
Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed
Martin Corporation, for the U.S. Department of Energy’s National Nuclear Security Administration under contract DE-AC04-94AL85000.

IDC Reengineering Phase 2

Prototyping Status

Ryan Prescott

22 June 2015

SAND Number:

1

SAND2015-4822PE

Agenda
 Prototyping Overview

 Timeline

 Executable Architecture Prototype

 Definition

 Conceptual Overview

 Assumptions

 Current Technologies

 Key Features

 User Scenario

 Current Prototype Status
 Overview

 User Interface Prototyping Status

 Netbeans Display Prototype

 OWF Display Prototype

 Application Control Prototyping Status

 Data Access Prototyping Status

 Next Iteration Goals

 Backup

Prototyping Overview (1 of 2)

 The US NDC Modernization project plan includes a
software prototyping component supporting
definition of the system architecture

 Prototyping is intended to facilitate:

 Definition of high-level design patterns

 Demonstration of key architecture concepts & features

 Selection of representative technologies
 System platform

 Software languages

 Third-party software

3

Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4

2014 2015 2016

Timeline
 The project plan includes two prototyping phases:

 Exploratory Prototyping, FY2014

 Focused on technology evaluation

 Software language selection and third-party software evaluations
for key software mechanisms

 See backup slides for technology evaluation summary

 Executable Architecture Prototyping, FY2015-FY2016

 Focused on demonstration of key system features and
mechanisms

 Following a SCRUM process with 3-week sprints

4

US NDC
Modernization
Elaboration
Phase

Executable Architecture Prototype Development
Executable Architecture

Prototype Complete

10/2016Exploratory Prototyping

EXECUTABLE ARCHITECTURE
PROTOTYPE

5

Agenda
 Prototyping Overview

 Timeline

 Executable Architecture Prototype

 Definition

 Conceptual Overview

 Assumptions

 Current Technologies

 Key Features

 User Scenario

 Current Prototype Status
 Overview

 User Interface Prototyping Status

 Netbeans Display Prototype

 OWF Display Prototype

 Application Control Prototyping Status

 Data Access Prototyping Status

 Next Iteration Goals

 Backup

Executable Architecture Prototype –
Definition
 Elaboration-phase activity to implement a portion of the

system architecture as defined in the Architecture Document
and Analysis Model

 Determine if it is feasible to implement the architecture
 Must satisfy system requirements

 Feedback loop to update architecture when needed

 Executable Architecture is a prototype
 The intent is to validate key features & mechanisms of the

architecture rather than to develop an early version of the system

7

Executable Architecture Prototype –
Conceptual Overview

8

Orchestration -
PSC Mechanism

Analyst User Interface

Data Store

Data Access - Object Storage & Distribution mechanism (OSD)

Data SCRUD Access

Code API (DAOs) HTTP REST API

Data Distribution

Pub/Sub Claim Check Messaging

Processing Sequence
Definitions

Services – e.g.
Signal Detection
SD Association
Waveform Correlation

PluginPluginPlugin

Request /
Response

UI ComponentUI ComponentUI Component

Subscribe
callback

Both Supported

Both Supported Retrieve, Store &
publish

User
Interface

Application
Control

Data Access

Domain
Services

REST/HTTP API

Code API

Executable Architecture Prototype –
Assumptions (1 of 3: platform and languages)
 Platform:

 Infrastructure:

 Distributed deployment: bare metal, private cloud (e.g. OpenStack), possibly Cloud

 OS: Centos 7+ (current) / RHEL 7+ (future)

 Storage architecture: RDBMS (Oracle, Postgres, etc.)

 Software Development Languages:

 User Interface: Java &/or JavaScript (open trade re: desktop vs. browser-
based UI)

 Application Control & Orchestration: Java

 Domain Services:

 Multiple supported (C++, Java, Python)

 Only Java demonstrated

 Data Access:

 Code API: Java (C++ TBD)

 REST API: Multiple supported (C++, Python, Java, etc.), Java included in prototype

9

Executable Architecture Prototype –
Assumptions (2 of 3: third-party software)
 User Interface:

 Browser-Based

 Framework: Ozone Widget Framework

 Waveform displays: OpenGL (three.js)

 Map displays: TBD (Worldwind, Google Maps)

 Desktop

 Framework: Netbeans RCP

 Waveform displays: JavaFX charts, OpenGL (TBD)

 Map displays: TBD (Worldwind, Google Maps)

 Processing Sequence Controller mechanism (PSC): Activiti BPMN Engine

 Domain Service Encapsulation: docker (TBD - see backup for docker overview)

 Inter-process Communications:
 Data Distribution (pub/sub): RabbitMQ / JSON

 Service Invocation (request/response): HTTP(S) / JSON (REST)

