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Emerging Memory

• We are in a significant era for memory

• NAND Scaling:

– Amazing progress in recent years: Samsung has a 32 layer 
process enabling 256 megabit per die

– 3D will quench density issues temporarily

– Reliability suffers with scaling; 12 nm is theoretical FG limit

• DRAM Scaling:

– Struggling to maintain reasonable eq. oxide thickness

– Dielectric for cells <20 nm still TBD

• Limitations in sight for both of these giants!

• Storage Class Memory

– Magnetic to DRAM latency gap

• End of transistor scaling: no obvious replacement

• End of flash/DRAM scaling: replacements on the            
horizon!

samsung.com



Emerging Memory Taxonomy

www.itrs.net



Resistive Crossbar Memories

• F=Feature size

• Max areal density possible  4F2

ISCAS 2014
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Nanoelectronic Technologies, Wiley, 2014. 



DRAM Flash (NOR-NAND) ReRAM/Memristor STT-MRAM PC-RAM

Production (30 nm) Production (16 nm) Development Production (65 nm) Production (45 nm)

Min device size (nm) 20 18 <10 16 <10

Density (F2) 6 4+ 4 8-20 4F2

Read Time (ns) < 10 105 2 10 20

Write Time (ns) < 10 10
6

2 13 50

Write Energy (pJ/bit) 0.005 100 <1 4 6

Endurance (W/E Cycles) >10
16

10
4

10
12

10
12

>10
9

Retention 64 ms > 10 y > 10 y weeks > 10 y

BE Layers FE FE 4 10-12 4

Process complexity High/FE High/FE Low/BE High/BE Low/BE

Emerging Memory Comparison

Biggest challenge for PCM:
High erase current

Biggest challenge for STT-MRAM: Balancing
Retention/Scaling/Temperature/Write current

Biggest challenge for ReRAM:
Catch-up

***DISCLAIMER: Due to 10s of thousands of references on these technologies –
many of these numbers are not universally agreed on!



Panasonic MN101L ReRAM MCU

• First bipolar metal oxide commercial product

• Power and time saving over flash MCU

panasonic.com



Space Computing

• Sensors can collect terabytes of data

• Stringent computer/memory requirements

– Radiation-hard: Total dose, single event, etc.

– High reliability (10-15+ year missions)

– Low energy

• Desired

– High density

– Fast read/write

• The leading emerging memories are not charged based 
(like flash) and hence are more resilient to radiation

– This will provide a major paradigm shift for space 
computers!

Orbital.com



Rad-Hard Nonvolatile Memory

Commercially available rad-hard nonvolatile memories 

• NG EEPROM: 1Mbit, 100ms write, 104 cycles, 1.25µm RHCMOS

• BAE C-RAM: 4Mbit (planned 20 Mbit), 70ns write

• Honeywell MRAM: 16Mbit die, 140ns write, 1012 cycles

• Rad-hard memory requires a rad-hard CMOS base process

BAE C-RAM

baesystems.com

NG Rad-hard EEPROM

northropgrumman.com

Honeywell M-RAM

honeywell.com
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Bipolar Metal Oxide ReRAM
• “Hysteresis loop” is simple method to visualize operation

– (real operation through positive and negative pulses)

• Hypothesized oxide resistance switching mechanism

– Positive voltage/electric field: low R – O-2 anions leave oxide

– Negative voltage/electric field: high R – O-2 anions return

• Common switching materials: TaOx, HfOx, TiO2, ZnO

• Despite progress, details of switching mechanism still debated

– Band diagrams of ReRAM cell not common!
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Silicon Fab Micro Fab

Sandia MESAFab Complex



Memristors + CMOS

• Sandia CMOS7 Process

– 3.3V, 350 nm, 
MOSFETs

– SOI substrate

• ReRAM switching 
voltage ideal for this 
process



Process Flow
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Final Structure

Via

Top Aluminum

Important to have extremely flat 
surface under bit

Polished TiN Surface

Bit

USG
USG



Memristor Crossbar Die

Memristor Die



First Reliability Challenge: ESD!



Switching Film Development Challenge: 
Reactive Sputtering Stoichiometry

• Target poisoning prevents 
easily reactive sputtering 
TaOx where 3<x<5

• This is the region we need 
to be in to get ideal ReRAM 
stoichiometry 

• Used the forbidden region 
to calibrate flow-pressure 
with feedback

J.E. Stevens et al, accepted for publication 
by J. Vac Sci. Tech., 2013. 

