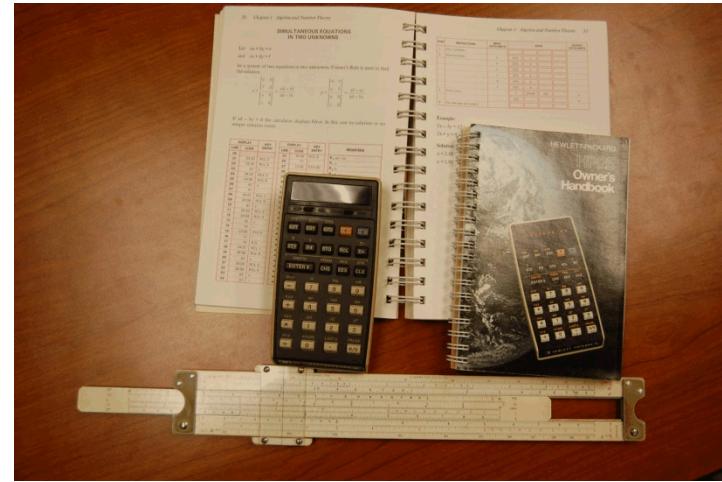


Ion Channeling Revisited

SAND2015-5542C

B. L. Doyle and P. Rossi

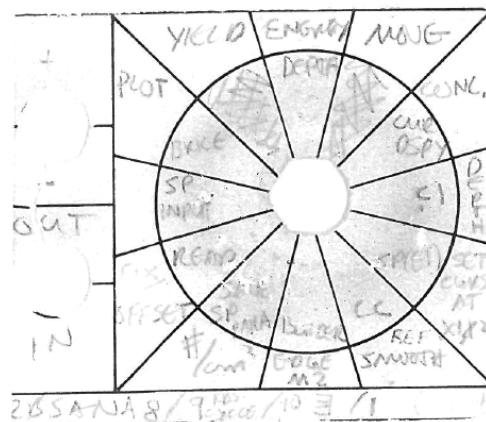

Radiation Solid Interactions Department 01111
Sandia National Laboratories
Albuquerque, NM, USA

Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

Why revisit channeling?

- The three IBA Handbooks have been an extremely useful references to practitioners of IBA.
- However, because they first came out (1977) when powerful desk top computers were unavailable, many of the calculations involved (and still require) manual interpolation from tables and readings from graphs. This was particularly true for the chapters on Ion Channeling written by Appleton and Foti [4], Swanson [5], and Swanson and Shao [6].

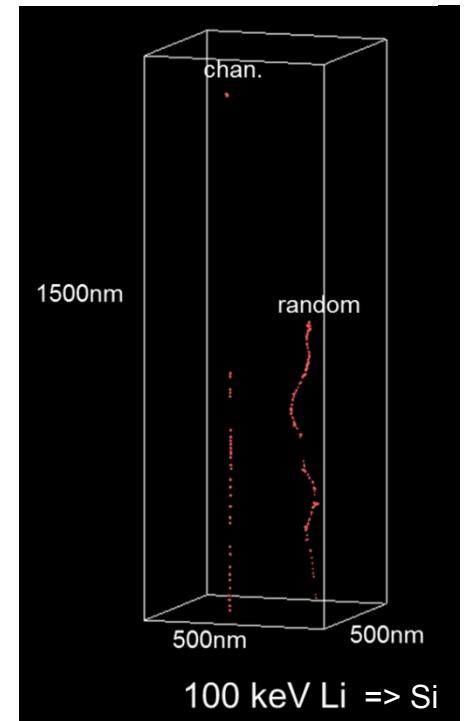
- This paper describes an Excel program that makes it easy to calculate axial and planar channeling half angles and minimum yields for any ion, of any energy on virtually all mono-elemental bcc, fcc and diamond lattice crystals or polycrystals.


This & That

Barney and the Beast — On the Milepost page (page 10) is a 15-year service anniversary photo of Barney Doyle (1111) pictured "mind-melding with the 15-year-old PDP-11/34 computer that his organization still uses." It's one of the oldest computers around the Labs that's still in service, Barney says, and maybe the very oldest. Sandians?