 Java: Spring REST

 Data Access (SCRUD):
 Code API - Java: JPA (Hibernate), C++ (support TBD)

 REST API: Multiple clients supported Spring REST included in prototype

 Data Access (Distribution): RabbitMQ / JSON

10

Executable Architecture Prototype –
Assumptions (3 of 3: Technology Summary)

11

Data Store

Processing Sequence
Definitions

Request /
Response

Subscribe
callback

Both Supported

Both Supported Retrieve, Store &
publish

A
ct

iv
e

Tr
ad

e

Orchestration -
PSC Mechanism

Services – e.g.
Signal Detection
SD Association
Waveform Correlation

PluginPluginPlugin

Analyst User Interface UI ComponentUI ComponentUI Component

Data Access - Object Storage & Distribution mechanism (OSD)

SCRUD Data APIs

Code API (DAOs) HTTP REST API

Data Distribution

Pub/Sub Claim Check Messaging

Activiti BMP

All: RabbitMQ /
JSON

Java: JPA (Hibernate),
Spring REST

All: Docker (TBD)
Java: Spring Boot

Browser: OWF / WebGL (three.js)

Desktop: Netbeans / JavaFX

REST/HTTP API

Code API

User
Interface

Application
Control

Data Access

Domain
Services

OS: Centos 7 / RHEL 7
Distributed Platform : OpenStack VM cluster

Persistence: RDBMS (e.g.
Oracle, Postgres, Derby, etc.)

Java &/or
JavaScript

Java
Java,
C++,

Python

Code API: Java, C++ TBD, Python TBD
REST API: Java (focus), Python, C++

Executable Architecture Prototype –
Key Features
 Implemented features demonstrate fundamental concepts

 PSC: processing sequence definition, execution, control

 OSD/COI: data models, persistence, data distribution, data provenance

 UI: modern frameworks, extensible, undo/redo, OSD/PSC integration

 Features demonstrate high risk architectural aspects and non-functional (“-ility”) SRDs

 Usability

 Low-latency, high-performance analysis user interfaces

 Show undo/redo, data synchronization, user customizable displays

 Data Provenance

 Tracking and preserving data availability, processing parameters, processing histories, and the users/processes
who worked on all results

 Configurability

 Processing parameters configurable by station, phase, etc.

 Processing sequences initiated based on configurable criteria

 Maintainability / Extensibility

 Creating data abstraction layers and pluggable algorithm implementation patterns

 Deployment

 A variety of deployments are required. Will demonstrate a data center deployment supporting local and
remote interactive analysis.

 Approach: Demonstrate requirements through the implementation of
select user scenarios

12

User Scenario (1/3) – Interactive Analysis
 Analyst selects data (time interval or selected event)

 Views waveforms, signal detections, and events

 Interacts with waveforms

 Scroll, pan, zoom, scale, and filter

 Works with signal detections and events

 Create signal detections, create events, modify certain signal detection/event
parameters

 Undo / redo certain operations

 Marks data analysis complete

 Mark processing stage complete

 Receives notifications about other Analyst or System activity

 Option to update display to show changes

 Views Data provenance for events & signal detections

 Alternate scripting interface to access waveform, signal detection, event
hypotheses, etc.

13

User Scenario (2/3) – OSD support

 Implement database access abstraction
 SCRUD Java Code APIs implemented in Java DAOs

 Partial entity classes developed for waveforms, signal detections,
events, processing sequences, and processing stages

 REST-ful HTTP / JSON SCRUD APIs partially implemented to evaluate
performance

 Implement data distribution (pub/sub) both with serialized
Entity classes & using the claim check pattern
 Publications may trigger

 Processing sequence execution

 Notifications to other Analysts

 Implement data model and persistence updates in order to
record and display provenance and event history

14

User Scenario (3/3) – PSC support

 Define and execute mock processing sequences for automated
processing of signal detections and event hypotheses
 Processing Sequences predefined and persisted in textual format (BPMN 2.0

XML standard)

 OSD loads Processing Sequences into Entity classes

 Use stubbed domain services accessing stubbed Plugins

 Processing sequences executed based on pub/sub data distribution and
direct REST-based invocation

 Implement interfaces based on Entity classes

 Geophysics algorithm implementations possible, not required

 Demonstrate Processing Sequences triggered by OSD callbacks, e.g.
 Analyst modifying Signal Detection attribute

