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Higher Temperature, Higher Energy Density Storage 
for CSP (Solar Salt: 405 kJ/kg, T < 600-650 °C)
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Application Space - Part I
Increase Efficiency Shift or extend operating hours to improve 

capacity factor, LCOE, grid penetration

Concentrating Solar Power: Efficiently Leveraging Equilibrium Mechanisms for Engineering New Thermochemical Storage (CSP: ELEMENTS) (FOA) Number:  DE-FOA-0000805



Application Space – Part II

CO2 utilization chemistry (From 
Aresta, Studies in Surface Science 
and Catalysis 114,1998).

Sources:  C&E News July 2, 2007; Report DOE/EIA-0573 (2004).
* Assuming 100% conversion of CO2 into the hydrocarbon, e.g. 2 
moles of CO2 would supply the carbon for 1 mole of C2H4.

Fuels (H2 or HC) are a Big Opportunity Space 
Commensurate with CO2 production

nCO + (2n+1)H2 → CnH2n+2 + nH2O

Capitalize on decades of Synfuel technology, e.g.
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One Straightforward Solution? 

Energy In, O2 Out. 

O2 In, Energy Out

Metal Oxide Thermal Redox Chemistry



Common Demands of the Oxide
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TCES Attribute Solar Fuels

 Simple, Repeatable Chemistry
(No side reactions, No intermediate processing) 

 Thermodynamics Matched to Application 

 Long Term Stability – Chemical and Physical
(years – 1000s if not millions of cycles) 

 Efficient volumetric/mass usage
(utilization/energy density per cycle) 

 Rapid Kinetics 

 High Melting /Low Volatility/Sinter Resistant 

 Amenable to integration with receivers 

 Low Cost 



Basic Metal Oxide TCES
Sensible Energy Storage

Latent or Simple Chemical Energy Storage

Chemical + Sensible Energy Storage

Compatible with Particle 
Receiver or Reactor 

Concepts



Metal Oxide TCES State of the Art
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Cyclic Thermal Reduction (storage) and Oxidation (release) 

Co3O4 ↔ 3CoO + ½O2 

(Trxn ~ 890 C, Hrxn = 844 kJ/kg )

• Binary Oxides (Mn, Co, Fe) with distinct phase transitions. 
• Issues include low temperature reaction kinetics (oxidation), poor 

utilization, sintering, cost, volatility, poor tunability, etc. 

Characteristic reaction enthalpy (Hrxn) and 
reaction temperature (T0). 
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Mixed Ionic-Electronic Conductors

Official Use Only 8

MIECs
• Exhibit both electronic and ionic conductivity
• Ionic conductivity facilitates oxygen transport—

improved kinetics and reaction extent
• Electronic conductivity facilitates redox activity

2/ MOx ↔ 2/ MOx- + O2(g) 
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Perovskites

• General formula ABO3-∂

• Amenable to doping --tunability of redox 
extent and temperature

• Oxygen nonstoichiometry enables redox 
activity without structure decomposition 

• Reaction extent and enthalpy (, and H)  
are a challenge, as they tend to move in 
opposition to one another.

Continuum of oxidation states 
over variety of T and pO2



Binary Oxide vs. Perovskite
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Binary Oxide vs. Perovskite
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Continuum of States – Rapid Kinetics



Binary Oxide vs. Perovskite
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Reaction extent can be a challenge
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Advancing the State of the Art:
Balancing Reduction extent and Enthalpy 

• High reduction onset temperature and lower molecular weights increase 
partial molar and mass specific enthalpies.  

• Earth Abundant Elements manage costs.

Babiniec, Coker, Miller, Ambrosini, Solar Energy 118,  451-459 (2015).



A thermochemical cycle is 
essentially an engine that converts 

heat into work in the form of 
stored chemical energy.

1/δ MOx  1/δ MO(x-δ) + ½ O2

Fe3O4  3 FeO + ½ O2

1/δ MO(x-δ) + CO2  1/δ MOx + CO

3 FeO + CO2  Fe3O4 + CO

Metal Oxide Thermochemical Conversions:
Heat to Re-energize CO2 and H2O.

Unfavorable reaction 
(e.g. H2O H2 + ½ O2

or CO2 CO + ½ O2)
divided into two or more 

favorable reactions.



Impact: 

 High solar to fuel efficiency (>10%) is absolutely 
required.

 Cost

 Scale (land, materials of construction)

 Water, CO2 are not limiting –

 Water consumption/cost relatively low 

 High impact opportunity for CO2.

 Consistent with other human activities occurring over 
multiple decades.

Meeting a significant fraction of transportation fuel 
demand with solar fuels is certainly plausible!

E.B. Stechel and J.E. Miller  “Re-energizing CO2 to fuels with the sun: Issues of efficiency, 
scale, and economics”  Journal of CO2 Utilization, 1 (2013) 28–36.



Required Heat to Syngas Efficiencies  60 %

Solar to Fuel = 10%
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“Thermodynamic Temp” and Efficiency
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Thermodynamics recommends 
materials with high reduction 
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Thermodynamic TTR and TOX imply 
H and S and vice versa. Not all 

combinations are realistic.



“Non-thermodynamic “Temperatures?
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Yes, but at a price!

