Exceptional service in the national interest

IDC Reengineering Phase 2

Prototyping Status

Ryan Prescott
22 June 2015
SAND Number:

&5, U.S. DEPARTMENT OF e~
(:{)}ENERGY ﬂ’/WA! %% Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed
B National Nuctear Security Adi n

. Martin Corporation, for the U.S. Department of Energy’s National Nuclear Security Administration under contract DE-AC04-94AL85000.

Sandia
m National

Laboratories

Agenda

Prototyping Overview

Timeline

Executable Architecture Prototype
= Definition
= Conceptual Overview
= Assumptions
= Current Technologies
= Key Features
= User Scenario
= Current Prototype Status
= Qverview

= User Interface Prototyping Status
= Netbeans Display Prototype
= OWEF Display Prototype

= Application Control Prototyping Status
= Data Access Prototyping Status
= Next Iteration Goals

= Backup

National

Prototyping Overview (1 of 2))

= The US NDC Modernization project plan includes a

software prototyping component supporting
definition of the system architecture

" Prototyping is intended to facilitate:
= Definition of high-level design patterns

= Demonstration of key architecture concepts & features

= Selection of representative technologies
= System platform
= Software languages
* Third-party software

Sandia
|l1 National
Laboratories

Timeline

= The project plan includes two prototyping phases:

= Exploratory Prototyping, FY2014
= Focused on technology evaluation
= Software language selection and third-party software evaluations
for key software mechanisms
= See backup slides for technology evaluation summary

= Executable Architecture Prototyping, FY2015-FY2016
= Focused on demonstration of key system features and
mechanisms
= Following a SCRUM process with 3-week sprints

2016

2014 2015
Ql Q2 Q3 Q4 Ql Q2 Q3 Q4 Ql Q2 Q3 Q4
. 10/2016
SE T (PO G > , Executable Architecture
Executable Architecture Prototype Development Prototype Complete

US NDC

Modernization
Elaboration —

Phase

EXECUTABLE ARCHITECTURE
PROTOTYPE

Sandia
m National
Laboratories

Agenda

Executable Architecture Prototype
= Definition
= Conceptual Overview
= Assumptions
= Current Technologies
= Key Features

= User Scenario

Executable Architecture Prototype —) e,

Laboratories

Definition

Elaboration-phase activity to implement a portion of the
system architecture as defined in the Architecture Document
and Analysis Model

Determine if it is feasible to implement the architecture

= Must satisfy system requirements

= Feedback loop to update architecture when needed

Executable Architecture is a prototype

= The intent is to validate key features & mechanisms of the
architecture rather than to develop an early version of the system

Executable Architecture Prototype — e
Conceptual Overview

Laboratories

User

Interface Analyst User Interface I Ul Component

1
Both Supported

Request /

Processing Sequence Response I
Definitions :
I
L. = Orchestration - Services — e ! :
Application = PSC Mechani _ -8 : Domain
Control €chanism Signal Detection Im I Services
SD Association :
A Waveform Correlation :
I' Subscribe - : 1
Retrieve, Store &
Both Supported ’ I
1 callback pUb“Sh
Code API (DAOs) HTTP REST API Pub/Sub Claim Check Messaging
Data Access Data SCRUD Access Data Distribution

Data Access - Object Storage & Distribution mechanism (OSD)

e <€——> REST/HTTP API
Data Store <€===3% Code API

Executable Architecture Prototype —) i
Assumptions (1 of 3: platform and languages)

= Platform:

= Infrastructure:
= Distributed deployment: bare metal, private cloud (e.g. OpenStack), possibly Cloud

= OS: Centos 7+ (current) / RHEL 7+ (future)
= Storage architecture: RDBMS (Oracle, Postgres, etc.)

= Software Development Languages:

= User Interface: Java &/or JavaScript (open trade re: desktop vs. browser-
based Ul)

= Application Control & Orchestration: Java

= Domain Services:
= Multiple supported (C++, Java, Python)

= Only Java demonstrated

= Data Access:
= Code API: Java (C++ TBD)
= REST API: Multiple supported (C++, Python, Java, etc.), Java included in prototype

Executable Architecture Prototype — @i
Assumptions (2 of 3: third-party software)

= User Interface:

= Browser-Based

* Framework: Ozone Widget Framework
= Waveform displays: OpenGL (three.js)
= Map displays: TBD (Worldwind, Google Maps)
= Desktop
* Framework: Netbeans RCP
= Waveform displays: JavaFX charts, OpenGL (TBD)
= Map displays: TBD (Worldwind, Google Maps)

= Processing Sequence Controller mechanism (PSC): Activiti BPMN Engine
= Domain Service Encapsulation: docker (TBD - see backup for docker overview)

= Inter-process Communications:
= Data Distribution (pub/sub): RabbitMQ / JSON
= Service Invocation (request/response): HTTP(S) / JSON (REST)
= Java: Spring REST
= Data Access (SCRUD):

= Code API - Java: JPA (Hibernate), C++ (support TBD)
= REST API: Multiple clients supported Spring REST included in prototype