A.J. Lohn et al APL 103, 063502 (2013)



Basic Device Performance

• Typical devices form at very low currents

• Appear “forming free” in current sweep mode

• Do not need a high voltage transistor!!

– This is a drawback of floating gate NVM

• Can be tailored by stoichiometry
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Endurance

• Sandia TiN/TaOx/Ta/TiN cell 
currently has max endurance of 
~100k 

• Currently optimizing cycling 
algorithms to improve this

• With Pt (Schottky) electrode, 
1012 cycles have been reported
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Variability and Noise

• Interdevice variability: device to device, can be >10x

– Variations in film thickness, topography

• Intradevice variability: cycle to cycle, can be >2x

– Fundamental physical attributes

• Random telegraph noise: 

– Affects read current, usually least significant
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Set and Reset Transition

• Analog resistance tuning of 
TiN/TaOx cell

• SET

– Abrupt – thermal runaway?

• RESET 

– Gradual transition

– Saturates for given amplitude

Vpulse = -1.5 V
Tpulse = 1µs

Vpulse = -1.0 V
Tpulse = 1µs

Vset = 0.65 V
Vreset = -0.75 V
Tpulse = 100µs



Closed Loop Cycling

• Resistance “find” routine

– 400 µs pulses

– Vpulse=0.5VR-target (100 mV inc)

• End

– R>Rtarget (off)

– R<Rtarget (on)



Open/Closed Loop Cycling

Open loop Vset=1V

Closed loop

Open loop Vreset = -2V 

Closed loop

Closed 
loop

Open 
loop 
Vreset = -2V 

Closed 
loop

Open loop 
Vset = 1V 



Vtip=2.4 V

Vtip=2.6 V

Vtip=2.8 V

Vtip=3.0 V

Vtip=2.0 V

Possible Source of Variability

Marinella et al, EMC 2014



DFT Model: Ta2Ox Structures 

7/17/2015

c-Ta160 (Ta)

a-Ta160O2

a-Ta48O120

c-Ta48O120 (Ta2O5)

c-Ta48O119 (VO
2+)

[100]

[010]
[001]

[100]
[001]

[010]

►Ta2Ox structure library generated for conductivity calculations
►Parameter space samples composition, phase, temperature, and charge state

amorphous crystalline

Bondi et al JAP 114, 203701 (2013)



•DATA:  167-atom amorphous supercells
containing 1 VO

0, HSE06 functionals, 
T=500K
• Spatial variation: 1-2 orders of magnitude 
in o

• Temporal variation:  9-10 orders of 
magnitude in o

• Structural variation: 16 orders of 
magnitude in o

• Anisotropy in o relatively small effect at 
nanoscale

Nanoscale Variability

29

spatial, temporal structural

comprehensive

Bondi et al JAP 114, 203701 (2013)



Panasonic Ta/TaOx Retention Model

• LRS is characterized by a radial concentration profile

• HRS is characterized by a vertical concentration profile

Z. Wei et al, IEDM 2008



Panasonic Ta/TaOx Retention Model

• Despite tail bits, 10 yr retention @ 85°C still predicted

Z. Wei et al, IEDM 2008



Retention Measurement 

• Zeus/Aetrium system

– Ambient temperature control up 
to 300°C

– Long term voltage stress and 
intermittent IV read capability

• For retention measurements 0V bias 
is used, with 100mV read voltages 
tested every 15s until test is finished

• Multiple temperatures: 220, 175, and 
150°C 

• 48 devices tested at each 
temperature, should provide 
sufficient statistics



100 101 102 103 104 105 106 107
102

103

104

105

43 Devices, 0.1V stress at 175 C

R
e
s
is

ta
n
c
e
 (

O
h
m

s
)

Time (seconds)

Retention Data

• ~98% devices show minimal resistance changes

• Appears to follow Panasonic model

• Tail bits are the key challenge
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Retention Fail Rates

• Low failure rates suggest a burn-in step could select the 
most resilient devices and not detrimentally lower yield
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Displacement Damage vs. Ionization

Displacement 
damage

Ionization800 keV Ta 28 MeV Si 70 keV e-

• Different damage mechanisms investigated using 
various beams

• Different circuit configurations

– Floating and shorted

• The following slides describe cell-only 
measurements of displacement damage and TID



Early TMO-ReRAM Radiation Experiments

• TiO2

– Little effect from 45 Mrad(Si) γ-
rays and 23 Mrad(Si) Bi ions

– Resistance change due to 1 MeV 
alpha particles and  350 keV 
protons

• TaOx

– Thickness dependence from 
Peking University

– Resistance degradation due to 
800 keV Si ions

Barnaby et al., Trans Nuclear Sci, vol. 
58, pp. 2838-2844, 2011.

