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Prototyping Overview (1 of 2)

 The US NDC Modernization project plan includes a 
software prototyping component supporting 
definition of the system architecture

 Prototyping is intended to facilitate:

 Definition of high-level design patterns

 Demonstration of key architecture concepts & features

 Selection of representative technologies
 System platform

 Software languages

 Third-party software
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Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4

2014 2015 2016

Timeline
 The project plan includes two prototyping phases:

 Exploratory Prototyping, FY2014

 Focused on technology evaluation

 Software language selection and third-party software evaluations 
for key software mechanisms

 See backup slides for technology evaluation summary

 Executable Architecture Prototyping, FY2015-FY2016

 Focused on demonstration of key system features and 
mechanisms

 Following a SCRUM process with 3-week sprints
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EXECUTABLE ARCHITECTURE 
PROTOTYPE
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Executable Architecture Prototype –
Definition
 Elaboration-phase activity to implement a portion of the 

system architecture as defined in the Architecture Document 
and Analysis Model

 Determine if it is feasible to implement the architecture
 Must satisfy system requirements

 Feedback loop to update architecture when needed

 Executable Architecture is a prototype
 The intent is to validate key features & mechanisms of the 

architecture rather than to develop an early version of the system
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Executable Architecture Prototype –
Conceptual Overview
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Executable Architecture Prototype –
Assumptions (1 of 3: platform and languages)
 Platform:

 Infrastructure:

 Distributed deployment: bare metal, private cloud (e.g. OpenStack), possibly Cloud

 OS: Centos 7+ (current) / RHEL 7+ (future)

 Storage architecture: RDBMS (Oracle, Postgres, etc.)

 Software Development Languages:

 User Interface: Java &/or JavaScript (open trade re: desktop vs. browser-
based UI)

 Application Control & Orchestration: Java

 Domain Services:

 Multiple supported (C++, Java, Python)

 Only Java demonstrated

 Data Access:

 Code API: Java (C++ TBD)

 REST API: Multiple supported (C++, Python, Java, etc.), Java included in prototype
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Executable Architecture Prototype –
Assumptions (2 of 3: third-party software)
 User Interface:

 Browser-Based

 Framework: Ozone Widget Framework

 Waveform displays: OpenGL (three.js)

 Map displays: TBD (Worldwind, Google Maps)

 Desktop

 Framework: Netbeans RCP

 Waveform displays: JavaFX charts, OpenGL (TBD)

 Map displays: TBD (Worldwind, Google Maps)

 Processing Sequence Controller mechanism (PSC): Activiti BPMN Engine

 Domain Service Encapsulation: docker (TBD - see backup for docker overview)

 Inter-process Communications:
 Data Distribution (pub/sub): RabbitMQ / JSON

 Service Invocation (request/response): HTTP(S) / JSON (REST)

 Java: Spring REST

 Data Access (SCRUD):
 Code API - Java: JPA (Hibernate), C++ (support TBD)

 REST API: Multiple clients supported Spring REST included in prototype

 Data Access (Distribution): RabbitMQ / JSON
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Executable Architecture Prototype –
Assumptions (3 of 3: Technology Summary)
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Executable Architecture Prototype –
Key Features
 Implemented features demonstrate fundamental concepts

 PSC: processing sequence definition, execution, control 

 OSD/COI: data models, persistence, data distribution, data provenance

 UI: modern frameworks, extensible, undo/redo, OSD/PSC integration

 Features demonstrate high risk architectural aspects and non-functional (“-ility”) SRDs

 Usability

 Low-latency, high-performance analysis user interfaces

 Show undo/redo, data synchronization, user customizable displays

 Data Provenance

 Tracking and preserving data availability, processing parameters, processing histories, and the users/processes 
who worked on all results

 Configurability

 Processing parameters configurable by station, phase, etc.

 Processing sequences initiated based on configurable criteria

 Maintainability / Extensibility

 Creating data abstraction layers and pluggable algorithm implementation patterns

 Deployment

 A variety of deployments are required.  Will demonstrate a data center deployment supporting local and 
remote interactive analysis.

