̇α0

(
τα

gα

)1/m

, (8)

where γ̇α0 is the reference shear rate and m is the rate sensitivity factor. The slip resistance, gα, is

composed of thermal (τ∗) and athermal (τobs) parts as follows (Lim et al., 2015a):

gα =
√

(τ∗)2 + (τobs)2, (9)

where,

τ∗ = τcr

(
1−

(
kbT

H0
ln(ε̇0/γ̇)

)1/q
)1/p

and τobs = Aµb

√√√√ NS∑
β=1

ρβ. (10)

Here, T is the temperature, γ̇ is the strain rate, H0 is the activation enthalpy, kb is the Boltzmann’s

constant, τcr, ε̇0 p, q and A are material constants, µ is the shear modulus, b is the Burger’s

vector, NS is the total number of slip systems, and ρβ is the dislocation density on slip system β.

Note that τ∗ represents the temperature and strain rate dependent lattice resistance term based

on dislocation-kink pair theory (Seeger, 1981, 2001; Argon, 2008; Butt, 2007; Lim et al., 2015a)

while τobs is the athermal resistance to slip governed by dislocation-dislocation or dislocation-
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obstacle interactions. It is assumed that the initial dislocation densities are identical for all 24

slip systems and the evolution of dislocation density for the α-th slip system is obtained by a

standard phenomenological equation (Kocks, 1976). Detailed formulation of the model and material

parameterizations for α-iron can be found in (Lim et al., 2015b).

3. Results and Discussion

Simulation results of 2D and 3D grain ensembles are presented. Herein, we examine the following

three cases: (1) An idealized spherical grain embedded in a matrix grain, (2) a 2D polycrystalline

aggregates with various grain sizes, and (3) a 3D polycrystalline aggregate. These systems were

chosen because they span various degrees of geometric complexity. The CP-FE framework is used

to investigate the elasto-plastic deformation of each case. Moreover, the effects of conformal and

the widely-used voxelated FE discretizations on the local mechanical behavior are examined and

quantified.

3.1. Case I: Spherical grain within a cubic matrix

A two-grain microstructure is constructed, where a spherical grain is embedded inside a cubic

grain as shown in Fig. 4(a). This microstructure represents one of the most geometrically simple

grain realizations, and is mainly used to demonstrate our modeling capability and better quantify

the role of interface mesh smoothness (conformal vs. voxelated) on the local fields. The two PF

equations, for the order parameters φ1 and φ2, were solved on a uniform mesh with Nx = Ny =

Nz = 80 for a few steps in order to generate diffuse interfaces. Grain 1 represents the matrix grain

with (φ1, φ2) = (1, 0), while grain 2 is the spherical one with (φ1, φ2) = (0, 1). Both φ1 and φ2

change rapidly but smoothly across the GB, where φ1, φ2 ∈ (0, 1) [cf. Fig. 4(a)]. Voxelated and

conformal FE discretizations are generated with a total of 512,000 (30,047 in the spherical grain)

and 540,248 (44,171 in the spherical grain) eight-noded hexahedral FE elements, respectively. These

discretizations are shown in Fig. 4(b) and (c) for the voxelated and conformal meshes, respectively.

It can be clearly seen from Fig. 4(c) that the conformal mesh accurately represents the smooth

curvature of the sphere, while the voxelated one poorly represents the interface even with a relatively

fine element size. The two FE discretizations shown in Fig. 4 are used as input structures for the CP-

FE model, parameterized to α-iron, to simulate uniaxial tension. Utilizing the Bunge convention
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for Euler angles, the initial crystal orientation of Grain 1 was set to (ϕ1,Φ, ϕ2) = (0◦, 0◦, 0◦), while

for Grain 2 it was set to (ϕ1,Φ, ϕ2) = (90◦, 135◦, 54.7◦). Displacements along the x-direction are

applied up to 10% engineering strain at a nominal strain rate of 10 −4 s−1.

φ1=1 
φ2=0 

φ1=0 
φ2=1 

φ1 φ2 

1 

0 

0 

1 Grain 1 

Grain 2 y 

z x 

(a) 

(b) (c) 

Figure 4: A two-grain system, where a spherical grain (Grain 2) is embedded in a matrix grain (Grain 1). (a)
Phase field representation, where half of the system is removed for better visualization. The corresponding FE
discretizations using (b) voxelated mesh and (c) conformal one, which ensures smoothness across interfaces between
the two adjoining grains.

Figure 5(a) shows simulated stress-strain curves of the bicrystal using the two FE discretizations.