MILEPOSTS

LAB NEWS


November 1992

Barney Doyle
1111

Why revisit channeling? (2)

- There has been a resurgence of interest in ion channeling.
- From the standpoint of ion beam analysis (IBA)
 - Use of backscattering and IBIC of finely focused and scanned low energy ions
 - from a He-Ion Microscope (HIM) V. Veligura, G. Hlawacek, R. van Gastel, H.J.W. Zandvliet and B. Poelsema, Beilstein Journal of Nanotechnology, Vol. 3 (2012) 501.
 - and 100 keV Li Channeling to get straight trajectories in IBIC experiments to image single collision cascades at Sandia
- From the standpoint of radiation effects R&D
 - Effect of unintentional channeling of ions used to simulate neutron induced displacement damage
 - El-Atwani, Osman, A. Suslova, T.J. Novakowski, K. Hattar, M. Efe, S.S. Harilal, and A. Hassanein, "In-situ TEM/heavy ion irradiation on ultrafine- and nanocrystalline-grained tungsten: Effect of 3 MeV Si, Cu, and W ions" Mater Charact (2014), 99 (2015): 68-76.
 - and single crystals of GaAs photovoltaic devices at Sandia
 - If the ions accidentally channel, less displacement damage will result as compared to the case where they do not channel.
 - It is therefore important to know and quantify how this grain-by-grain disparate generation of damage can affect mechanical properties.

Axial Channeling

3.1.1 Axial ψ_{12} half-angles

The specular or characteristic axial channeling angle ψ_1 is calculated using the formula given in Lindhard's famous paper [10]:

$$\psi_1 = \sqrt{\frac{2Z_1Z_2e^2}{Ed}} \text{ (radians)} , \quad (3.1)$$

Where Z_1 and E are the atomic number and Energy (MeV) of the projectile, Z_2 is the atomic number of the target atom, e is the fundamental electron charge which equals 1.44×10^{-5} MeV· \AA and d is the separation of the atoms in \AA along the axial direction $\langle uvw \rangle$.

$$d = f_a \text{ cc} \quad (3.2)$$

cc is the conventional cell size and

$$f_a = \frac{\sqrt{u^2 + v^2 + w^2}}{1 + N} , \quad (3.3)$$

where N is the number of atoms between and along the same direction as $\langle uvw \rangle$. In general, $N=0$ except $N=1$ when uvw are all odd with no zeros for bcc, uvw have two indexes odd and one even including zero for fcc, and uvw are all odd or have two indexes odd and one even including zero for diamond lattices.

The quantity u_1 represents the vibrational amplitude of the atoms perpendicular to the axis and is expressed as:

$$u_1 = 12.1 \left(\left(\frac{\phi_D(x'')}{x''} + 0.25 \right) \left(\frac{1}{M_2 \theta_D} \right) \right)^{1/2} (\text{\AA}) , \quad (3.4)$$

Where θ_D is the Debye temperature, M_2 is the target atom mass in amu. Both of these values are also obtained after Z_2 is entered in the program using a lookup table, and

$$x'' = \frac{\theta_D}{T} . \quad (3.5)$$

$\phi_D(x'')$ is the Debye function.