Reduction: Work in the form of Pumping or 
sweep gas shifts reduction temperature. 

Heat to Work Conversion Penalty

Oxidation: 
G  -RT*ln{[CO]/[CO2]}

Separation Work Requirement



Utilization Factor (FR/(1-R))
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The maximum possible efficiency 
is limited by H1.

High efficiency (small H1) 
corresponds to a large Thigh-Tlow.

The possible efficiency increases with 
degree of reaction () 

and/or effectiveness of recuperation.

When utilization is low, sensible heat 
demand becomes a more dominant 

factor than H1.

Advantage of Smaller Temp. Swing? Recuperation 
and Kinetics

Efficiency is a function of:
Thermodynamics: H1 (Thigh & Tlow), 
Kinetics: 
The reactor: recuperation effectiveness & 
Pressures, sweep etc. (work input
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Isothermal is possible, but in my opinion 
inadvisable – can we use that electricity to 

better advantage?

Optimum Temperature Swing
Different lines of similar color represent different 

recuperation extents for gas and solid

Ermanoski, Miller, Allendorf, Phys. Chem. Chem. 
Phys., 2014, 16, 8418-8427. 
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Further Complexities of Real Materials

H and S (G) are 
functions of redox state 

( or x).

Ni-substituted Ferrite

Ceria

Miller, McDaniel, Allendorf Adv. Energy Mater 2013.
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Further Complexities of Real Materials
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With each increment of 
reduction, materials become 
harder to reduce, easier to 

oxidize.

From a thermodynamic 
viewpoint, ferrites appear 

superior to ceria.



Even then, “Bulk” 
materials do not live up 

to their potential.

Cycle Number
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What’s the matter with Ferrites?

Alter them to keep them 
from melting.
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Favorable temperature 
range (thermodynamics) 
can be manipulated via 
metal substitutions in 

Fe3O4. 

Idealized Chemistry

Fe3O4 3FeO + ½ O2

3FeO + H2O Fe3O4 + H2



What’s the matter with Ferrites?
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Unless you add zirconia!



Fe dissolution and oxygen transport are the keys
Beyond the solubility limit 

additional Fe contributes 
little to the overall gas yield.
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confirms limited utilization of 
bulk particles relative to Fe/YSZ.
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Heat> Ceria > YSZ >> Fe3O4

Dtlengthdiffusion 2

Ion (oxide) diffusion lengths are materials- and temperature-dependent. 



 Perovskite compounds 
oxidize to split H2 and CO2

with lower TTR

 Comparable kinetics to 
ceria, but higher utilization.

9 more H2, 6 more CO

28

MIEC Path Forward: SrxLa1-xMnyAl1-yO3-

compound CO
(mole/g)

H2

(mole/g)

LSAM1 294 307

LSAM2 286 277

LSAM3 247 220

CeO2- 46 32 80 cycle durability demonstrated

A.H. McDaniel, Elizabeth C. Miller, Arifin, A. Ambrosini, E.N. Coker, R. O'Hayre, W.C. Chueh and J. Tong, Energy Environ. Sci., 2013,6, 2424-2428.



CR5 : First-of-a-kind approach and our 
attempt to apply the lessons.

“Reactorizing a Countercurrent Recuperator”

Continuous flow, Spatial separation of products, Thermal recuperation

Counter-Rotating-Ring Receiver/Reactor/Recuperator (CR5)



Performance Map of Gen-1 Prototype
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Collect data to validate models, guide improvements

• Ceria-based fins on rings 

• 6 Data Sets: Cold,  2@ 1450 °C, 2@ 1550 °C, 1620 °C

• 3 ring rotation speeds, 3 CO2 flow rates for each

• Constant Ar flow, Pressure = 0.5 atm

• Floating Pressure at 1550 °C
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20 30 40 50 60 70 80P
o
w

e
r 

R
e
q
u

ir
e
d

 t
o
 M

a
in

ta
in

 R
e
d

u
ct

io
n

 T
e
m

p
 (

W
a

tt
s)

5000

6000

7000

8000

9000

10000

Data Set 2B, 1450 °C
Data Set 3, 1550 °C
Data Set 4, 1550 °C
Data Set 5, 1620 °C

P = 20.9X + 7482

P = 24.9X + 6245

P = 18.8X + 5337

P = 23.7X + 5017

J.E. Miller, M.A. Allendorf, A. Ambrosini, E.N. Coker, R.B. Diver, I. Ermanoski, L.R. 
Evans, R.E. Hogan, and A.H. McDaniel “Development and Assessment of Solar-
Thermal-Activated Fuel Production: Phase 1 Summary” SAND2012-5658, July 2012



For Your Viewing Pleasure …

Operating with 22 Rings



Take-home points
 Thermochemical approaches have potential for large 

impact, high efficiency

 For TCES energy density and cost are paramount

 For any approach to Solar Fuels- Efficiency is key for cost 
and scalability – 10% solar to fuel minimum

 Materials, Reactors, and Systems are all areas of 
opportunity and need.
 All impact efficiency, all relatively immature for this technology.

 Small global community has made significant advances in recent 
years

 Materials are challenging, but we have barely begin to 
explore the possibilities

Producing solar fuels and storing heat via 
thermochemical processes has the potential for 

transitional impact in our future energy mix.
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