It is shown that the type of mesh (voxelated/conformal) has negligible effect on the macroscopic

response, less than 0.1% deviation in engineering stress at 10% deformation. Figure 5(b) displays

contours of the von Mises stress at 10% nominal deformation using both voxelated and conformal

FE discretizations. It can be seen that the overall stress distribution within Grain 1 is similar in

both discretizations, but higher stress localization is observed for the voxelated mesh. Despite the

geometrically simple interface between the two grains, regions close to this interface are under a

higher state of stress in the voxelated system than the conformal one. To quantify this localization

effect, a slice in the x− y plane that is centrally located along the z-direction is extracted. Then,

the von Mises stress at the elements that are spatially located at the interface between Grains 1

and 2 [cf. Figs. 6(a) and (b)] is plotted tangentially and shown in Fig. 6(c). It can be seen that
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Figure 5: (a) A plot the predicted stress-strain curves of the two-grain system using conformal and voxelated FE
meshes. Contours of von Mises stress at 10% nominal deformation for the system with (b) voxelated and (c) conformal
FE discretizations.

the voxelated FE mesh yields stresses that are ∼ 15% higher than the system with conformal FE

mesh. The results shown in Figs. 5 and 6 indicate that even for some of the most geometrically

simple interfaces, variations in the local state of stress exist due to the FE discretization at such

interfaces. These local variations do not appear in macroscopic measures such as the global stress-

strain response. Such local effects may play a significant role in continuum-based models of failure,

i.e., nucleation of cracks, voids and damage. Therefore, ensuring that local stresses are convergent

and not influenced by the numerical discretization is key when considering such complex processes.

3.2. Case II: Two-dimensional polycrystals

The second test case we examine in this work represents a series of 2D microstructures, where

the PF equations were solved on a uniform grid with Nx = Ny = 256 pixels and nφ = 100. These

microstructures effectively represent a simulated anneal process where the average grain size grows

with time. Here, four snapshots corresponding to a non-dimensional phase field simulation time, t∗,

of 80, 216, 384 and 1176 were utilized and are shown in panels (a) through (d) of Fig. 7, respectively.

For the purpose of visualization, in Figs. 7(a)-(d) we plot the field Ψ =
n∑
i=1

φ2i (1− φi)2 which takes
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Figure 6: At 10% nominal deformation along the x direction, variation of von Mises stress tangentially, in voxelated
and conformal meshes, along FE separating Grains 1 and 2, in the x−y plane, at the center slice along the z direction.

a finite value within GBs (red) and changes smoothly to zero in the bulk grains (blue). In these

systems, the resulting number of grains was 127, 59, 36 and 16, corresponding to Fig. 7(a) through

(d), respectively.

The resulting conformal FE discretizations have ∼ 200, 000 hexahedral finite elements and are

shown in Figures 7(e)-(h) for the corresponding ones in panels (a)-(d), respectively. Figure 8(a)

depicts the PF representation of the microstructure shown in Fig. 7(a) along with a closeup view

at one of the GB regions, while Fig. 8(b) shows the corresponding FE discretization, where it can

be seen that FE elements conform to the grain topology and ensure smoothness of the interfaces

between adjoining grains. It is worth noting that since the isotropy assumption for the interfaces

is assumed in the phase field model, balance of interfacial tensions at triple junctions, where three

grains meet, yields angles of 120◦. This configuration is preserved in the conformal FE discretization

as depicted in Fig. 8(b).

Next, the mechanical behavior of the microstructures shown in Fig. 7 is examined. Using

the Bunge convention for Euler angles, the initial crystallographic orientations of each grain are

assigned randomly and these systems are deformed up to 10% nominal strain along the x-direction

at a nominal strain rate of 10−4 s−1. Figure 9(a) is a plot of the predicted stress-strain curves of these

systems. It is shown that flow stress is increased with decreasing grain sizes despite the fact that
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Figure 7: Snapshots of the PF microstructures [(a)-(d)] and the corresponding FE discretizations [(e)-(h)] at a non-
dimensional simulation time of 80 [(a) and (e)]], 216 [(b) and (f)], 384 [(c) and (g)] and 1176 [(d) and (h)] having
127, 59, 36 and 16 grains, respectively..

the current CP-FE model does not incorporate non-local effects, i.e., the Hall-Petch effect, twhich

would require considerations of dislocation-dislocation and dislocation-GB interactions. The slight

variation in the macroscopic stress-strain response of these systems may be attributed to local grain

orientations and neighboring effects, i.e., due to the finite number of grains used in these simulations.

Figures 9(b)-(e) show contour maps of von Mises stress at 10% nominal deformation for the four

microstructures depicted in Figs. 7(a)-(d), respectively. It can be seen that stress is localized

near GBs and at triple junctions and this localization effect is more profound in microstructures

with smaller grains. The spatial localization of the deformation [cf. Fig. 9(b)-(e)] at various

microstructural features, such as GBs and triple junctions, is an indication that physically-based

representations of materials microstructures and the corresponding accurate FE discretizations may

be an important aspect when local effects drive complex failure processes in metals (i.e., nucleation

of cracks/voids).