Debye Function

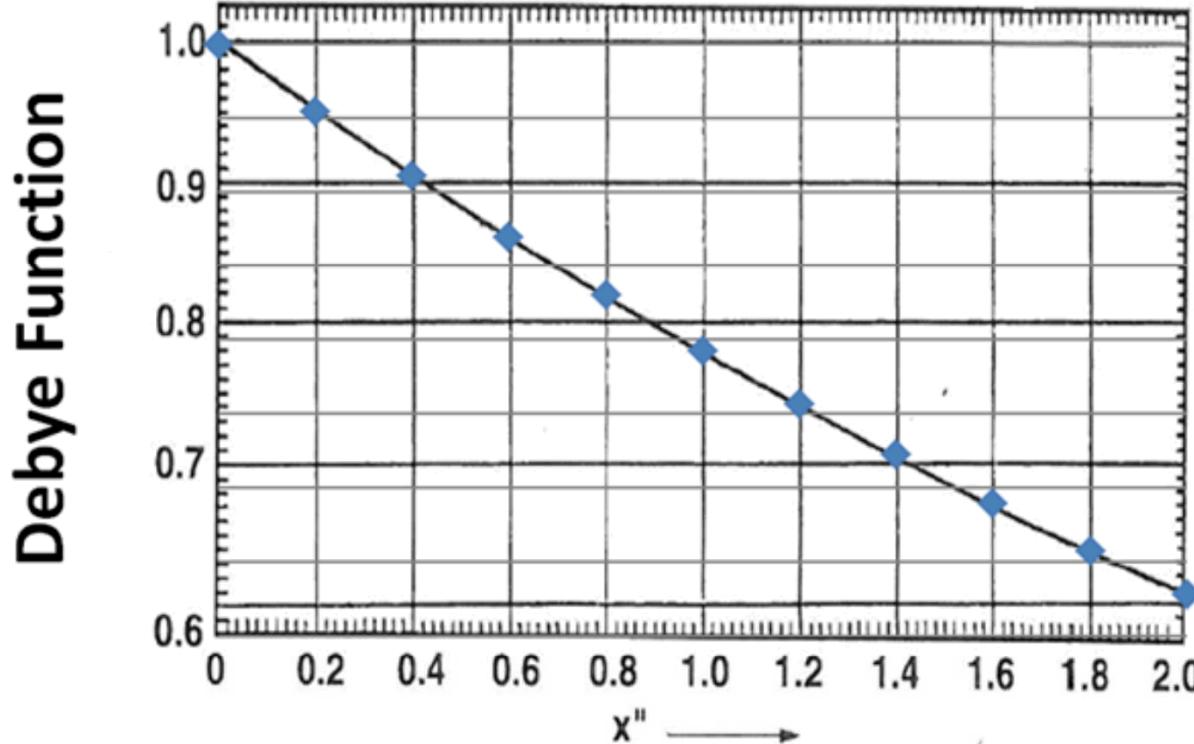


Figure 1 Parameterized Debye Function

$$\phi_D(x'') = \exp(-x''/4.3)$$

(3.6)

Channeling 1/2 angle and adimensional string function

A parameter x' relates the vibration amplitude to the Thomas-Fermi screening length, a in the equation:

$$x' = 1.2 \frac{u_1}{a} \quad (3.7)$$

Several different expressions for a can be found in the Handbooks, but as will be discussed later, the one that provided the best agreement with the channeling data listed in the Handbooks was that of Firsov [11]:

$$a = 0.04685 / (Z_1^{2/3} + Z_2^{2/3})^{1/2} \quad (3.8)$$

The expression for the axial ψ_{12} half angles given in [5] is:

$$\psi_{12} = 0.8 F_{RS}(x') \psi_1 \text{ for } \psi_1(\text{rad}) < \frac{a}{d} \quad (3.9)$$

$$\psi_{12} = 7.57 \sqrt{\frac{a \psi_1}{d}} \text{ for } \psi_1(\text{rad}) > \frac{a}{d} \quad (3.10)$$

Where F_{RS} is the square root of the adimensional string potential using Moliere's screening function and calculated using Monte Carlo techniques by Barrett [12]. The parameterized fit to the F_{RS} function plotted in A15.2 in [5] is shown in Fig. 2.