Zhang et al., Trans. Electron Devices, 
vol. 58, no. 8 pp. 2800, Aug. 2011.



10 keV X-ray (Ionization) – TaOx and TiO2

• Grounded and floating

– Steps up to 10 
Mrad(SiO2)

• DUT 4 changed 
resistance at 4 
Mrad(SiO2)

– No lasting damage

– Unrepeatable

• No other effects on any 
devices



4.5 MeV Protons

• 4.5 MeV proton irradiation at Sandia’s IBL

• In situ electrical testing in 10-5 torr vacuum

• 1 µm beam rastered across 25x25 µm area

• Little change up to 5 Mrad(Si)
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800 keV Ta (Displacement Damage) - TaOx

• Displacement damage

– Gradual resistance 
degradation

• Creation of oxygen 
vacancies

– Threshold ~1019 cm-3

• Reset operation recovers 
significant portion of 
resistance loss

– Cumulative damage
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Displacement Damage
Accumulation and Annealing

• Cumulative damage

– Stochastic process

– Not all added oxygen 
vacancies may be 
removed by 
oxidation/diffusion

• Repeated resetting can 
return device closer to 
original state
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28 MeV Si (Combined Mechanisms) - TaOx

• 28 MeV Si causes ionization 
and displacement damage

• Ionization

– Threshold ~600 Mrad(Si)

– Device to device threshold 
variation up to 10x

• Displacement damage

– Shots in run two are half 
critical dose threshold

– Oxygen vacancy threshold 
~6.5×1018 cm-3

– Consistent with 800 keV 
Ta

1017 1018 1019 1020 1021
10

1

102

103

104

105

106

Run 1
Run 2
Run 3
Final Reset

R
e

si
st

a
n
ce

 (


)

Oxygen Vacancies (cm-3)

Pre-rad/Reset

10-5 1011 1012 1013 1014 1015
Fluence (cm

-2
)



28 MeV Si (Ionization) - TaOx

• Resistance change abrupt 
and consistent

• Floating devices

• Ionization

– Requires 60-120 
Mrad(Si) Cumulative 
between reads

• TID threshold varies between 
devices
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70 keV Electrons (Ionization) - TaOx

• Ionization

– Threshold 100-200 
krad(Si) per shot

• When pins are shorted no 
changes occur for doses 
up to 18 Mrad(Si)

• Resistance change varies 
with dose per shot
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• Filaments localized to the edges of the device 
structure

• We believe this is due to one of the 
following: 

1.) Edge of bottom electrode may have non-
conformal oxide deposition
2.) Higher electric fields at the edges during 
electroforming process

Mapping the Switching Filament 
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• Multiple raster scans using a ~50 nm spot 
size 200 keV Si beam across the device

• Observed change is resistance once per 
scan at approximately the same X location 
each time, indicating filament extends 
~240x240 nm

Mapping the Switching Filament 
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Summary

• ReRAM technology shows promise to replace traditional 
magnetic hard drives, flash, DRAM, and SRAM

• Sandia is developing this technology for radiation hardened 
electronics

• ReRAM switching voltages (<1.5V) are ideal for CMOS 
integration

• Reliability Challenges

– Still need to understand the science of switching! 

– Variability: among devices, cycle to cycle, and read

– Retention: tail bits

– Radiation: cell responds generally well to TID and 
displacement, but subtle effects require understanding



Future Work

• Integrate with CMOS7 ASIC 
1T1R controller (first 
generation under 
test/debug)

• Assess reliability and 
radiation effects with full 
system, esp. transistor-cell 
interaction 

• Further investigate the 
effects of radiation on more 
subtle, long term device 
properties

• Interested in collaborations 
on these topics

2nd Gen Memristor ASIC 
Controller Block Diagram
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