= Data Access (Distribution): RabbitMQ / JSON

Executable Architecture Prototype — e

Laboratories

Assumptions (3 of 3: Technology Summary)

(V]
User 2 || Browser: OWF/webGL (hree.s)
Interface 2 Analyst User Interface I Ul Component
Java &lor E Desktop: Netbeans / JavaFX
JavaScript i
Application AT ELE I?Srcc T\;:Strs tio.n] Services —e.g. Domain
echanism Signal Detection i
Control . g 2 etectc I Services
All: Docker (TBD) . Java,
Java Java: Spring Boot Waveform Correlation PC;:’
ython

Java: JPA (Hibernate),

Spring REST
Code API (DAOs) HTTP REST API Pub/Sub Claim Check Messaging
Dal access SCRUD Data APIs Data Distribution /e apoiMQ/

Code API: Java, C++ TBD, Python TBD

LR E VRSO STUELARdl Data Access - Object Storage & Distribution mechanism (OSD)

Persistence: RDBMS (e.g. €—> REST/HTTP API

OS: Centos 7/ RHEL 7
Oracle, Postgres, Derby, etc.) <€-==> Code API

Distributed Platform : OpenStack VM cluster

Executable Architecture Prototype — i) i
Key Features

"= |Implemented features demonstrate fundamental concepts
= PSC: processing sequence definition, execution, control
= OSD/COIl: data models, persistence, data distribution, data provenance
= Ul: modern frameworks, extensible, undo/redo, OSD/PSC integration
= Features demonstrate high risk architectural aspects and non-functional (“-ility”) SRDs

= Usability
= Low-latency, high-performance analysis user interfaces

= Show undo/redo, data synchronization, user customizable displays

= Data Provenance

= Tracking and preserving data availability, processing parameters, processing histories, and the users/processes
who worked on all results

= Configurability

= Processing parameters configurable by station, phase, etc.

= Processing sequences initiated based on configurable criteria
= Maintainability / Extensibility

= Creating data abstraction layers and pluggable algorithm implementation patterns
= Deployment

= Avariety of deployments are required. Will demonstrate a data center deployment supporting local and
remote interactive analysis.

= Approach: Demonstrate requirements through the implementation of

select user scenarios
-

User Scenario (1/3) — Interactive Analysi@‘a‘"’“‘”‘%

Sandia
National

Analyst selects data (time interval or selected event)
Views waveforms, signal detections, and events
Interacts with waveforms

= Scroll, pan, zoom, scale, and filter

Works with signal detections and events

= Create signal detections, create events, modify certain signal detection/event
parameters

Undo / redo certain operations

Marks data analysis complete
= Mark processing stage complete

Receives notifications about other Analyst or System activity
= Option to update display to show changes

Views Data provenance for events & signal detections

Alternate scripting interface to access waveform, signal detection, event
hypotheses, etc.

Sandia
|l1 National

Laboratories

User Scenario (2/3) — OSD support

= |mplement database access abstraction
= SCRUD Java Code APIs implemented in Java DAOs

= Partial entity classes developed for waveforms, signal detections,
events, processing sequences, and processing stages

= REST-ful HTTP / JSON SCRUD APIs partially implemented to evaluate
performance
= |mplement data distribution (pub/sub) both with serialized
Entity classes & using the claim check pattern
= Publications may trigger
= Processing sequence execution
= Notifications to other Analysts
= |Implement data model and persistence updates in order to
record and display provenance and event history

Sandia
"1 National
Laboratories

User Scenario (3/3) — PSC support

= Define and execute mock processing sequences for automated
processing of signal detections and event hypotheses

" Processing Sequences predefined and persisted in textual format (BPMN 2.0
XML standard)

= OSD loads Processing Sequences into Entity classes
= Use stubbed domain services accessing stubbed Plugins

= Processing sequences executed based on pub/sub data distribution and
direct REST-based invocation

= Implement interfaces based on Entity classes
" Geophysics algorithm implementations possible, not required
= Demonstrate Processing Sequences triggered by OSD callbacks, e.g.
= Analyst modifying Signal Detection attribute
= Analyst modifying an Event attribute
= Analyst marking processing stage complete

CURRENT PROTOTYPE STATUS

Sandia
m National

Laboratories

= Current Prototype Status
= Qverview

= User Interface Prototyping Status
= Netbeans Display Prototype
= OWEF Display Prototype

= Application Control Prototyping Status
= Data Access Prototyping Status

n

n

Current Prototype Status - Overview
(1 of 2)

Focus: Signal detection automated processing and analysis
= User Interface: Waveform display and signal detection table

= Scroll, pan, zoom and scale waveforms

= Create & re-time phase-labeled signal detections, storing and publishing new/updated

signal detection entities via the OSD API

= Competing desktop and browser-based implementations (Netbeans and OWF,

respectively)

= Application Control: Automated execution of mock signal detection processing

seqguences via the PSC mechanism
= Selected COTS BMPN engine (Activiti)
= Developed an initial PSC prototype