 Approach: Demonstrate requirements through the implementation of 
select user scenarios
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User Scenario (1/3) – Interactive Analysis
 Analyst selects data (time interval or selected event)

 Views waveforms, signal detections, and events

 Interacts with waveforms

 Scroll, pan, zoom, scale, and filter

 Works with signal detections and events

 Create signal detections, create events, modify certain signal detection/event 
parameters

 Undo / redo certain operations

 Marks data analysis complete

 Mark processing stage complete

 Receives notifications about other Analyst or System activity

 Option to update display to show changes

 Views Data provenance for events & signal detections

 Alternate scripting interface to access waveform, signal detection, event 
hypotheses, etc.
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User Scenario (2/3) – OSD support

 Implement database access abstraction
 SCRUD Java Code APIs implemented in Java DAOs

 Partial entity classes developed for waveforms, signal detections, 
events, processing sequences, and processing stages

 REST-ful HTTP / JSON SCRUD APIs partially implemented to evaluate 
performance

 Implement data distribution (pub/sub) both with serialized 
Entity classes & using the claim check pattern
 Publications may trigger 

 Processing sequence execution

 Notifications to other Analysts

 Implement data model and persistence updates in order to 
record and display provenance and event history
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User Scenario (3/3) – PSC support

 Define and execute mock processing sequences for automated 
processing of signal detections and event hypotheses
 Processing Sequences predefined and persisted in textual format (BPMN 2.0 

XML standard)

 OSD loads Processing Sequences into Entity classes

 Use stubbed domain services accessing stubbed Plugins

 Processing sequences executed based on pub/sub data distribution and 
direct REST-based invocation

 Implement interfaces based on Entity classes

 Geophysics algorithm implementations possible, not required

 Demonstrate Processing Sequences triggered by OSD callbacks, e.g.
 Analyst modifying Signal Detection attribute

 Analyst modifying an Event attribute

 Analyst marking processing stage complete
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CURRENT PROTOTYPE STATUS
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Current Prototype Status - Overview
(1 of 2)
 Focus: Signal detection automated processing and analysis

 User Interface: Waveform display and signal detection table

 Scroll, pan, zoom and scale waveforms

 Create & re-time phase-labeled signal detections, storing and publishing new/updated 
signal detection entities via the OSD API

 Competing desktop and browser-based implementations (Netbeans and OWF, 
respectively)

 Application Control: Automated execution of mock signal detection processing 
sequences via the PSC mechanism

 Selected COTS BMPN engine (Activiti)

 Developed an initial PSC prototype

 Object Storage & Distribution: Storage/retrieval and distribution of signal 
detection & waveform entities

 Load waveform data into the display via the OSD

 Store and retrieve signal detection entities via the OSD

 Notify subscribers via pub/sub (RabbitMQ) whenever signal detections are created or 
modified
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Current Prototype Status - Overview
(2 of 2)
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User Interface Prototyping Status (1 of 2)

20

Container (docker)

PSC App (Spring Boot)

Post SD Update Sequence 
Definition (BPMN XML)

Load defn. at start-up time

Feature Measurement 
Control

Step 1 HandlerStep 1 HandlerFM Handler …

RabbitMQ
Analyst UI
(Netbeans, OWF)

PSC (Activiti)

SD SequenceSD SequenceSD SequenceSD SequenceSD SequenceSD Sequence
Post SD Seq. …

w
o

rk
er

 p
o

o
l

OSD (Hibernate)

SD Display

…

…

(Oracle or 
Derby)

Signal 
Detection DAO

SD DAO

RabbitMQ

Post SD update 
claim check 

pub/sub

Store SD
Retrieve via 
claim check 
& store SD

User Interface 
Prototype



User Interface Prototyping Status (2 of 2)

 Developed initial Netbeans/JavaFX signal detection displays 
 Implemented a waveform plotting display

 Implemented a map display

 Implemented event and signal detection table displays

 Developed initial OWF/WebGL signal detection displays
 Implemented a waveform plotting display

 Implemented a map display
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Netbeans Display Prototype – Signal Detection
(1 of 2)
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Netbeans Display Prototype – Signal Detection
(2 of 2)
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Each tab is a “top component” that can 
be docked, undocked, closed, 
reopened, resized, etc.