 Analyst modifying an Event attribute

 Analyst marking processing stage complete

15

CURRENT PROTOTYPE STATUS

16

Agenda
 Prototyping Overview

 Timeline

 Executable Architecture Prototype

 Definition

 Conceptual Overview

 Assumptions

 Current Technologies

 Key Features

 User Scenario

 Current Prototype Status
 Overview

 User Interface Prototyping Status

 Netbeans Display Prototype

 OWF Display Prototype

 Application Control Prototyping Status

 Data Access Prototyping Status

 Next Iteration Goals

 Backup

Current Prototype Status - Overview
(1 of 2)
 Focus: Signal detection automated processing and analysis

 User Interface: Waveform display and signal detection table

 Scroll, pan, zoom and scale waveforms

 Create & re-time phase-labeled signal detections, storing and publishing new/updated
signal detection entities via the OSD API

 Competing desktop and browser-based implementations (Netbeans and OWF,
respectively)

 Application Control: Automated execution of mock signal detection processing
sequences via the PSC mechanism

 Selected COTS BMPN engine (Activiti)

 Developed an initial PSC prototype

 Object Storage & Distribution: Storage/retrieval and distribution of signal
detection & waveform entities

 Load waveform data into the display via the OSD

 Store and retrieve signal detection entities via the OSD

 Notify subscribers via pub/sub (RabbitMQ) whenever signal detections are created or
modified

18

Current Prototype Status - Overview
(2 of 2)

19

Container (docker)

PSC App (Spring Boot)

Post SD Update Sequence
Definition (BPMN XML)

Load defn. at start-up time

Feature Measurement
Control

Step 1 HandlerStep 1 HandlerFM Handler …

RabbitMQ
Analyst UI
(Netbeans, OWF)

PSC (Activiti)

SD SequenceSD SequenceSD SequenceSD SequenceSD SequenceSD Sequence
Post SD Seq. …

w
o

rk
er

 p
o

o
l

OSD (Hibernate)

SD Display

…

…

(Oracle or
Derby)

Signal
Detection DAO

SD DAO

RabbitMQ

Post SD update
claim check

pub/sub

Store SD
Retrieve via
claim check
& store SD

User Interface Prototyping Status (1 of 2)

20

Container (docker)

PSC App (Spring Boot)

Post SD Update Sequence
Definition (BPMN XML)

Load defn. at start-up time

Feature Measurement
Control

Step 1 HandlerStep 1 HandlerFM Handler …

RabbitMQ
Analyst UI
(Netbeans, OWF)

PSC (Activiti)

SD SequenceSD SequenceSD SequenceSD SequenceSD SequenceSD Sequence
Post SD Seq. …

w
o

rk
er

 p
o

o
l

OSD (Hibernate)

SD Display

…

…

(Oracle or
Derby)

Signal
Detection DAO

SD DAO

RabbitMQ

Post SD update
claim check

pub/sub

Store SD
Retrieve via
claim check
& store SD

User Interface
Prototype

User Interface Prototyping Status (2 of 2)

 Developed initial Netbeans/JavaFX signal detection displays
 Implemented a waveform plotting display

 Implemented a map display

 Implemented event and signal detection table displays

 Developed initial OWF/WebGL signal detection displays
 Implemented a waveform plotting display

 Implemented a map display

21

Netbeans Display Prototype – Signal Detection
(1 of 2)

22

Signal Detections

Events

Waveforms
(JavaFX Charts)

Netbeans Display Prototype – Signal Detection
(2 of 2)

23

Each tab is a “top component” that can
be docked, undocked, closed,
reopened, resized, etc.

NetBeans remembers user layout
settings between sessions.

OWF Display Prototype – Default and
Custom Dashboards (2 of 3)

24

Design and save Analyst display layouts
(dashboards):

- Partition the display space
- Select desktop, accordion, tabbed, and

portal layouts for partitions
- Save display layouts & select upon login

or configure as default

Design and save Analyst display layouts
(dashboards):

- Select Widgets to display in each
partition of the dashboard (drag and
drop)

- E.g. waveform display, signal detection
list, event detection list, map, etc.

OWF Display Prototype – Map & Signal
Detection (1 of 3)

25

Google Earth

Highstocks Waveforms

Action list (WebSockets)

OWF Display Prototype – Map & Signal
Detection (2 of 3)

26

Windows behavior is similar to an RCP –
here each is undocked into a desktop type
view.