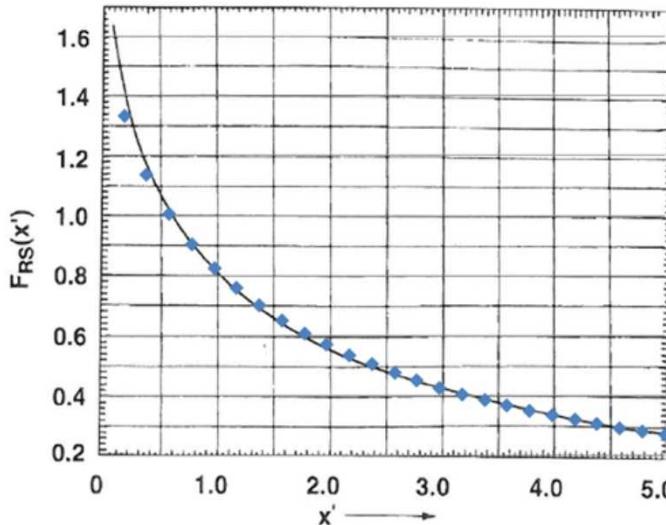


Figure 2 Parameterization of the F_{RS} adimensional function for axial channeling

$$F_{RS} = 1.9 \exp(-x'^{0.53} / 1.2) \quad (3.11)$$

axial χ -min

3.1.2 Axial χ_{\min} minimum yield/dechanneling probability

In this report we are equating the χ_{\min} minimum yield equations found in [5], which are usually associated with Rutherford Backscattering channeling spectra, with the probability that ions perfectly aligned to axial directions do not actually channel. This is because instead of being aimed into the open space between rows of atoms, they hit the top surface atoms of this row.

Two equations are given in [5] for the axial χ_{\min} . The first is attributed to Lindhard [10]:

$$\chi_h^{\text{Lindhard}} = N d \pi (2 u_1^2 + a^2) , \quad (3.12)$$

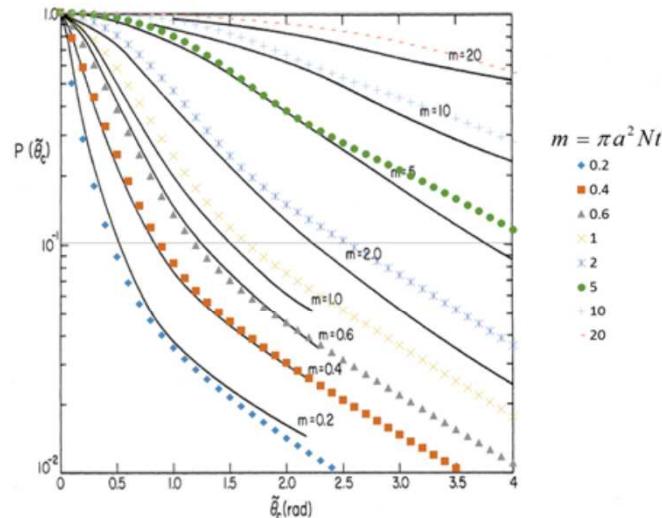
and the second to Barrett [12] which is:

$$\chi_h^{\text{Barrett}} = 18.8 N d u_1^2 \sqrt{1 + \frac{1}{\xi^2}} , \quad (3.13)$$

where

$$\xi = 126 \frac{u_1}{(\psi_{1/2} d)} \quad (3.14)$$

We have selected the second form given by Barrett to use in the program.


Overlayers

3.1.3 Effect of amorphous overlayers on axial channeling

According to [Lugujio and Mayer](#), the reduction of the $\psi_{1,2}$ half-angle due to small angle scattering due to the presence of amorphous overlayers is:

$$\theta_c = \frac{a_{12} E \psi_{1,2}}{(2 Z_1 Z_2 e^2)}, \quad (3.15)$$

$$\chi_{\min} = P(\theta_c), \quad (3.16)$$

Figure 3 P function describing dechanneling due to amorphous overlayers together with the parameterization presented here.