= QObject Storage & Distribution: Storage/retrieval and distribution of signal

detection & waveform entities
* Load waveform data into the display via the OSD
= Store and retrieve signal detection entities via the OSD

" Notify subscribers via pub/sub (RabbitMQ) whenever signal detections are created or

modified

Sandia
National
Laboratories

Current Prototype Status - Overview) i
(2 of 2)

Post SD Update Sequence
Definition (BPMN XML)

Post SD update
SD Display claim check
]

pub/sub

worker pool

Feature Measurement

Analyst Ul Control

Retrieve via
claim check
& store SD

Sandia
National

User Interface Prototyping Status (1 of 2@

Post SD Update Sequence

User Interface Definition (BPMN XML)

Prototype

Post SD update
claim check
pub/sub

worker pool

o
(V)

Feature Measurement
Control

Container

Retrieve via
claim check
& store SD

Sandia
National

User Interface Prototyping Status (2 of 2@

= Developed initial Netbeans/JavaFX signal detection displays
= |mplemented a waveform plotting display
= |mplemented a map display
" Implemented event and signal detection table displays

= Developed initial OWF/WebGL signal detection displays

= |mplemented a waveform plotting display

= |mplemented a map display

etbeans Display Prototype — Signal Detection

(1 of 2)

File Edit Wiew Navigate Tools Window Help

P% H @

EventsDisplay Window x|

Latitude (d... Longitude.. Depth (km) Time
5.76 125.38 88.24 11.29.2014...
44.20 -105.60 00 11.29.2014...
2.24 96.34 00 11.29.2014...
-37.41 179.61 00 11.29.2014...
-35.61 177.64 00 11.29.2014...
G4.48 -17.65 00 11.29.2014...
248 127.16 00 11.29.2014...
-21.57 169.87 00 11.29.2014...
-8.12 129.97 00 11.29.2014
5.66 61.27 00 11.29.2014...
28.12 -111.23 00 11.29.2014
1.51 126.49 00 11.29.2014...
34.47 137.22 331.62 11.29.2014...
5.73 61.20 00 11.29.2014...
-23.49 -178.03 00 11.29.2014...
5.74 61.35 00 11.29.2014...
-6.93 150.96 00 11.29.2014...
-6.24 131.06 00 11.29.2014...
-35.86 -73.51 00 11.29.2014...
9.35 155.31 00 11.29.2014...
-7.51 129.66 00 11.29.2014...
-26.18 29.22 00 11.29.2014...
-8.28 126.96 219.83 11.29.2014...
-26.24 29.07 00 11.29.2014...
21.61 143.31 00 11.29.2014...
1.76 126.15 00 11.29.2014...
5.49 61.00 00 11.29.2014...
-53.41 88.88 00 11.29.2014...
-19.25 -178.86 00 11.29.2014
-31.31 -68.24 75.73 11.29.2014...
-7.70 129.46 00 11.29.2014
32.42 48.03 00 11.29.2014...
15.77 92.11 229.05 11.29.2014
1.83 126.98 00 11.29.2014...
-21.63 169.85 00 11.29.2014
49.99 7896 00 111.29.2014...

Sandia
r.h National
Laboratories

nalysis_prototype 201403101706 _ o x
El | u WorldWindMap Window x| E WaveformsDisplay Window X \EHZI E] @
~
~ 1
| g
) 010030 ©
| i
1
P
| ‘) 030060 O S
-1
1
P
| ‘ 0010030 O
[|)
014-11-29T21:51:17Z N | 2014-11-29T22:12.51Z
H o lDet asDis o Wing % =
Station Channel Phase Time
| ETA ZA_022 P 11.29.2014 21:29:40.0
STA 010030 T 11.29.201422:11:51.0
| STA 030060 T 11.29.2014 21:52:09.0
STA 010030 T 11.29.201422:11:51.0
LY 010030 I 11.29.201422:11:51.0
| STA 030060 11.29.2014 21:52:08.0
gA MK_049 11.29.201421:28:51.0
| ‘ WA mb_beam Pn 11.29.201421:24:17.0
STA 030060 T 11.29.201421:52:08.0
2 | e [— —