NetBeans remembers user layout 
settings between sessions.



OWF Display Prototype – Default and 
Custom Dashboards (2 of 3)
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Design and save Analyst display layouts 
(dashboards):

- Partition the display space
- Select desktop, accordion, tabbed, and 

portal layouts for partitions
- Save display layouts & select upon login 

or configure as default

Design and save Analyst display layouts 
(dashboards):

- Select Widgets to display in each 
partition of the dashboard (drag and 
drop)

- E.g. waveform display, signal detection 
list, event detection list, map, etc.



OWF Display Prototype – Map & Signal 
Detection (1 of 3)
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Google Earth

Highstocks Waveforms

Action list (WebSockets)



OWF Display Prototype – Map & Signal 
Detection (2 of 3)
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Windows behavior is similar to an RCP –
here each is undocked into a desktop type 
view.



OWF Display Prototype – WebGL 
Waveform Display
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Recently replaced highcharts with three.js webGL 
solution for waveform displays due to 
zoom/scaling performance limitations of 
highcharts

WebGL:
- Smooth, responsive simultaneous panning, 

scaling & zooming of multiple waveforms
- Tested with 500 waveforms, 50K points each
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Current Prototype Status –
Application Control
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Application Control
Prototyping Status (1/4)
 Selected COTS BMPN engine (Activiti) as the basis for the PSC 

mechanism
 Traded Activiti, JBoss BPMN, Spring Batch (see backup for summary 

comparison)

 Developed an initial PSC prototype, including:
 Execution of mock signal detection post-processing sequences based 

on Analyst actions (create & update)

 Parallel execution of mock automated signal detection processing 
sequences

 Processing sequence steps delegated to domain services via 
RabbitMQ & REST request/response messaging interfaces
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Application Control
Prototyping Status (2/4)
 PSC COTS evaluation focused on two primary technologies:

 Business Process Management (BPM) Engines

 Workflow engines providing for the definition and execution of Business 
Process Model and Notation (BPMN) 2.0 standard processes (BPMN 
standard: www.bpmn.org)

 Prototyped Activiti BPM

 Selected for executable architecture development

 Java Batch Processing Engines (JSR 352)

 “Comprehensive framework designed to enable the development of 
robust batch applications”

– “Provides reusable functions that are essential in processing large volumes of 
records, including logging/tracing, transaction management, job processing 
statistics, job restart, skip, and resource management”

 Prototyped Spring Batch
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Application Control
Prototyping Status (3/4): Activiti/BPMN
 Activiti provides sequence definition and execution

 Visual sequence definition (Activiti Designer Eclipse plugin) produces BPMN 2.0 XML processing definitions

 Engine executes standard BPMN 2.0 XML definitions

 Designer and engine are separable – engine works with standard BPMN 2.0 XML 

 Activiti Engine is a multi-threaded runtime engine
 Built on Spring

 Can be embedded in any Java application (Spring or not), standalone or as a web application

 BPMN supports
 Conditional, looped, and parallel tasks

 Nested sequence (invoke one sequence from another sequence)

 Timer, message driven, and rule based execution

 REST, Camel & Mule ESB integration (e.g. initiate Activiti process from Mule, invoke Mule service from Activiti task)

 Tasks can execute scripts and shell operations

 Transactional sequences

 Supports user tasks (require human intervention)
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Application Control
Prototyping Status (4/4): Spring Batch
 Runtime provides multi-threaded execution of batch job definitions

 Built on Spring

 Can be deployed standalone or as a web application

 Transactional tasks

 Supports remote partition-based process execution

 Job definitions support
 Conditional, looped, and parallel tasks

 Nested sequence (invoke one sequence from another sequence)

 Message driven execution

 Camel & Mule ESB integration (e.g. initiate Activiti process from Mule, invoke Mule service from Activiti task)

 Tasks can execute scripts and shell operations

 Supports user tasks (require human intervention)