OWF Display Prototype – WebGL
Waveform Display

27

Recently replaced highcharts with three.js webGL
solution for waveform displays due to
zoom/scaling performance limitations of
highcharts

WebGL:
- Smooth, responsive simultaneous panning,

scaling & zooming of multiple waveforms
- Tested with 500 waveforms, 50K points each

Agenda
 Prototyping Overview

 Timeline

 Executable Architecture Prototype

 Definition

 Conceptual Overview

 Assumptions

 Current Technologies

 Key Features

 User Scenario

 Current Prototype Status
 Overview

 User Interface Prototyping Status

 Netbeans Display Prototype

 OWF Display Prototype

 Application Control Prototyping Status

 Data Access Prototyping Status

 Next Iteration Goals

 Backup

Current Prototype Status –
Application Control

29

Container (docker)

PSC App (Spring Boot)

Post SD Update Sequence
Definition (BPMN XML)

Load defn. at start-up time

Feature Measurement
Control

Step 1 HandlerStep 1 HandlerFM Handler …

RabbitMQ
Analyst UI
(Netbeans, OWF)

PSC (Activiti)

SD SequenceSD SequenceSD SequenceSD SequenceSD SequenceSD Sequence
Post SD Seq. …

w
o

rk
er

 p
o

o
l

OSD (Hibernate)

SD Display

…

…

(Oracle or
Derby)

Signal
Detection DAO

SD DAO

RabbitMQ

Post SD update
claim check

pub/sub

Store SD
Retrieve via
claim check
& store SD

Application
Control

Prototype

Application Control
Prototyping Status (1/4)
 Selected COTS BMPN engine (Activiti) as the basis for the PSC

mechanism
 Traded Activiti, JBoss BPMN, Spring Batch (see backup for summary

comparison)

 Developed an initial PSC prototype, including:
 Execution of mock signal detection post-processing sequences based

on Analyst actions (create & update)

 Parallel execution of mock automated signal detection processing
sequences

 Processing sequence steps delegated to domain services via
RabbitMQ & REST request/response messaging interfaces

30

Application Control
Prototyping Status (2/4)
 PSC COTS evaluation focused on two primary technologies:

 Business Process Management (BPM) Engines

 Workflow engines providing for the definition and execution of Business
Process Model and Notation (BPMN) 2.0 standard processes (BPMN
standard: www.bpmn.org)

 Prototyped Activiti BPM

 Selected for executable architecture development

 Java Batch Processing Engines (JSR 352)

 “Comprehensive framework designed to enable the development of
robust batch applications”

– “Provides reusable functions that are essential in processing large volumes of
records, including logging/tracing, transaction management, job processing
statistics, job restart, skip, and resource management”

 Prototyped Spring Batch

31

http://www.bpmn.org/

Application Control
Prototyping Status (3/4): Activiti/BPMN
 Activiti provides sequence definition and execution

 Visual sequence definition (Activiti Designer Eclipse plugin) produces BPMN 2.0 XML processing definitions

 Engine executes standard BPMN 2.0 XML definitions

 Designer and engine are separable – engine works with standard BPMN 2.0 XML

 Activiti Engine is a multi-threaded runtime engine
 Built on Spring

 Can be embedded in any Java application (Spring or not), standalone or as a web application

 BPMN supports
 Conditional, looped, and parallel tasks

 Nested sequence (invoke one sequence from another sequence)

 Timer, message driven, and rule based execution

 REST, Camel & Mule ESB integration (e.g. initiate Activiti process from Mule, invoke Mule service from Activiti task)

 Tasks can execute scripts and shell operations

 Transactional sequences

 Supports user tasks (require human intervention)

32

Application Control
Prototyping Status (4/4): Spring Batch
 Runtime provides multi-threaded execution of batch job definitions

 Built on Spring

 Can be deployed standalone or as a web application

 Transactional tasks

 Supports remote partition-based process execution

 Job definitions support
 Conditional, looped, and parallel tasks

 Nested sequence (invoke one sequence from another sequence)

 Message driven execution

 Camel & Mule ESB integration (e.g. initiate Activiti process from Mule, invoke Mule service from Activiti task)

 Tasks can execute scripts and shell operations

 Supports user tasks (require human intervention)

 Limitations
 No visual modeling support - team experienced difficulties developing complex sequences

 No rule engine integration for rule-based job execution

 No timer-based flow job execution

 Limited practical documentation

33

Runtime
Job Definitions

Agenda
 Prototyping Overview

 Timeline

 Executable Architecture Prototype

 Definition

 Conceptual Overview

 Assumptions

 Current Technologies

 Key Features

 User Scenario

 Current Prototype Status
 Overview

 User Interface Prototyping Status

 Netbeans Display Prototype

 OWF Display Prototype

 Application Control Prototyping Status

 Data Access Prototyping Status

 Next Iteration Goals

 Backup

Data Access Prototyping Status (1 of 2)

35

Container (docker)

PSC App (Spring Boot)

Post SD Update Sequence
Definition (BPMN XML)

Load defn. at start-up time

Feature Measurement
Control

Step 1 HandlerStep 1 HandlerFM Handler …

RabbitMQ
Analyst UI
(Netbeans, OWF)