etbeans Display Prototype — Signal Detection @ s,

Laboratories

event_analysis_prototype 201403101706

File Edit ¥iew Navigate Tools Window Help
@S D¢

| EventsDisplay Window X | =l E orldWindMap Window X E WaveformsDisplay Window X al» E] @
Latit-~ (d... ' ~ngit <~ . Depth (km) Time ~
5.76 125.38 88.24 11.29.2014.. © !
44.20 -105.60 00 11.29.2014
224 96.34 00 11.29.2014... 5
37.41 179.61 00 11.79.2014 @ O — . - =
me e e uma Each tab is a “top component” that can
64.48 17.65 00 11.29.2014..
248 127.16 00 11.29.2014. b d k d d k d I d
2157 169.87 00 11.20.2014... b € docCke) unaocke) close !
812 129.97 00 11.29.2014 1 1 d t
5.66 61.27 00 11.29.2014... reo pe ned b} reSIZe) e C'
28.12 11123 00 11.28.2014
151 126.49 00 11.29.2014..
34.47 137.22 331.62 11.29.2014.. 0030080 | 0T
NetBeans remembers user layout
-23.48 -178.03 00 11.29.2014... . .
S oo s + settings between sessions.
-6.93 150.96 00 11.29.2014... .
6.24 131.08 00 11.79.2014
-35.86 73.51 00 11.29.2014...
9.35 155.31 00 11.29.2014 P
7.51 129.86 00 11.29.2014.. 0010030 © [
26.18 20.22 00 11.29.2014
-8.28 126.96 219.83 11.29.2014. v
-26.24 29.07 00 11.29.2014.. 2014-11-28T21 51172 | 2014-11-29T22:12:517
2161 143.31 00 11.20.2014... SignalDetectionsDisplay Window X =]
176 126.15 00 11.29.2014.. Sion PEN— — Timea
549 61.00 00 11.29.2014.. | || sTA ZA_022 P 11.20.2014 21:29:40.0
3T 88.88 o0 11.29.2014% STA 010030 T 11.29.201422:11:51.0
19.25 17836 00 11.29.2014. STA 030060 T 11.20.2014 21552:09.0
-31.31 -68.24 75.73 11.29.2014.. ||gra 010030 T 11.29.201422:1151.0
e 129.46 00 11.29.2014. STA 010030 T 11.20.201422:1151.0
32.42 48.03 00 11.29.2014.. ||gra TS = L ERE R
15.77 241 22905 11.29.2014. STA MK_049 P 11.29.2014 21:2851.0
183 126:99 00 e STA mb_bearn Pn 11.29.201421:24:17.0
2163 159.55 00 11.29.2014. STA 030060 T 11.29.2014 21552:08.0
49.99 78.96 00 11.29.2014... ~

OWEF Display Prototype — Default and @)

Custom Dashboards (2 of 3)
E Design and save Analyst display layouts

(dashboards):

- Partition the display space

- Select desktop, accordion, tabbed, and
portal layouts for partitions

- Save display layouts & select upon login

or configure as default

OIONE

Design and save Analyst display layouts
(dashboards):

- Select Widgets to display in each
partition of the dashboard (drag and
drop)

- E.g. waveform display, signal detection
list, event detection list, map, etc.

I ——————
24

OWEF Display Prototype — Map & Signal)i

Laboratories

Detection (1 of 3)

J ot Ayt Weekstateon _h L
*

B EHm X @

o
r ﬂ v Syvtem Lrent Monor
{ r ;
5 3 L, 192.168 56.1: register: event_monitor
\

192 168 56,1 register. waveform_widget
II 192 168 56 1: Detection created on Channel X- 2006-06-16 00:00.00

N

Google Earth

= -—-—-—-—-—-—-—-—-—-—-—-—-—-—m“ﬂl&,--------------- =
"""" WUTWUN AW Ty LSS A

l .

x B4 Vadh"a'i
‘5 °‘WWWMWMWWWWW

‘ = ») 2006-06-16 00 00 00 M
\i WWW 'iw"'W%W

OWEF Display Prototype — Map & Signal)i

Laboratories

Windows behavior is similar to an RCP —
here each is undocked into a desktop type A —
view.

o ERRas aam mam - ‘

OWEF Display Prototype — WebGL) i
Waveform Display

_OZONE widge:

8llol@] 23

.. Recently replaced highcharts with three.js webGL
solution for waveform displays due to
zoom/scaling performance limitations of
highcharts

WebGL:

- Smooth, responsive simultaneous panning,
scaling & zooming of multiple waveforms

- Tested with 500 waveforms, 50K points each

Sandia
m National
Laboratories

Application Control Prototyping Status

Current Prototype Status — rlh) it _
Application Control

Application Post SD Update Sequence

Control Definition (BPMN XML)
Prototype

Post SD update
claim check
pub/sub

Feature Measurement
Control

Retrieve via
claim check
& store SD

Application Control B
Prototyping Status (1/4)

= Selected COTS BMPN engine (Activiti) as the basis for the PSC
mechanism

= Traded Activiti, JBoss BPMN, Spring Batch (see backup for summary
comparison)

= Developed an initial PSC prototype, including:

= Execution of mock signal detection post-processing sequences based
on Analyst actions (create & update)

= Parallel execution of mock automated signal detection processing
sequences

= Processing sequence steps delegated to domain services via
RabbitMQ & REST request/response messaging interfaces

Application Control)
Prototyping Status (2/4)

= PSC COTS evaluation focused on two primary technologies:
= Business Process Management (BPM) Engines

= Workflow engines providing for the definition and execution of Business
Process Model and Notation (BPMN) 2.0 standard processes (BPMN
standard: www.bpmn.org)

" Prototyped Activiti BPM
= Selected for executable architecture development
= Java Batch Processing Engines (JSR 352)

= “Comprehensive framework designed to enable the development of
robust batch applications”

— “Provides reusable functions that are essential in processing large volumes of
records, including logging/tracing, transaction management, job processing
statistics, job restart, skip, and resource management”