 Limitations
 No visual modeling support - team experienced difficulties developing complex sequences

 No rule engine integration for rule-based job execution

 No timer-based flow job execution

 Limited practical documentation

33
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Data Access Prototyping Status (1 of 2)
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Data Access Prototyping Status (2 of 2)

 Developed initial Java COI entity classes

 Developed Waveform and Signal Detection Data Accessor 
Objects (DAOs) providing SCRUD access to Waveform and 
Signal Detection entities stored in the DB

 Developed an initial OSD data distribution prototype
 Pub/sub distribution of Signal Detection entities via RabbitMQ

 Claim check pattern (DB reference provided via messaging, used by 
consumer to retrieve the entity from the DB)

 Direct JSON serialization of entity

 Demonstrated subscription-based distribution of newly 
created/modified Signal Detections entities from the Analyst 
UI to the PSC for mock post processing
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Next Iteration Goals

 Design and develop initial prototypes for:
 Plugin deployment and binding

 Event history and processing parameter provenance

 Undo/redo

 Select browser vs. RCP user interfaces

 Evaluate performance of REST-based data access

 Begin development of event analysis scenario
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BACKUP
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TECHNOLOGY EVALUATION 
SUMMARY
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Technology Evaluation - Overview
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1. Technology Evaluation – Object 
Relational Mapping (data access code API)
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Candidate
Solution

Solution Type Summary Assessment

Java

Hibernate

Java Object 
Relational 
Mapping 
(ORM) OSS

Advantages: Leading ORM candidate for Java. Hibernate Query Language (HQL) could provide both 
application and researcher level access to underlying COI objects. JPA provider. 

Disadvantages: A dependence on HQL could introduce a tight coupling to Hibernate. 

Lower 
database

solution 
coupling

Higher
database

solution 
coupling

Open JPA
Java ORM 
OSS

Advantages: JPA provider. 

Disadvantages:  ORM features supported through embedded SQL. Not a prevalent software solution.

Apache 
Cayenne

Java ORM 
OSS

Advantages: Supports Remote Object Persistence

Disadvantages: CayenneModeler required for mapping. Not a prevalent software solution.

Apache 
Empire-DB

Java RDBMS 
Abstraction 
OSS

Advantages: Database interactions more easily optimized since interactions are at such a low level. 

Disadvantages: Database abstraction layer (not an ORM). SQL-centric. Not a prevalent software 
solution.

Apache 
Torque

Java ORM 
OSS

Advantages: Uses XML that describes the database schema, which avoids reliance on reflection.

Disadvantages: Requires that domain model extend Torque specific classes. Not a prevalent software 
solution. 

C++

ODB

C++ ORM 
OSS

Advantages: Leading ORM candidate for C++. Does not require manual entry of mapping code. 

Disadvantages: Developed by Code Synthesis, located in South Africa. Does not provide C++ object 

to relational database mapping for existing DB tables.

Lower 
coupling

Higher
coupling

QxORM

C++ ORM 
OSS

Advantages: Supports object relational mapping with MySQL, SQLite, PostgreSQL, Oracle, and SQL 
Server databases.

Disadvantages: Market usage is unknown and documentation is limited. 



2. Technology Evaluation – Inter-process 
Communication (pub/sub data distribution)

43

Name Standards 
Language 

Support
Advantages Disadvantages

RTI DDS

DDS

JMS

REST

SOAP

C, C++

C#

Java

Ada

 Standards-Based

 Cross-Language Support

 Designed for low-latency, high-throughput with configurable 

QoS

 Flexible communication patterns & configurable transports

 Open-source version available with commercial support from 

RTI

 Generally considered to be higher performance than 

brokered solutions

 Open-source license is more restrictive than for other 

solutions

 Many features are only available in the commercial edition

 Appears to be less popular than other solutions (based on 

Google Trends)

 Configurable QoS introduces complexity relative to other 

solutions

 Past prototyping efforts have struggled with product 

complexity

Qpid
AMQP

JMS

Java

C, C++

C#

Ruby

Perl

Python

 Standards-Based

 Cross-Language Support

 Free OSS with community support

 Appears to be less popular than other solutions (based on 

Google Trends)