3.3. Case III: Three-dimensional polycrystals

We now turn our attention to 3D microstructures. First, the PF equations were solved on a

uniform grid of Nx = Ny = Nz = 96 with nφ = 20. A realization of a representative microstructure

is shown in Fig. 10(a), where the total number of grains is 52. Numerical FE discretizations of this
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(b) (a) 

Figure 8: For the microstructure shown in Fig. 7(a): (a) phase field representation using the Ψ field where red (blue)
denote (GBs) bulk grains. (b) FE discretizations of the microstructure. Curved grain boundaries and triple junction
angles are accurately reproduced by the conformal FE mesh.

microstructure using both voxelated (884,736 hexahedral FE) and conformal (1,277,808 hexahedral

FE) techniques are depicted in Fig. 10(b) and (c), respectively, where the mesh of only one grain is

shown for better visualization. It can be seen that the smooth curved surfaces of individual grains

are accurately captured by the conformal mesh. Uniaxial tension of the 3D polycrystalline system

is simulated using voxelated and conformal FE meshes, where displacements along the x-direction

are applied up to 10% engineering strain at a nominal strain rate of 10−4 s−1.

Figure 11(a) is a plot of the stress-strain curves for the 3D system using both FE discretizations,

conformal and voxelated. Similar to the two cases studied above, CP-FE simulations using confor-

mal and voxelated FE discretizations show relatively small variations in the macroscopic response.

Contours of the von Mises stress for these systems are shown in Figs. 11(b)-(c) for the voxelated

and conformal meshes, respectively. As an illustration, in the grains labeled 11 and 15, it is clear

that the conformal mesh yields a more detailed and smooth stress distribution, especially near the

GBs and triple junctions. On the other hand, non-smooth and local spikes in the stress exist in the

system with voxelated mesh. The local spikes in stress follow patterns that are set by the inherent

voxelated mesh (notice the stress profile in grain 11).

In addition to the local mechanical response, the effects of FE mesh on texture evolution are

investigated by plotting crystal orientations before and after in rolling direction (RD), transverse

direction (TD) and normal direction (ND) within the unit stereographic triangle. Figure 12 shows

plots of initial (black data points) and deformed texture (color contours). Here, an occurrence

of crystal orientation data within a unit area of the stereographic triangle is normalized by the
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Figure 9: For the microstructures shown in Figs. 7(a)-(d). (a) Plot of the predicted stress-strain curves. (b)-(e)
Contours of von Mises stress at 10% deformation for the microstructures in Figs. 7(a)-(d), respectively. Notice the
localized deformation at grain boundaries and triple junctions.

random occurrence. The spread in the initial crystal orientations within a grain are observed in

the deformed texture. Similar to the macroscopic stress-strain response, overall predicted texture

using voxelated and conformal FE discretizations shows good agreement.

Next, we quantitatively examine the local stress fields that are predicted from the two meshing

techniques. To this end, a slice in the x-y plane centrally located along the z-axis is conveniently

picked [cf. Fig. 13(a)]. Then, within this slice, the von Mises stress is extracted along a line that

extends along the x-axis [black line in Fig. 13(a)], where the points labeled A and B correspond to a

GB and triple junction, respectively. The von Mises stress values along this line scan in the systems

with voxelated and conformal meshes are shown in Fig. 13(b). It can be seen that differences in

the local state of stress between voxelated and conformal FE discretizations exist at regions with

an abrupt change in the materials properties. The state of stress far from these regions is similar

in both systems (voxelated and conformal). At the GB, point A in Fig. 13(b), a jump in the von

Mises stress exists for the system with conformal mesh due to the abrupt change in the elastic

moduli. Furthermore, at the triple junction, point B, a spike in the von Mises stress is observed in
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Figure 10: (a) Phase field representation of the 3D grain microstructure. The scalar field Ψ is used for visualization,
where (red) blue denote (GBs) bulk grains. FE discretization of the microstructure in (a) using (b) voxelated, and
(c) conformal meshing techniques.

the system with the voxelated mesh, whereas the one with the conformal mesh yields a spatially

smoother stress around this point. In this case, the stress at point B in the system with voxelated

FE discretization is ∼ 65% higher than the one with conformal mesh. Therefore, one expects that

the effects shown in Fig. 13(b) may influence the behavior when local effects are considered in

models of failure.