" Prototyped Spring Batch

http://www.bpmn.org/

Application Control
Prototyping Status (3/4): Activiti/BPMN

= Activiti provides sequence definition and execution
= Visual sequence definition (Activiti Designer Eclipse plugin) produces BPMN 2.0 XML processing definitions
= Engine executes standard BPMN 2.0 XML definitions
= Designer and engine are separable — engine works with standard BPMN 2.0 XML

Sandia
r.h National _
Laboratories

= Activiti Engine is a multi-threaded runtime engine
= Built on Spring
= Can be embedded in any Java application (Spring or not), standalone or as a web application

= BPMN supports
= Conditional, looped, and parallel tasks
= Nested sequence (invoke one sequence from another sequence)
= Timer, message driven, and rule based execution
= REST, Camel & Mule ESB integration (e.g. initiate Activiti process from Mule, invoke Mule service from Activiti task)
= Tasks can execute scripts and shell operations
= Transactional sequences
= Supports user tasks (require human intervention)

<?xml version="1.8" encoding="UTF-8"?>
2 edefinitions xmlns="http: Swww.omg.org/spec/BPMN/20100524/MODE
= «<process ld="processl" name="processi"s
zstartEvent id="starteventl"” name="5tart"=</startEvent=
= zuserTask id="usertaskl" nome="User Task" activiti:assigne
= zextensionElements=
cactiviti: formProperty id="name"” name="Name" type="str
</extensionElements>
</userTasks=
<endEvent id="endeventl” name="End"=</endEvent>
<zequenceFlow id="flowl"” nome="to usertask"” sourceRef="sta
<sequenceFlow id="flow?" nome="ending"” sourceRef="usertask
</ Processs»

Application Control
Prototyplng Status (4/4): Spring Batch

Runtime provides multi-threaded execution of batch job definitions
= Built on Spring

Sandia
r.h National
Laboratories

= Can be deployed standalone or as a web application
= Transactional tasks
= Supports remote partition-based process execution

= Job definitions support
= Conditional, looped, and parallel tasks
= Nested sequence (invoke one sequence from another sequence)
= Message driven execution
= Camel & Mule ESB integration (e.g. initiate Activiti process from Mule, invoke Mule service from Activiti task)
= Tasks can execute scripts and shell operations
= Supports user tasks (require human intervention)

= Limitations
= No visual modeling support - team experienced difficulties developing complex sequences
= No rule engine integration for rule-based job execution
= No timer-based flow job execution
= Limited practical documentation

Job Definitions Runtime

Sandia
m National

Laboratories

= Data Access Prototyping Status

Sandia
m National
Laboratories

Data Access Prototyping Status (1 of 2)

Post SD Update Sequence L)
Definition (BPMN XML) O o

Post SD update
claim check
pub/sub

=,

Feature Measurement
Control

Container

Store SD claim check
Data Access & store SD

Prototype | """""""""""""""""""""""""""""

_— h
1
1
1
1
1
1

I

I

I

I

1 . .

1 Retrieve via
I

I

I

I

Sandia
"1 National

Laboratories

Data Access Prototyping Status (2 of 2)

= Developed initial Java COI entity classes

= Developed Waveform and Signal Detection Data Accessor
Objects (DAOs) providing SCRUD access to Waveform and
Signal Detection entities stored in the DB

= Developed an initial OSD data distribution prototype

= Pub/sub distribution of Signal Detection entities via RabbitMQ,

= Claim check pattern (DB reference provided via messaging, used by
consumer to retrieve the entity from the DB)

* Direct JSON serialization of entity
= Demonstrated subscription-based distribution of newly
created/modified Signal Detections entities from the Analyst
Ul to the PSC for mock post processing

Sandia
m National
Laboratories

Next Iteration Goals

Sandia
r.h National _
Laboratories

Next Iteration Goals

= Design and develop initial prototypes for:
= Plugin deployment and binding
= Event history and processing parameter provenance
= Undo/redo

= Select browser vs. RCP user interfaces
= Evaluate performance of REST-based data access

= Begin development of event analysis scenario

BACKUP

TECHNOLOGY EVALUATION
SUMMARY

Technology Evaluation - Overview) .

(]
Usor E Browser: OWF / WebGL (three.js)
Interface S Analyst User Interface I Ty —
Java &/or g Desktop: Netbeans / JavaFX
JavaScript

Application | Activiti BMP Orchestratiqn] Services —e.g. Domain
Control PSC Mechanism Signal Detection _ Services
. Plugin
SD Association Java
Java Java: Spring Boot Waveform Correlation C++,’
Python

Java: JPA (Hibernate)
Code API (DAOs) HTTP REST API Pub/Sub Claim Check Messaging
Ydln Access SCRUD Data APIs Data Distribution ﬁgbﬁbb't'\"@g’

Code API: Java, C++ TBD, Python TBD
LWV REVEC DRIl Data Access - Object Storage & Distribution mechanism (OSD)

OS: Centos 7/ RHEL 7

Persistence: RDBMS (e.g. €—> REST/HTTP API
Distributed Platform : OpenStack VM cluster

Oracle, Postgres, Derby, etc.) <€-==> Code API

1. Technology Evaluation — Object) e,

Laboratories

Relational Mapping (data access code API)
ol powortnd snwwsewns |

Java Object Advantages: Leading ORM candidate for Java. Hibernate Query Language (HQL) could provide both Lower

Hibernate Relational application and researcher level access to underlying COI objects. JPA provider. database

Mapping solution
Disadvantages: A dependence on HQL could introduce a tight coupling to Hibernate. coupling
Advantages: JPA provider.
Disadvantages: ORM features supported through embedded SQL. Not a prevalent software solution.