ActiveMQ 

/ Apollo

AMQP

STOMP

REST

XMPP 

JMS 1.1

Java

C, C++

C#

Ruby

Perl

Python\

 Standards-Based

 Cross-Language Support

 Free OSS with community support

 Mature & highly stable (widely used since early 2000s)

 Highly popular

 Performance limitations at scale (Apollo subproject attempts 

to address these, but is not yet a full-featured product)

 Interest in ActiveMQ appears to be declining in recent years 

(based on Google trends)

RabbitMQ
AMQP

STOMP

Java

C++

.NET

Ruby

Perl

Python

 Standards-Based

 Cross-Language Support

 Free OSS with community support

 Commercial support available from Pivotal

 Highly popular (highest search term frequency on Google 

Trends)

 Favorable performance on a number of benchmarks

 Broker is implemented in Erlang (not necessarily a 

disadvantage)

ZeroMQ None

Java

C, C++

C#

Ruby

Perl

Python

 Cross-Language Support

 Free OSS with community support

 Generally considered to be higher performance than 

brokered solutions

 Not standards-based

 Appears to be less popular than other solutions (based on 

Google Trends)



3. Technology Evaluation –
Application Control

44

Category Candidate 
Solution

Summary Assessment

Enterprise Java 
Application 
Frameworks

Java EE

Advantages: Widely-used open standards with large development community. Provides a robust 
platform for development of scalable, fault-tolerant, distributed processing architectures.

Disadvantages: EJB standard prohibits use of native libraries and direct thread creation, limiting 
design options supporting non-JVM languages.

Spring Framework

Advantages: Widely-used open-source solution with large development community. Provides a 
robust platform for development of scalable, fault-tolerant, distributed processing architectures. 

Disadvantages: Not standards-based.

Stream 
Processors

Apache Storm

Advantages: Open-source solution with significant industry interest. Provides a robust platform for 
development of scalable, fault-tolerant, distributed processing architectures. Supports multiple 
development languages.

Disadvantages: New offering. Not standards-based.

Apache Samza

Advantages: Provides a robust platform for development of scalable, fault-tolerant, distributed 
processing architectures.

Disadvantages: New offering that has yet to establish significant industry interest. Not standards-
based. Does not support multiple languages (Java only).

Apache S4

Advantages: Provides a robust platform for development of scalable, fault-tolerant, distributed 
processing architectures. Supports multiple development languages.

Disadvantages: Little industry interest and development activity. Not standards-based.

Enterprise Service 
Bus

WS02 ESB

Advantages: Provides a robust platform for integration of heterogeneous systems via 
standardized messaging as part of a service-oriented architecture.

Disadvantages: Design strengths not well aligned to the end-state modernized architecture.

Complex Event 
Processor 

Esper

Advantages: Provides a robust platform for development of scalable, fault-tolerant, distributed 
processing architectures.

Disadvantages: Specialized, query-based architecture does not fit processing needs particularly 
well. Not standards-based. Does not support multiple languages (Java only).



4. Technology Evaluation –
Processing Sequence Control
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Name Standards Advantages Disadvantages

Activiti 

BPMN
BPMN 2.0

 Standards-Based

 Free OSS with community support

 Strong community, active feature development

 High-quality documentation

 Eclipse plugin integration for visual modeling

 Less mature than JBoss BPMN

 Commercial support by a smaller, less well known 

company

JBoss

BPMN
BPMN 2.0

 Standards-Based

 Free OSS with community support

 Mature solution

 Decline in community development activity

 Poor documentation

 Difficult to work with

Spring 

Batch
JSR 352

 Standards-Based

 Free OSS with community support

 No visual modeling support - team experienced 

difficulties developing complex sequences

 No rule engine integration for rule-based job execution

 No timer-based flow job execution

 Limited practical documentation



5. Technology Evaluation –
Desktop User Interface 
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Candidate Solution &
Widget toolkit

Language Summary Assessment

Netbeans / Swing

Java (RCP) Advantages: Netbeans is a dominant Java UIF candidate. Swing widgets integrate alongside 
JavaFX code. OSGi open standard. Oracle supported. Large community.