In this parameterization the overlayer thickness parameter m is given by

$$m = \pi a^2 N t \quad (3.17)$$

Where a is the Thomas-Fermi screening distance given in Equation 3.15, N is the concentration of overlayer atoms per \AA^3 and t is the thickness in \AA

$$P = 0.92 \exp(-\theta_c^{p_c} / c) + 0.08 \exp(-\theta_c^{p_b} / b) \quad (3.18)$$

$$p_c = 0.974m^{0.288} \text{ and } c = 1.17m^{0.41} + 0.16m^{1.8} \quad (3.19)$$

$$p_b = 1.646m^{0.372} \text{ and } b = 0.44m^{0.64} + 0.048m^{2.32} \quad (3.20)$$

Planar Channeling

3.2.1 Planar ψ_{12} half-angles

The expression for planar ψ_{12} half-angles is given in [5] as:

$$\psi_{12}^p = 0.72 F_{ps}(x', y') \psi_a, \quad (3.21)$$

where

$$\psi_a = \sqrt{\frac{2Z_1 Z_2 e^2}{E d_p}} \text{ (radians).} \quad (3.22)$$

N is the concentration of target atoms in units of $\#/d^3$ and d_p is the atomic separation of the planes (\AA) for the usual $[\text{hkl}]$ Miller index orientations.

$$d_p = f_p c c \quad (3.23)$$

Where cc is the size of the conventional cell.

For bcc lattices, this factor is:

$$f_p^{bcc} = \frac{1}{\sqrt{h^2 + k^2 + l^2}} \text{ for } h+k+l = \text{even, or } f_p^{bcc} = \frac{1}{2\sqrt{h^2 + k^2 + l^2}} \text{ for } h+k+l = \text{odd.} \quad (3.25)$$

For fcc lattices, this factor becomes:

$$f_p^{fcc} = \frac{1}{\sqrt{h^2 + k^2 + l^2}} \text{ for } h, k, l \text{ all odd, or } f_p^{fcc} = \frac{1}{2\sqrt{h^2 + k^2 + l^2}} \text{ for } h, k, l = \text{not all odd.} \quad (3.27)$$

For diamond lattices, the factor is:

$$f_p^{dc} = \frac{1}{2\sqrt{h^2 + k^2 + l^2}} \text{ for all } h, k, l \text{ or } f_p^{dc} = \frac{1}{4} \text{ for all permutations of [001]} \quad (3.29)$$

$F_{ps}(x', y')$ in equation 3.21 is the square root of the adimensional planar potential using Moliere's screening function and also calculated using Monte Carlo techniques by Barrett [12].

$$x' = 1.6 \left(\frac{u_1}{a} \right), \text{ and} \quad (3.30)$$

$$y' = \frac{d_p}{a} \quad (3.31)$$

planar 1/2 angle and adimensional planar function

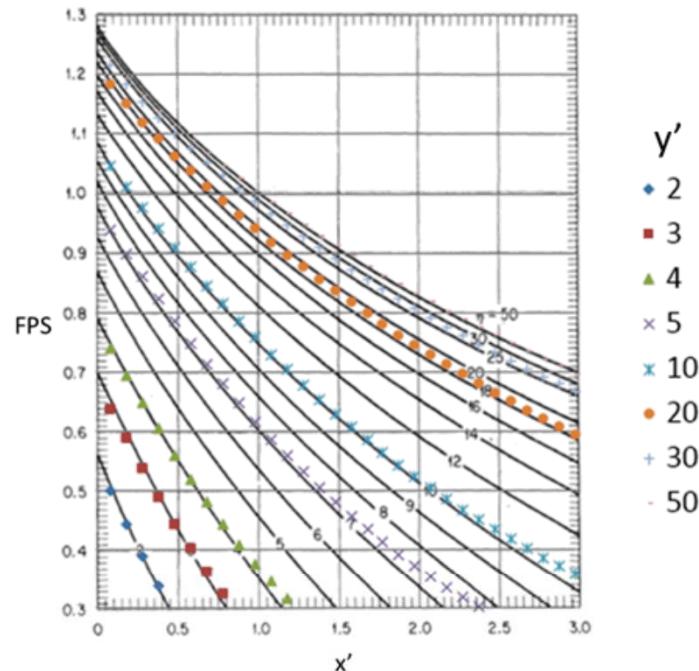


Figure 4 Parameterization of the F_{PS} adimensional function for planar channeling

$$F_{PS} = F_{PS0} \exp(-x'^p / g) \quad (3.32)$$

$$F_{PS0} = 1.27(1 - \exp(-y'^{0.76} / 3.0)) \quad (3.33)$$

$$g = 4.3(1 - \exp(-y'^{1.1} / 12)) \quad (3.34)$$

$$p = 0.4 \exp(-y'/12) + 0.85 \quad (3.35)$$

$\psi_{1/2}^p$ can then be calculated from Equation 3.21: $\psi_{1/2}^p = 0.72 F_{PS}(x', y') \psi_a$