Java ORM Advantages: Supports Remote Object Persistence

Apache 0SS
Cayenne Disadvantages: CayenneModeler required for mapping. Not a prevalent software solution.

Java RDBMS Advantages: Database interactions more easily optimized since interactions are at such a low level.

Abstraction
Disadvantages: Database abstraction layer (not an ORM). SQL-centric. Not a prevalent software
solution.

Java ORM Advantages: Uses XML that describes the database schema, which avoids reliance on reflection. Higher

0SS database
Disadvantages: Requires that domain model extend Torque specific classes. Not a prevalent software solution
solution. coupling

C++

C++ ORM Advantages: Leading ORM candidate for C++. Does not require manual entry of mapping code. Lower

0SS coupling
Disadvantages: Developed by Code Synthesis, located in South Africa. Does not provide C++ object
to relational database mapping for existing DB tables.

C++ ORM Advantages: Supports object relational mapping with MySQL, SQLite, PostgreSQL, Oracle, and SQL

0SS Server databases.

: : o Higher

Disadvantages: Market usage is unknown and documentation is limited. coupling

42

2. Technology Evaluation — Inter-processm)

Laboratories

Communication (pub/sub data distribution)
e e ==

Standards-Based

Cross-Language Support

Designed for low-latency, high-throughput with configurable
QoS

Flexible communication patterns & configurable transports
Open-source version available with commercial support from
RTI

Generally considered to be higher performance than
brokered solutions

Standards-Based
Cross-Language Support
Free OSS with community support

Standards-Based

Cross-Language Support

Free OSS with community support

Mature & highly stable (widely used since early 2000s)
Highly popular

Open-source license is more restrictive than for other
solutions

Many features are only available in the commercial edition
Appears to be less popular than other solutions (based on
Google Trends)

Configurable QoS introduces complexity relative to other
solutions

Past prototyping efforts have struggled with product
complexity

Appears to be less popular than other solutions (based on
Google Trends)

Performance limitations at scale (Apollo subproject attempts
to address these, but is not yet a full-featured product)
Interest in ActiveMQ appears to be declining in recent years
(based on Google trends)

Standards-Based

Cross-Language Support

Free OSS with community support

Commercial support available from Pivotal

Highly popular (highest search term frequency on Google
Trends)

Favorable performance on a number of benchmarks

Broker is implemented in Erlang (not necessarily a
disadvantage)

DDS C, C++
JMS C#
Autl REST Java
SOAP Ada
Java
C, C++
AMQP C#
JMS Ruby
Perl
Python
AMQP Java
STOMP C, G+
ActiveMQ C#
| Apollo sl Rub
P XMPP P:rly
JMS 1.1 Python\
Java
C++
., AMQP NET
RabbitMQ ey Ruby
Perl
Python
Tava
C, C++
C#
N
one Ruby
Perl
Python

Cross-Language Support

Free OSS with community support

Generally considered to be higher performance than
brokered solutions

Not standards-based
Appears to be less popular than other solutions (based on
Google Trends)

43

3. Technology Evaluation —) i

National
. . Laboratories
Application Control
Solution

Advantages: Widely-used open standards with large development community. Provides a robust
platform for development of scalable, fault-tolerant, distributed processing architectures.

Java EE

Enterprise Java Disadvantages: EJB standard prohibits use of native libraries and direct thread creation, limiting
Apnlication desian ontions supnorting non- VM |lanauages

Frameworks Advantages: Widely-used open-source solution with large development community. Provides a
robust platform for development of scalable, fault-tolerant, distributed processing architectures.

Spring Framework

Disadvantages: Not standards-based.
Advantages: Open-source solution with significant industry interest. Provides a robust platform for
development of scalable, fault-tolerant, distributed processing architectures. Supports multiple
Apache Storm development languages.

Disadvantages: New offering. Not standards-based.
Advantages: Provides a robust platform for development of scalable, fault-tolerant, distributed

Stream processing architectures.
Processors Apache Samza

Disadvantages: New offering that has yet to establish significant industry interest. Not standards-

based. Does not support multiple languages (Java only).

Advantages: Provides a robust platform for development of scalable, fault-tolerant, distributed
Apache S4 processing architectures. Supports multiple development languages.

Disadvantages: Little industry interest and development activity. Not standards-based.