Disadvantages: Oracle (the company) dependence. 

Eclipse / Jface (SWT)

Java (RCP) Advantages: Eclipse is a dominant  Java UIF candidate. OSGi open standard IBM supported. Very 
stable. Large community.
Disadvantages: Eclipse learning curve is the most difficult. JFace/SWT is slightly dated compared 
to Swing and JavaFX2. IBM dependence.

Qt Creator / Qt

C++ Advantages: Qt is the leading C++ UIF candidate. GUI widgets are fast and native: strongest cross 
platform GUI behavior.

Disadvantages: Not an RCP solution. Not OSGi. Smaller community than Java. 

Netbeans / JavaFX2

Java (RCP) Advantages: Netbeans is the leading Java UIF candidate. JavaFX2 has most modern Java GUI 
elements. OSGi open standard. Oracle supported. Large community.
Disadvantages: JavaFX2 2D plotting package is beautiful but has serious scaling issues. Oracle 
dependence. 

NA / wxWidgets

C++ Advantages: Native mode widget toolkit, also contains inter-process communication layer

Disadvantages: Not an RCP solution or a UIF - mainly a standalone widget toolkit. Smaller 
community. 

NA / XUL

XML & Java Advantages: XML markup language for GUI construction. Quick study for web designers.

Disadvantages: Not an RCP solution or a UIF - mainly a standalone widget toolkit. Not a prevalent 
solution.



Technology Evaluation – In-Memory 
Caching/Data Grid
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Name
Client Language 

Support
Advantages Disadvantages

JCS Java
 Cross-Language Support

 Free OSS with community support

 Java only (no cross-language support)

 Appears to be less widely used/popular than other solutions (e.g. 

Redis, memcached)

 It is not clear whether commercial support is available

 Limited feature set relative to other solutions surveyed

 Does not support partitioning (only replication)

memcached

C, C++

Java, Python Ruby

Perl

C#

 Well established and mature

 Widely used highly popular

 Cross-Language Support

 Free OSS with community support

 Commercial support available

 Popularity appears to be declining (based on Google Trends)

EHCache

Java

C++ &C# 

(commercial 

version)

 Cross-Language Support

 Free OSS version available

 Commercial support available from Terracotta

 Strong feature set, including partitioning, replication, 

transactions, security, etc.

 Many features are only available in the commercial edition

 Limited cross-language support (and only in the commercial 

edition)

 Appears to be less widely used/popular than other solutions (e.g. 

Redis, memcached)

 Popularity appears to be declining (based on Google Trends)

Infinispan

C++

Java

Python

Ruby

C#

 Cross-Language Support

 Free OSS with community support

 Commercial support available from JBoss

 Strong feature set, including partitioning, replication, 

transactions, security, etc.

 Appears to be less widely used/popular than other solutions (e.g. 

Redis, memcached)

Redis

C, C++

Java

Perl

Python

Ruby

C#

Closure

Scala

 Widely used highly popular

 Broad cross-Language Support

 Free OSS with community support

 Commercial support available from Pivotal

 Strong feature set, including partitioning, replication, 

transactions, etc.

 Limited built-in security features

Hazelcast

Java

C++ &C# 

(commercial 

version)

 Cross-Language Support

 Commercial support available from Hazelcast

 Strong feature set, including partitioning, replication, 

transactions, security, etc.

 Many features are only available in the commercial edition

 Limited cross-language support (and only in the commercial 

edition)

 Appears to be less widely used/popular than other solutions (e.g. 

Redis, memcached)

Selection pending determination of need for caching



DOCKER CONTAINER TECHNOLOGY 
OVERVIEW
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Agenda

 What are Linux Containers?

 Containers vs. Virtual Machines

 Why Containers?

 Container Ecosystem

 What is Docker?

 Container Use Cases

 Development Lifecycle Concepts

 Integration Concepts

 Orchestration Concepts
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What Are Linux Containers?