PSC (Activiti)

SD SequenceSD SequenceSD SequenceSD SequenceSD SequenceSD Sequence
Post SD Seq. …

w
o

rk
er

 p
o

o
l

OSD (Hibernate)

SD Display

…

…

(Oracle or
Derby)

Signal
Detection DAO

SD DAO

RabbitMQ

Post SD update
claim check

pub/sub

Store SD
Retrieve via
claim check
& store SDData Access

Prototype

Data Access Prototyping Status (2 of 2)

 Developed initial Java COI entity classes

 Developed Waveform and Signal Detection Data Accessor
Objects (DAOs) providing SCRUD access to Waveform and
Signal Detection entities stored in the DB

 Developed an initial OSD data distribution prototype
 Pub/sub distribution of Signal Detection entities via RabbitMQ

 Claim check pattern (DB reference provided via messaging, used by
consumer to retrieve the entity from the DB)

 Direct JSON serialization of entity

 Demonstrated subscription-based distribution of newly
created/modified Signal Detections entities from the Analyst
UI to the PSC for mock post processing

36

Agenda
 Prototyping Overview

 Timeline

 Executable Architecture Prototype

 Definition

 Conceptual Overview

 Assumptions

 Current Technologies

 Key Features

 User Scenario

 Current Prototype Status
 Overview

 User Interface Prototyping Status

 Netbeans Display Prototype

 OWF Display Prototype

 Application Control Prototyping Status

 Data Access Prototyping Status

 Next Iteration Goals

 Backup

Next Iteration Goals

 Design and develop initial prototypes for:
 Plugin deployment and binding

 Event history and processing parameter provenance

 Undo/redo

 Select browser vs. RCP user interfaces

 Evaluate performance of REST-based data access

 Begin development of event analysis scenario

38

BACKUP

39

TECHNOLOGY EVALUATION
SUMMARY

40

Technology Evaluation - Overview

41

Data Store

Processing Sequence
Definitions

Request /
Response

Subscribe
callback

Both Supported

Both Supported Retrieve, Store &
publish

A
ct

iv
e

Tr
ad

e

Orchestration -
PSC Mechanism

Services – e.g.
Signal Detection
SD Association
Waveform Correlation

PluginPluginPlugin

Analyst User Interface UI ComponentUI ComponentUI Component

Data Access - Object Storage & Distribution mechanism (OSD)

SCRUD Data APIs

Code API (DAOs) HTTP REST API

Data Distribution

Pub/Sub Claim Check Messaging

Activiti BMP

All: RabbitMQ /
JSON

Java: JPA (Hibernate)

Java: Spring Boot

Browser: OWF / WebGL (three.js)

Desktop: Netbeans / JavaFX

REST/HTTP API

Code API

User
Interface

Application
Control

Data Access

Domain
Services

OS: Centos 7 / RHEL 7
Distributed Platform : OpenStack VM cluster

Persistence: RDBMS (e.g.
Oracle, Postgres, Derby, etc.)

Java &/or
JavaScript

Java
Java,
C++,

Python

Code API: Java, C++ TBD, Python TBD
REST API: Java (focus), Python, C++

1

2

3

4

5

1. Technology Evaluation – Object
Relational Mapping (data access code API)

42

Candidate
Solution

Solution Type Summary Assessment

Java

Hibernate

Java Object
Relational
Mapping
(ORM) OSS

Advantages: Leading ORM candidate for Java. Hibernate Query Language (HQL) could provide both
application and researcher level access to underlying COI objects. JPA provider.

Disadvantages: A dependence on HQL could introduce a tight coupling to Hibernate.

Lower
database

solution
coupling

Higher
database

solution
coupling

Open JPA
Java ORM
OSS

Advantages: JPA provider.

Disadvantages: ORM features supported through embedded SQL. Not a prevalent software solution.

Apache
Cayenne

Java ORM
OSS

Advantages: Supports Remote Object Persistence

Disadvantages: CayenneModeler required for mapping. Not a prevalent software solution.

Apache
Empire-DB

Java RDBMS
Abstraction
OSS

Advantages: Database interactions more easily optimized since interactions are at such a low level.

Disadvantages: Database abstraction layer (not an ORM). SQL-centric. Not a prevalent software
solution.

Apache
Torque

Java ORM
OSS

Advantages: Uses XML that describes the database schema, which avoids reliance on reflection.

Disadvantages: Requires that domain model extend Torque specific classes. Not a prevalent software
solution.

C++

ODB

C++ ORM
OSS

Advantages: Leading ORM candidate for C++. Does not require manual entry of mapping code.