_) Advantages: Provides a robust platform for integration of heterogeneous systems via
g:;erprlse Service WS02 ESB standardized messaging as part of a service-oriented architecture.
Disadvantages: Design strengths not well aligned to the end-state modernized architecture.

Advantages: Provides a robust platform for development of scalable, fault-tolerant, distributed
processing architectures.

Complex Event
Processor

Esper
Disadvantages: Specialized, query-based architecture does not fit processing needs particularly
well. Not standards-based. Does not support multiple languages (Java only).

-
44

4. Technology Evaluation —
Processing Sequence Control

Sandia
'11 National

Laboratories

Standards | Advantages Disadvantages

Etand;rsd;-Bised " rt . Less mature than JBoss BPMN
Activiti * ree W c_ommu.m y Suppo . Commercial support by a smaller, less well known
BPMN 2.0 o Strong community, active feature development
BPMN . . . company
. High-quality documentation
. Eclipse plugin integration for visual modeling
o Standards-Based o Decline in community development activity
BPMN 2.0 o Free OSS with community support o Poor documentation
. Mature solution . Difficult to work with

. No visual modeling support - team experienced
. Standards-Based difficulties d.eve.loplng cpmplex sequencgs _
JSR 352 . . . No rule engine integration for rule-based job execution
o Free OSS with community support . . ;
. No timer-based flow job execution

. Limited practical documentation

5. Technology Evaluation —

Sandia
rl'l National

Laboratories

Desktop User Interface

Candidate Solution &
Widget toolkit Summary Assessment

Java (RCP)

Netbeans / Swing

Java (RCP)
Eclipse / Jface (SWT)

Advantages: Netbeans is a dominant Java UIF candidate. Swing widgets integrate alongside
JavaFX code. OSGi open standard. Oracle supported. Large community.

Disadvantages: Oracle (the company) dependence.

Advantages: Eclipse is a dominant Java UIF candidate. OSGi open standard IBM supported. Very
stable. Large community.

Disadvantages: Eclipse learning curve is the most difficult. JFace/SWT is slightly dated compared
to Swing and JavaFX2. |IBM dependence.

Advantages: Qt is the leading C++ UIF candidate. GUI widgets are fast and native: strongest cross
platform GUI behavior.

Disadvantages: Not an RCP solution. Not OSGi. Smaller community than Java.

Advantages: Netbeans is the leading Java UIF candidate. JavaFX2 has most modern Java GUI
elements. OSGi open standard. Oracle supported. Large community.

Disadvantages: JavaFX2 2D plotting package is beautiful but has serious scaling issues. Oracle
dependence.

C++
Qt Creator / Qt
Java (RCP)
Netbeans / JavaFX2
++
NA / wxWidgets
XML & Java

NA / XUL

Advantages: Native mode widget toolkit, also contains inter-process communication layer

Disadvantages: Not an RCP solution or a UIF - mainly a standalone widget toolkit. Smaller
community.

Advantages: XML markup language for GUI construction. Quick study for web designers.

Disadvantages: Not an RCP solution or a UIF - mainly a standalone widget toolkit. Not a prevalent
solution.

46

Technology Evaluation — In-Memory
Caching/Data Grid

Sandia
fl‘! National

Laboratories

Selection pending determination of need for caching

m Client Language | o0 oe Disadvantages
DDOI'
[]

memcached

EHCache

Infinispan

Hazelcast

Java

C, C++

Java, Python Ruby
Perl

C#

Java

C++ &C#
(commercial
version)

C++
Java
Python
Ruby
C#

C, C++
Java
Perl
Python
Ruby
C#
Closure
Scala

Java

C++ &C#
(commercial
version)

Cross-Language Support
Free OSS with community support

Well established and mature
Widely used highly popular
Cross-Language Support

Free OSS with community support
Commercial support available

Cross-Language Support

Free OSS version available

Commercial support available from Terracotta
Strong feature set, including partitioning, replication,
transactions, security, etc.

Cross-Language Support

Free OSS with community support

Commercial support available from JBoss

Strong feature set, including partitioning, replication,
transactions, security, etc.

Widely used highly popular

Broad cross-Language Support

Free OSS with community support

Commercial support available from Pivotal

Strong feature set, including partitioning, replication,
transactions, etc.

Cross-Language Support

Commercial support available from Hazelcast
Strong feature set, including partitioning, replication,
transactions, security, etc.

Java only (no cross-language support)

Appears to be less widely used/popular than other solutions (e.g.
Redis, memcached)

It is not clear whether commercial support is available

Limited feature set relative to other solutions surveyed

Does not support partitioning (only replication)

Popularity appears to be declining (based on Google Trends)

Many features are only available in the commercial edition
Limited cross-language support (and only in the commercial
edition)

Appears to be less widely used/popular than other solutions (e.g.
Redis, memcached)

Popularity appears to be declining (based on Google Trends)

Appears to be less widely used/popular than other solutions (e.g.
Redis, memcached)

Limited built-in security features

Many features are only available in the commercial edition
Limited cross-language support (and only in the commercial
edition)

Appears to be less widely used/popular than other solutions (e.g.
Redis, memcached)

47

DOCKER CONTAINER TECHNOLOGY
OVERVIEW

Sandia
r.h National
Laboratories

Agenda

= What are Linux Containers?