3.2.2 Planar χ_{\min} minimum yield/dechanneling probability

$$\chi_h^{[hd]} = \frac{2a}{d_p^{[hd]}} \cdot \quad (3.36)$$

Comparison with experimental ½ angle results in handbooks

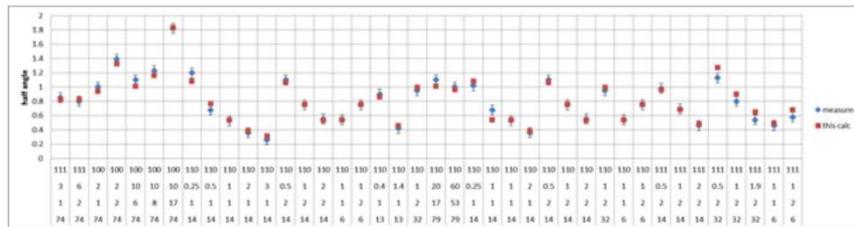


Figure 5 Measured half-angles in the IBA Handbooks of axial channeling compared to the calculations using the parameterizations developed here

In Figure 5, the numbers along the abscissa correspond from top to bottom to the $\langle uvw \rangle$ of the axis, the energy (MeV) and atomic number of the ion, and the atomic number of the target atoms. The best fit to this data was obtained with the equation:

$$\psi_{12}^a = 0.87 F_{\text{FS}}(x') \psi_1 \quad (4.1)$$

For planar channeling the same analysis was done with all the data presented in Reference [5], and the prefactor of planar channeling adjusted to obtain the best fit. This resulted in the following figure and analysis:

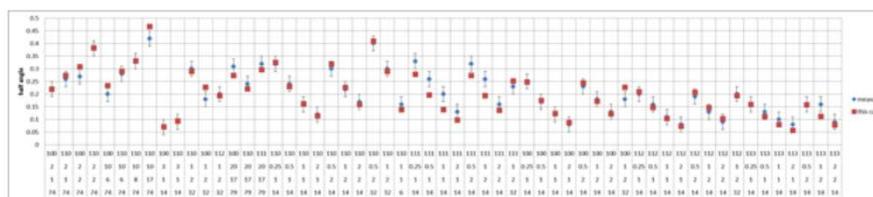
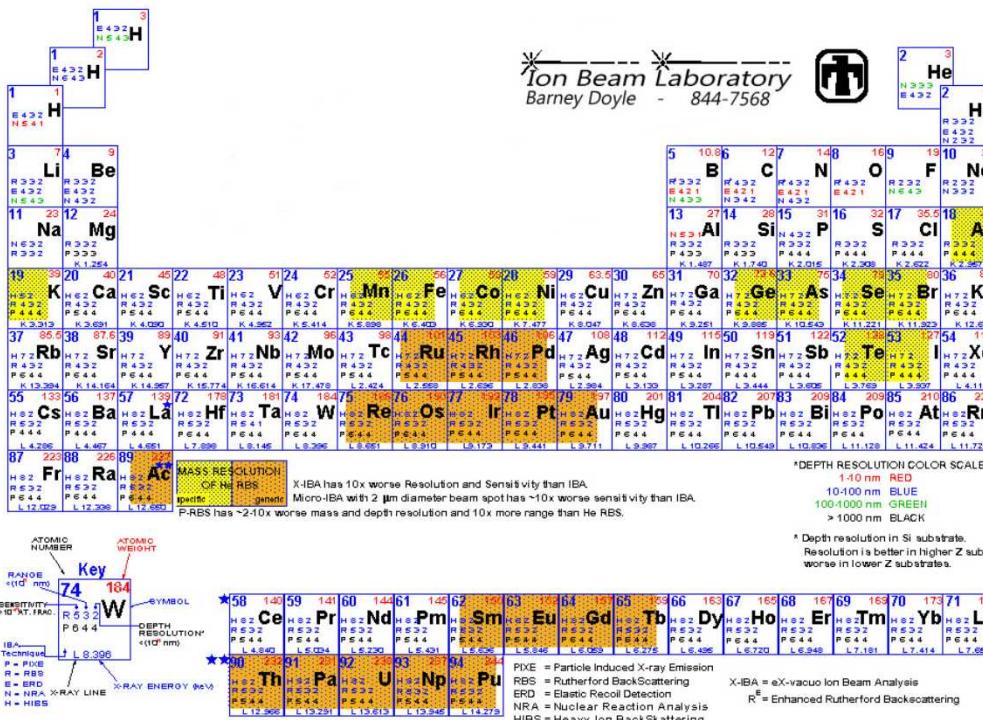