Disadvantages: Developed by Code Synthesis, located in South Africa. Does not provide C++ object

to relational database mapping for existing DB tables.

Lower
coupling

Higher
coupling

QxORM

C++ ORM
OSS

Advantages: Supports object relational mapping with MySQL, SQLite, PostgreSQL, Oracle, and SQL
Server databases.

Disadvantages: Market usage is unknown and documentation is limited.

2. Technology Evaluation – Inter-process
Communication (pub/sub data distribution)

43

Name Standards
Language

Support
Advantages Disadvantages

RTI DDS

DDS

JMS

REST

SOAP

C, C++

C#

Java

Ada

 Standards-Based

 Cross-Language Support

 Designed for low-latency, high-throughput with configurable

QoS

 Flexible communication patterns & configurable transports

 Open-source version available with commercial support from

RTI

 Generally considered to be higher performance than

brokered solutions

 Open-source license is more restrictive than for other

solutions

 Many features are only available in the commercial edition

 Appears to be less popular than other solutions (based on

Google Trends)

 Configurable QoS introduces complexity relative to other

solutions

 Past prototyping efforts have struggled with product

complexity

Qpid
AMQP

JMS

Java

C, C++

C#

Ruby

Perl

Python

 Standards-Based

 Cross-Language Support

 Free OSS with community support

 Appears to be less popular than other solutions (based on

Google Trends)

ActiveMQ

/ Apollo

AMQP

STOMP

REST

XMPP

JMS 1.1

Java

C, C++

C#

Ruby

Perl

Python\

 Standards-Based

 Cross-Language Support

 Free OSS with community support

 Mature & highly stable (widely used since early 2000s)

 Highly popular

 Performance limitations at scale (Apollo subproject attempts

to address these, but is not yet a full-featured product)

 Interest in ActiveMQ appears to be declining in recent years

(based on Google trends)

RabbitMQ
AMQP

STOMP

Java

C++

.NET

Ruby

Perl

Python

 Standards-Based

 Cross-Language Support

 Free OSS with community support

 Commercial support available from Pivotal

 Highly popular (highest search term frequency on Google

Trends)

 Favorable performance on a number of benchmarks

 Broker is implemented in Erlang (not necessarily a

disadvantage)

ZeroMQ None

Java

C, C++

C#

Ruby

Perl

Python

 Cross-Language Support

 Free OSS with community support

 Generally considered to be higher performance than

brokered solutions

 Not standards-based

 Appears to be less popular than other solutions (based on

Google Trends)

3. Technology Evaluation –
Application Control

44

Category Candidate
Solution

Summary Assessment

Enterprise Java
Application
Frameworks

Java EE

Advantages: Widely-used open standards with large development community. Provides a robust
platform for development of scalable, fault-tolerant, distributed processing architectures.

Disadvantages: EJB standard prohibits use of native libraries and direct thread creation, limiting
design options supporting non-JVM languages.

Spring Framework

Advantages: Widely-used open-source solution with large development community. Provides a
robust platform for development of scalable, fault-tolerant, distributed processing architectures.

Disadvantages: Not standards-based.

Stream
Processors

Apache Storm

Advantages: Open-source solution with significant industry interest. Provides a robust platform for
development of scalable, fault-tolerant, distributed processing architectures. Supports multiple
development languages.

Disadvantages: New offering. Not standards-based.

Apache Samza

Advantages: Provides a robust platform for development of scalable, fault-tolerant, distributed
processing architectures.

Disadvantages: New offering that has yet to establish significant industry interest. Not standards-
based. Does not support multiple languages (Java only).

Apache S4

Advantages: Provides a robust platform for development of scalable, fault-tolerant, distributed
processing architectures. Supports multiple development languages.

Disadvantages: Little industry interest and development activity. Not standards-based.

Enterprise Service
Bus

WS02 ESB

Advantages: Provides a robust platform for integration of heterogeneous systems via
standardized messaging as part of a service-oriented architecture.

Disadvantages: Design strengths not well aligned to the end-state modernized architecture.

Complex Event
Processor

Esper

Advantages: Provides a robust platform for development of scalable, fault-tolerant, distributed
processing architectures.

Disadvantages: Specialized, query-based architecture does not fit processing needs particularly
well. Not standards-based. Does not support multiple languages (Java only).