 Lightweight OS-level virtualization technology

 Multiple, isolated systems (containers) run on a single Linux 
host, sharing the underlying kernel
 Control Groups provide resource isolation (CPU, memory, block I/O, 

network, etc.)

 Namespaces isolate applications’ view of the OS environment 
(processes, networking, file system, etc.)

 Alternative paradigm to virtual machines
 Containers offer greatly reduced start-up time & resource utilization, 

as well as near-native speed
 CPU performance – native

 Memory – Very small overhead

 Network – Very small overhead (can be optimized to near zero)

 Individual applications & services are typically deployed in separate 
containers (100s-1000s of containers per node is common)
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Containers vs. Virtual Machines
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• Unlike virtual machines, containers provide separate virtual OS 
environments that share the underlying host OS directly, without 
the need for separate guest OS instances or hypervisor software
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Why Containers?
Common Use Cases

 Isolate individual applications

 Constrain application resource utilization

 CPU, memory, network & storage

 Manage heterogeneous application dependencies across  complex systems

 Multiple software stacks, third party tools & versions

 Multiple Linux flavors & versions

 Provide orchestration of applications across clustered system deployments

 Support application scalability and fault tolerance

 Provide a consistent application runtime for development through 
operational deployment
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Container Ecosystem

 A thriving community of open-source container technologies has emerged in 
the last few years supporting  the development and deployment of 
container-based systems

 Large impact on industry with significant backing and community interest
 Widely used in modern PaaS solutions – e.g. Amazon EC2, DigitalOcean, Google Compute Engine, Microsoft 

Azure, OpenStack, QEMU/KVM, Vagrant and Vmware

 Widely used in corporate IT infrastructure - Google’s infrastructure runs nearly entirely on containers (2 billion+ 
provisioned per week)

 Docker has emerged as the dominant container project around which the 
majority of these technologies is currently developed
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Orchestration

Container
Management

Host OS

Fleet

Swarm
Compose
Machine

OS shared across 
containers

Definition,  build, & 
deployment of containerized 
apps

Load-balancing, scalability & 
high availability for distributed, 
container-based systems

Kubernetes Mesos

Docker Rocket LXC

RedHat
Linux

CentOS CoreOS Ubuntu Project Atomic



What is Docker?
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• Open-source project providing  
container abstraction and management 
tooling

• Container Definition & Build

– Build containers from pre-defined 
images

– Define images declaratively by 
specifying new layers on top of existing 
images, from the base OS up

• Container Repositories

– Manage container images for projects 
& communities using shared 
repositories

– Publish and consume public images 
with docker hub (the definitive public 
repository)

• REST API & CLI

– Define, build, deploy & manage 
containers via CLI and RESTful service 
interfaces
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Potential US NDC/IDC Container Use 
Cases
 Development Lifecycle

 Provide a common software platform for application developers across 
environments, from development, to I&T and operations

 Integration
 Enable integration of heterogeneous applications developed by 

multiple organizations on a common platform

 Isolation, resource constraints, support for multiple software languages & 
stacks, third-party COTS, versions, OS versions, etc. as needed

 Orchestration
 Provide software stack-agnostic, scalable, fault-tolerant orchestration 

of applications and services in a distributed environment

 Deployment
 Support for deployment to bare metal, VM and cloud platforms
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Development Lifecycle Concepts

 A common application platform is provided to US NDC/IDC contributors as 
a set of base container images

 Includes OS, third-party tools & libraries, core framework software

 Provided through a shared container registry

 Applications are developed using the base platform containers and are 
packaged as new container images layered onto the base platform

 Application containers are delivered back to the shared container registry

 Continuous build & integration includes automated build and test of 
containerized applications & services

 Application containers are deployed into the US NDC/IDC environments as 
part of the development lifecycle, including development, I&T and 
operations
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Integration Concepts

 The system integrator organization maintain the 
configuration needed to deploy and manage the set of 
application containers comprising the system
 System cluster definition

 Application definitions

 Application resource constraints

 Network and persistent storage interface management

 High-availability & scalability policies

 Multiple libraries, third-party tools, versions, etc. are 
encapsulated within individual application containers where 
they are required
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