Figure 6 Measured half-angles in the IBA Handbooks for planar channeling compared to the calculations using the parameterizations developed here.


In Figure 6, the numbers along the abscissa correspond from top to bottom to the $[hkl]$ of the plane, the energy (MeV) and atomic number of the ion, and the atomic number of the target atoms. The best fit to this data was obtained with the equation:

$$\psi_{12}^p = 0.65 F_{PS}(x', y') \psi_a \quad (4.2)$$

Single click on a table element for IBA detail.

[Bottom of table](#)

ION BEAM ANALYSIS TABLE OF THE ELEMENTS

[Top of table](#)

[Top of page](#)

Related IBA Links:

Nuclear Physics Data:
[TUNL Nuclear Data Evaluation](#)

- [SIGMACALC](#)
- [IBANDL](#)

Data Analysis:

- [RUMP](#)
- [SIMNRA](#)

Ion Solid Interactions:

- [SRIM](#)
- [DEDX \(50K Excel file\)](#)
- [Q \(49K Excel file\)](#)
- [IBA \(81K Excel file\)](#)

Point of Contact: [Barney L. Doyle](#)

	channeling.xlsx	5/28/2015 4:01 PM	Microsoft Excel M...	14,811 KB
	DEDX6.xls	11/26/2014 10:43 ...	Microsoft Excel 97...	197 KB
	deflection by earth B field.xlsx	3/31/2015 12:15 PM	Microsoft Excel M...	107 KB
	electrostatic deflection of ions.xlsx	3/31/2015 12:31 PM	Microsoft Excel 97...	30 KB
	IBA.xlsx	11/26/2014 10:32 ...	Microsoft Excel M...	162 KB
	magnetic deflection of ions.xlsx	3/31/2015 12:30 PM	Microsoft Excel W...	18 KB
	Q.xlsx	12/3/2014 8:58 AM	Microsoft Excel W...	27 KB
	Q-optimum.xlsx	11/26/2014 10:34 ...	Microsoft Excel W...	66 KB
	XSs.xlsx	12/2/2014 11:30 AM	Microsoft Excel W...	49 KB

channeling.xlsm program

channeling.xlsm - Microsoft Excel

File Home Insert Page Layout Formulas Data Review View Developer

I22 fx 100

Calibri 11	Font	Wrap Text	General	Conditional Formatting	Format as Table	Cell Styles	AutoSum	Z	Sort & Filter
Cut	Copy	Merge & Center	\$ % , .00	Format Cells	Format Styles	Insert	Fill	Find & Select	
Paste	Format Painter	Font	Number	Cell Styles	Format Styles	Delete	Clear	Sort & Filter	
Clipboard	Font	Font	Number	Format Styles	Format Styles	Format Styles	Find & Select	Find & Select	