4. Technology Evaluation –
Processing Sequence Control

45

Name Standards Advantages Disadvantages

Activiti

BPMN
BPMN 2.0

 Standards-Based

 Free OSS with community support

 Strong community, active feature development

 High-quality documentation

 Eclipse plugin integration for visual modeling

 Less mature than JBoss BPMN

 Commercial support by a smaller, less well known

company

JBoss

BPMN
BPMN 2.0

 Standards-Based

 Free OSS with community support

 Mature solution

 Decline in community development activity

 Poor documentation

 Difficult to work with

Spring

Batch
JSR 352

 Standards-Based

 Free OSS with community support

 No visual modeling support - team experienced

difficulties developing complex sequences

 No rule engine integration for rule-based job execution

 No timer-based flow job execution

 Limited practical documentation

5. Technology Evaluation –
Desktop User Interface

46

Candidate Solution &
Widget toolkit

Language Summary Assessment

Netbeans / Swing

Java (RCP) Advantages: Netbeans is a dominant Java UIF candidate. Swing widgets integrate alongside
JavaFX code. OSGi open standard. Oracle supported. Large community.

Disadvantages: Oracle (the company) dependence.

Eclipse / Jface (SWT)

Java (RCP) Advantages: Eclipse is a dominant Java UIF candidate. OSGi open standard IBM supported. Very
stable. Large community.
Disadvantages: Eclipse learning curve is the most difficult. JFace/SWT is slightly dated compared
to Swing and JavaFX2. IBM dependence.

Qt Creator / Qt

C++ Advantages: Qt is the leading C++ UIF candidate. GUI widgets are fast and native: strongest cross
platform GUI behavior.

Disadvantages: Not an RCP solution. Not OSGi. Smaller community than Java.

Netbeans / JavaFX2

Java (RCP) Advantages: Netbeans is the leading Java UIF candidate. JavaFX2 has most modern Java GUI
elements. OSGi open standard. Oracle supported. Large community.
Disadvantages: JavaFX2 2D plotting package is beautiful but has serious scaling issues. Oracle
dependence.

NA / wxWidgets

C++ Advantages: Native mode widget toolkit, also contains inter-process communication layer

Disadvantages: Not an RCP solution or a UIF - mainly a standalone widget toolkit. Smaller
community.

NA / XUL

XML & Java Advantages: XML markup language for GUI construction. Quick study for web designers.

Disadvantages: Not an RCP solution or a UIF - mainly a standalone widget toolkit. Not a prevalent
solution.

Technology Evaluation – In-Memory
Caching/Data Grid

47

Name
Client Language

Support
Advantages Disadvantages

JCS Java
 Cross-Language Support

 Free OSS with community support

 Java only (no cross-language support)

 Appears to be less widely used/popular than other solutions (e.g.

Redis, memcached)

 It is not clear whether commercial support is available

 Limited feature set relative to other solutions surveyed

 Does not support partitioning (only replication)

memcached

C, C++

Java, Python Ruby

Perl

C#

 Well established and mature

 Widely used highly popular

 Cross-Language Support

 Free OSS with community support

 Commercial support available

 Popularity appears to be declining (based on Google Trends)

EHCache

Java

C++ &C#

(commercial

version)

 Cross-Language Support

 Free OSS version available

 Commercial support available from Terracotta

 Strong feature set, including partitioning, replication,

transactions, security, etc.

 Many features are only available in the commercial edition

 Limited cross-language support (and only in the commercial

edition)

 Appears to be less widely used/popular than other solutions (e.g.

Redis, memcached)

 Popularity appears to be declining (based on Google Trends)

Infinispan

C++

Java

Python

Ruby

C#

 Cross-Language Support

 Free OSS with community support

 Commercial support available from JBoss

 Strong feature set, including partitioning, replication,

transactions, security, etc.

 Appears to be less widely used/popular than other solutions (e.g.

Redis, memcached)

Redis

C, C++

Java

Perl

Python

Ruby

C#

Closure

Scala

 Widely used highly popular

 Broad cross-Language Support

 Free OSS with community support

 Commercial support available from Pivotal

 Strong feature set, including partitioning, replication,

transactions, etc.

 Limited built-in security features

Hazelcast

Java

C++ &C#

(commercial

version)

 Cross-Language Support

 Commercial support available from Hazelcast

 Strong feature set, including partitioning, replication,

transactions, security, etc.

 Many features are only available in the commercial edition

 Limited cross-language support (and only in the commercial

edition)

 Appears to be less widely used/popular than other solutions (e.g.

Redis, memcached)

Selection pending determination of need for caching

DOCKER CONTAINER TECHNOLOGY
OVERVIEW

48

Agenda

 What are Linux Containers?

 Containers vs. Virtual Machines

 Why Containers?

 Container Ecosystem

 What is Docker?

 Container Use Cases

 Development Lifecycle Concepts

 Integration Concepts

 Orchestration Concepts

49

What Are Linux Containers?

 Lightweight OS-level virtualization technology

 Multiple, isolated systems (containers) run on a single Linux
host, sharing the underlying kernel
 Control Groups provide resource isolation (CPU, memory, block I/O,

network, etc.)