= Containers vs. Virtual Machines
= Why Containers?

= Container Ecosystem

= What is Docker?

= Container Use Cases

= Development Lifecycle Concepts
= |ntegration Concepts

= QOrchestration Concepts

Sandia
|l1 National

Laboratories

What Are Linux Containers?

= Lightweight OS-level virtualization technology
= Multiple, isolated systems (containers) run on a single Linux
host, sharing the underlying kernel

= Control Groups provide resource isolation (CPU, memory, block 1/0,
network, etc.)

= Namespaces isolate applications’ view of the OS environment
(processes, networking, file system, etc.)

= Alternative paradigm to virtual machines
= Containers offer greatly reduced start-up time & resource utilization,
as well as near-native speed
= CPU performance — native
= Memory — Very small overhead
= Network — Very small overhead (can be optimized to near zero)

= |ndividual applications & services are typically deployed in separate
containers (100s-1000s of containers per node is common)

Sandia
|I1 National

Laboratories

Containers vs. Virtual Machines

» Unlike virtual machines, containers provide separate virtual OS
environments that share the underlying host OS directly, without
the need for separate guest OS instances or hypervisor software

App App App App

bins / libs bins / libs App App
Guest OS Guest OS bins / libs bins / libs

Virtual Machine Virtual Machine Container Container

Host OS

Hardware Hardware

Why Containers?) .
Common Use Cases

= |solate individual applications

= Constrain application resource utilization
= CPU, memory, network & storage

= Manage heterogeneous application dependencies across complex systems
= Multiple software stacks, third party tools & versions
= Multiple Linux flavors & versions

= Provide orchestration of applications across clustered system deployments

= Support application scalability and fault tolerance

= Provide a consistent application runtime for development through
operational deployment

Container Container Container

Dev Environment I&T Environment Ops Environment

Sandia
"1 National

Laboratories

Container Ecosystem

= A thriving community of open-source container technologies has emerged in

the last few years supporting the development and deployment of
container-based systems

= Large impact on industry with significant backing and community interest

= Widely used in modern PaaS solutions — e.g. Amazon EC2, DigitalOcean, Google Compute Engine, Microsoft
Azure, OpenStack, QEMU/KVM, Vagrant and Vmware

Widely used in corporate IT infrastructure - Google’s infrastructure runs nearly entirely on containers (2 billion+
provisioned per week)

= Docker has emerged as the dominant container project around which the
majority of these technologies is currently developed

Swarm Load-balancing, scalability &
Orchestration ComF_’OSG Fleet Kubernetes Mesos hlgh avallablllty for dIStrlbUted,
Machine container-based systems
Container Docker Rocket LXC Definition, build, & o
Management deployment of containerized
apps
Host OS Ei?::;l(at CentOS CoreOS Ubuntu Project Atomic OS shared across
containers

Sandia
|I1 National

Laboratories

What is Docker?

« Open-source project providing
container abstraction and management
tooling

» Container Definition & Build

— Build containers from pre-defined

images a Container Defn
— Define images declaratively by * & Build Tools

specifying new layers on top of existing o Container

. on

images, from the base OS up Eu® Repositories

« Container Repositories Docker Container
— Manage container images for projects

L, RESTAPI
& communities using shared

repositories Host OS CLI

— Publish and consume public images

with docker hub (the definitive public
repository)

« RESTAPI&CLI

— Define, build, deploy & manage
containers via CLI and RESTful service
interfaces

I

Potential US NDC/IDC Container Use) i
Cases

= Development Lifecycle

" Provide a common software platform for application developers across
environments, from development, to I&T and operations

= |ntegration

= Enable integration of heterogeneous applications developed by
multiple organizations on a common platform

= |solation, resource constraints, support for multiple software languages &
stacks, third-party COTS, versions, OS versions, etc. as needed

= QOrchestration

= Provide software stack-agnostic, scalable, fault-tolerant orchestration
of applications and services in a distributed environment

= Deployment
= Support for deployment to bare metal, VM and cloud platforms

Sandia
|I1 National

Laboratories

Development Lifecycle Concepts

= A common application platform is provided to US NDC/IDC contributors as
a set of base container images

= Includes OS, third-party tools & libraries, core framework software
= Provided through a shared container registry

= Applications are developed using the base platform containers and are
packaged as new container images layered onto the base platform

= Application containers are delivered back to the shared container registry

= Continuous build & integration includes automated build and test of
containerized applications & services

= Application containers are deployed into the US NDC/IDC environments as
part of the development lifecycle, including development, I&T and
operations

Sandia
|I1 National

Laboratories

Integration Concepts

= The system integrator organization maintain the
configuration needed to deploy and manage the set of
application containers comprising the system
= System cluster definition
= Application definitions
= Application resource constraints
= Network and persistent storage interface management

= High-availability & scalability policies
= Multiple libraries, third-party tools, versions, etc. are

encapsulated within individual application containers where
they are required