1 Calucation of channeling half-angles
2 enter parameters in yellow cells only

5

6 Beam

8 atomic number of projectile Z_1 2 He
9 Energy of projectile E 0.3 MeV

10

11

12

13

14

15 Calculate half-angles and Xmins

16

17

18 axial $\Psi_{1/2}$ 1.16 deg
19 planar $\Psi_{1/2}$ 0.32 deg

20

21 axial χ_{min} 0.399 w/overlayer
22 axial χ_{min} 0.035 w/o overlayer
23 planar χ_{min} 0.286 w/o overlayer

18 Target

20 axis factor $f_a = 1.00$
21 plane factor $f_p = 0.25$

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

871

872

873

874

875

876

877

878

879

880

881

882

883

884

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918

919

920

921

922

923

924

925

926

927

928

929

930

931

932

933

934

935

936

937

938

939

940

941

942

943

944

945

946

947

948

949

950

951

952

953

954

955

956

957

958

959

960

961

962

963

964

965

966

967

968

969

970

971

972

973

974

975

976

977

978

979

980

981

982

983

984

985

986

987

988

989

990

991

992

993

994

995

996

997

998

999

1000

1001

1002

1003

1004

1005

1006

1007

1008

1009

1010

1011

1012

1013

1014

1015

1016

1017

1018

1019

1020

1021

1022

1023

1024

1025

1026

1027

1028

1029

1030

1031

1032

1033

1034

1035

1036

1037

1038

1039

1040

1041

1042

1043

1044

1045

1046

1047

1048

1049

1050

1051

1052

1053

1054

1055

1056

1057

1058

1059

1060

1061

1062

1063

1064

1065

1066

1067

1068

1069

1070

1071

1072

1073

1074

1075

1076

1077

1078

1079

1080

1081

1082

1083

1084

1085

1086

1087

1088

1089

1090

1091

1092

1093

1094

1095

1096

1097

1098

1099

1100

1101

1102

1103

1104

1105

1106

1107

1108

1109

1110

1111

1112

1113

1114

1115

1116

1117

1118

1119

1120

1121

1122

1123

1124

1125

1126

1127

1128

1129

1130

1131

1132

1133

1134

1135

1136

1137

1138

1139

1140

1141

1142

1143

1144

1145

1146

1147

1148

1149

1150

1151

1152

1153

1154

1155

1156

1157

1158

1159

1160

1161

1162

1163

1164

1165

1166

1167

1168

1169

1170

1171

1172

1173

1174

1175

1176

1177

1178

1179

1180

1181

1182

1183

1184

1185

1186

1187

1188

1189

1190

1191

1192

1193

1194

1195

1196

1197

1198

1199

1200

1201

1202

1203

1204

1205

1206

1207

1208

1209

1210

1211

1212

1213

1214

1215

1216

1217

1218

1219

1220

1221

1222

1223

1224

1225

1226

1227

1228

1229

1230

1231

1232

1233

1234

1235

1236

1237

1238

1239

1240

1241

1242

1243

1244

1245

1246

1247

1248

1249

1250

1251

1252

1253

1254

1255

1256

1257

1258

1259

1260

1261

1262

1263

1264

1265

1266

1267

1268

1269

1270

1271

1272

1273

1274

1275

1276

1277

1278

1279

1280

1281

1282

1283

1284

1285

1286

1287

1288

1289

1290

1291

1292

1293

1294

1295

1296

1297

1298

1299

1300

1301

1302

1303

1304

1305

1306

1307

1308

1309

1310

1311

1312

1313

1314

1315

1316

1317

1318

1319

1320

1321

1322

1323

1324

1325

1326

1327

1328

1329

1330

1331

1332

1333

1334

1335

1336

1337

1338

1339

1340

1341

1342

1343

1344

1345

1346

1347

1348

1349

1350

1351

1352

1353

1354

1355

1356

1357

1358

1359

1360

1361

1362

1363

1364

1365

1366

1367

1368

1369

1370

1371

1372

1373

1374

1375

1376

1377

1378

1379

1380

1381

1382

1383

1384

1385

1386

1387

1388

1389

1390

1391

1392

1393

1394

1395

1396

1397

1398

1399

1400

1401

1402

1403

1404

1405

1406

1407

1408

1409

1410

1411

1412

1413

1414

1415

<p