 Namespaces isolate applications’ view of the OS environment
(processes, networking, file system, etc.)

 Alternative paradigm to virtual machines
 Containers offer greatly reduced start-up time & resource utilization,

as well as near-native speed
 CPU performance – native

 Memory – Very small overhead

 Network – Very small overhead (can be optimized to near zero)

 Individual applications & services are typically deployed in separate
containers (100s-1000s of containers per node is common)

50

Containers vs. Virtual Machines

51

• Unlike virtual machines, containers provide separate virtual OS
environments that share the underlying host OS directly, without
the need for separate guest OS instances or hypervisor software

Host OS

Hypervisor

Hardware

Virtual Machine

Guest OS

bins / libs

App App

Virtual Machine

Guest OS

bins / libs

App App

Host OS

Hardware

Container

bins / libs

App

Container

bins / libs

App

Container

bins / libs

App

Container

bins / libs

App

Container

bins / libs

App

Container

bins / libs

App

Container

bins / libs

App

Container

bins / libs

App

Why Containers?
Common Use Cases

 Isolate individual applications

 Constrain application resource utilization

 CPU, memory, network & storage

 Manage heterogeneous application dependencies across complex systems

 Multiple software stacks, third party tools & versions

 Multiple Linux flavors & versions

 Provide orchestration of applications across clustered system deployments

 Support application scalability and fault tolerance

 Provide a consistent application runtime for development through
operational deployment

52

Dev Environment I&T Environment Ops Environment

Container
App

Container
App

Container
App

Container
App

Container
App

Container
App

Container Ecosystem

 A thriving community of open-source container technologies has emerged in
the last few years supporting the development and deployment of
container-based systems

 Large impact on industry with significant backing and community interest
 Widely used in modern PaaS solutions – e.g. Amazon EC2, DigitalOcean, Google Compute Engine, Microsoft

Azure, OpenStack, QEMU/KVM, Vagrant and Vmware

 Widely used in corporate IT infrastructure - Google’s infrastructure runs nearly entirely on containers (2 billion+
provisioned per week)

 Docker has emerged as the dominant container project around which the
majority of these technologies is currently developed

53

Orchestration

Container
Management

Host OS

Fleet

Swarm
Compose
Machine

OS shared across
containers

Definition, build, &
deployment of containerized
apps

Load-balancing, scalability &
high availability for distributed,
container-based systems

Kubernetes Mesos

Docker Rocket LXC

RedHat
Linux

CentOS CoreOS Ubuntu Project Atomic

What is Docker?

54

• Open-source project providing
container abstraction and management
tooling

• Container Definition & Build

– Build containers from pre-defined
images

– Define images declaratively by
specifying new layers on top of existing
images, from the base OS up

• Container Repositories

– Manage container images for projects
& communities using shared
repositories

– Publish and consume public images
with docker hub (the definitive public
repository)

• REST API & CLI

– Define, build, deploy & manage
containers via CLI and RESTful service
interfaces

Host OS

Hardware

Docker Container

bins / libs

App

Docker Engine

CLI

REST API

Container
Repositories

Container Defn
& Build Tools

Docker Container

bins / libs

App

Docker Container

bins / libs

App

Docker Container

bins / libs

App

Potential US NDC/IDC Container Use
Cases
 Development Lifecycle

 Provide a common software platform for application developers across
environments, from development, to I&T and operations

 Integration
 Enable integration of heterogeneous applications developed by

multiple organizations on a common platform

 Isolation, resource constraints, support for multiple software languages &
stacks, third-party COTS, versions, OS versions, etc. as needed

 Orchestration
 Provide software stack-agnostic, scalable, fault-tolerant orchestration

of applications and services in a distributed environment

 Deployment
 Support for deployment to bare metal, VM and cloud platforms

55

Development Lifecycle Concepts

 A common application platform is provided to US NDC/IDC contributors as
a set of base container images

 Includes OS, third-party tools & libraries, core framework software

 Provided through a shared container registry

 Applications are developed using the base platform containers and are
packaged as new container images layered onto the base platform

 Application containers are delivered back to the shared container registry

 Continuous build & integration includes automated build and test of
containerized applications & services

 Application containers are deployed into the US NDC/IDC environments as
part of the development lifecycle, including development, I&T and
operations

56

Integration Concepts

 The system integrator organization maintain the
configuration needed to deploy and manage the set of
application containers comprising the system
 System cluster definition

 Application definitions

 Application resource constraints

 Network and persistent storage interface management

 High-availability & scalability policies

 Multiple libraries, third-party tools, versions, etc. are
encapsulated within individual application containers where
they are required

57