3.4. Anticipated impact

The modeling approach presented in the study bridges a mesoscale model of grain microstruc-

tures in polycrystalline metals to one of the mechanical properties, i.e., elasto-plastic deformation,

where attention has been focused on accurately representing the various features of such systems

(grain topology, smooth interfaces). This unique modeling capability can be extended to incor-

porate realizations from mesoscale models of various materials processes, such as coarsening of

multi-phase multi-component systems, solidification and dendritic growth, and additive manufac-

turing processes, into continuum models of the deformation behavior and failure mechanisms in

these systems. Moreover, the capability can be applied to use microstructures obtained experi-
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Figure 11: For the 3D polycrystalline microstructure in Fig. 10(a). (a) Plot of the stress-strain curves using both
voxelated and conformal meshes. Contours of von Mises stress at 10% deformation using (b) voxelated and (c)
conformal meshes. In the grains labeled 11 and 15, notice the non-smooth and localized stress due to the voxelated
mesh.

mentally, e.g., electron backscatter diffraction (EBSD). As a demonstration, Fig. 14(a) shows a

representative microstructure from a phase field treatment of multi-phase coarsening of binary

metallic systems, where the surface energies of both metals were set the same. Figure 14(b) is a

close-up view of the FE discretization of this system, where it can be seen that the mesh conforms

to the phase boundary between the two metallic phases.

Another application of our modeling approach is additive manufacturing processes, with so-

lidification dynamics being one possible process. To this end, we utilized the PF treatment of

non-isothermal solidification of a pure metal by Koboyashi (Kobayashi, 1993) to generate complex

dendritic structures such as the one depicted in Fig. 15(a) and (b). The conformal meshing tech-

nique is used to generate a FE discretization, shown in Fig. 15(c), which in turn can be used in

CP-FE frameworks to simulate the deformation behavior of such systems. The accurate represen-

tation of various microstructural features, such as grain shapes and sizes, and interfaces, may prove

an important step towards the development of failure models that are informed by the local state
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Figure 12: Crystal orientations before and after in rolling direction (RD), transverse direction (TD) and normal
direction (ND) within the unit stereographic triangle. Predicted texture density plots from CP-FEM predictions
using (a) voxelated and (b) conformal FE meshes. Color scale represents the multiple times random occurrence at
10% nominal deformation.

of deformation.

4. Conclusion

Concurrent trends in a wide variety of technologies are moving towards component miniatur-

ization and increased realism in predictive simulations. This necessitates microstructure-aware

engineering analysis capabilities for a variety of applications. In order to better incorporate mi-

crostructures in continuum scale treatments, a modeling framework was proposed, where realiza-

tions from a phase field model of grain microstructures were incorporated into a crystal plasticity

finite element framework of the elasto-plastic deformation of polycrystalline metals. With the aid of

a unique meshing technique, finite element discretizations of these materials microstructures were

generated, which accurately represent grain topologies and ensure the smoothness of interfaces

(GBs) between adjoining grains.
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Figure 13: (a) A slice in the x-y plane centrally located along the z-axis is conveniently picked and the von Mises
stress along the solid black line is extracted. (b) At 10% nominal deformation, profile of von Mises stress along the
solid black line in the systems with voxelated and conformal meshes. Points labeled A and B correspond to a GB
and triple junction, respectively.

Simulated annealing via the phase field model yielded a number of 2D and 3D systems with

various grain shapes and sizes. FE discretizations of these microstructures using both voxelated and

conformal techniques were used in the CP-FE framework to simulate the mechanical behavior of

these systems. While the macroscopic behavior, through the stress-strain curves and texture plots,

seemed insensitive to the degree by which interfaces between adjoining grains were numerically

represented and resolved, i.e., voxelated vs. conformal, it was observed that differences in the

local response exist due to such discretization effects. Systems with voxelated mesh near interfaces

yielded larger stresses at GBs and triple junctions. This effect became more pronounced with the

increased complexity of the microstructure. Thus, mesoscale models of failure, such as nucleations

of cracks/voids, may require using interface conformal mesh in order to eliminate artificial behavior

due to such numerical discretizations.

Our framework provides a step towards an integrated computational materials engineering ap-

proach, where models of materials processes are bridged to ones of properties. This enables a design

loop such that models of materials properties provide key inputs to ones of processes in order to

engineer materials systems with optimal performance.
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(a) (b) 

Figure 14: Application of our modeling approach to multi-phase systems. (a) Phase field representation of a metallic
multi-phase coarsened microstructure. (b) A close-up view demonstrating the conformal FE discretization at a phase
boundary between the two metallic phases. In both panels, green (red) denote two distinct pure metallic phases.

Phase field Finite element 

(a) (b) (c) 

Figure 15: Application of our modeling approach to solidification dynamics. (a) phase field and FE representation
of a dendritic microstructure with six-fold anisotropy for the interface energy. A close-up view at one of the dendrite
branches [the region bounded by the dashed yellow rectangle in (a)] showing the (b) phase field profile and (c)
conformal FE discretization.
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