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EIGER 

 Frequency-domain method of moments solution 
 Steady state solution 

 F90 ( 95, 2003)  code – Object Oriented Design 

 

 Boundary element formulation 
 Mesh surfaces of parts – interface between regions 

 

 Normal formulation results in dense (fully populated) matrix 
 Galerkin testing  -  Rao, Wilton, and Glisson bases functions 

 

 Simulations can be limited by available memory 

 Entries are double precision complex 
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EIGER Thin-Slot Formulation 

 This modeling feature enables the incorporation of potential 
penetration points on a structure that couple fields into a 
cavity without gridding the slot explicitly. 

 

 Based on research  by Warne and Chen. 
 Slot is modeled by a wire (carrying magnetic current) whose 

effective radius depends of the depth and width of the slot. 

 Note the length of the slot  >> depth, width 

 Incorporated into EIGER and used by other investigators. 

 Validated  

 Compared to analytic and experimental results. 
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EIGER Thin-Slot Formulation 

 Key features 
 Integral equation for the exterior surface current and slot current 

(magnetic current) 

 Integral equation for the  interior surface current and slot current 
(magnetic current). 

 Two contributions  

 Green’s function 

 Non-Green’s function 

 

 Implications 
 The exterior unknowns do not interact with the interior unknowns. 

 Coupling of the exterior to the interior is through the slot 
contribution. 

 Matrix has blocks with zero elements – no coupling. 
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Results – External Problem  
(Direct Solve on CIELO) 
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                 Frequency = 1GHz  

 930,000 Unknowns Run on 10240 Processors 

Memory Requirement 13.8 TBytes  
Direction of Incident Field 

     External Problem 

VFY 218 (50.6 ft. length) 



Compression Techniques 

 These are techniques that no longer store the full matrix but 
a lower rank version of the matrix. 

 

 Based on work by Bucci and Francescetti 
 “On the Degrees of Freedom of Scattered Fields” IEEE AP, July 1989 
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Compression Techniques 

 Fast Multipole Method (FMM) 
 Compression achieved through Green’s function simplification: 

 Factorization  

 Use of the addition theorem 

 Diagonalization  

 Results in low-rank approximation of matrix blocks 

 

 Adaptive Cross Approximation  (ACA) 
 Compression achieved: 

 Low-rank approximation of matrix blocks. 

 Done on the fly  

– Compressed matrix blocks never fully populated. 

 Since the process only operates on matrix blocks it is independent of 
Green’s function simplification. 

 There are also multilevel variants of this method. 8 



Compression Techniques 

 Identification of all matrix blocks  
 Discretized object (meshed) is encased in a oct-tree structure 
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Interaction Boxes Meshed Object 

VFY 218 

All compression techniques use this step in the solution process 



ACA Matrix Compression 

 Each box contains elements with current unknowns on the 
elements. 
 Can be compared to a 1-level fast multipole algorithm  

 

 2 boxes interact to form a matrix block. 

 

 The distance between boxes, size of the boxes, and 
wavelength determine if a reduced or low-rank 
approximation can be used. 
 Not all blocks can be compressed.  

 Compression criterion : 

– Distance between the center of boxes > 2 * (box radius) 
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ACA Matrix Compression 

 

 The matrix    is given by: 
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MOM_Blocks – Moment method matrix blocks (full matrix blocks) 

COM_Blocks – Compressed matrix blocks (low-rank approximation) 



Solution of the Compressed System 

 The matrix equation to be solved is : 

 

 

 The matrix is not completely available but is stored as: 

 

 

 

 Therefore a iterative solution approach needs to be used. 
 Generalized Minimum residual method(GMRES) 

 Saad and Schultz   1986 

 Transpose Free Quasi Minimum Residual (TFQMR) 

 Freund 1993 
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Solution of the Compressed System 

 The Iterative solution technique of choice is the TFQMR 
method. 
 Based on heuristic numerical experiments performed on 

electromagnetic problems. 

 Extended for use on parallel platforms. 

 

 On a parallel machine each processor does not have all the 
matrix blocks – they are partitioned on different processors 
for load balancing and memory balancing.  
 No processor can have more or less than one block than any other 

processor. 

 Processors have both MOM and COM blocks. 
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Solution of the Compressed System 
Using the TFQMR Method 

 In all iterative methods a matrix vector product is needed 
during the solution process. 
 This is performed in parallel (each processor has a portion of the 

compressed and MOM blocks). 

 

 In the original algorithm (used here) the residual norm is not 
available. 
 However an estimate is computable. 

 The convergence curves show two values 

 The normalized initial residual norm 

 The estimate to the norm. 

 A solution tolerance of 5 e-3 was used in all problems. 
 Will affect accuracy. 
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VFY-218 Compression Results  

 15 meter long aircraft. 

 

 Frequency 1 GHz 

 

 Number of unknowns 934128 

 2500 iterations  

 256 Processors 

 70,826 sec. 

 

 Epsilon 4.e-02 

 

 Memory 

 Full matrix 16 *(872) GBytes 

 Compressed 16*(19 + 7.7) GBytes 

 ~ 97 % compressed. 
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Compression Results VFY-218 
Magnitude of the near field full and 
compressed matrix solution. 
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Compression applied to an object 
with slots 

 Referred to as D_cavity. 

 

 

 A number of different mesh densities considered. 
 Increases the useful upper frequency limit for the model. 

 

 

  Contains essential features to exercise the compression 
algorithm on an problem with slots. 
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Thin-Slot Parameters 
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Inside cavity 

External cut away view 

 

Slot 

Length 

Width 

Depth 

For most problems 

Width,  depth  vary from .5 to 3mm 

Multiple slots in yellow 



Geometry D_cavity 
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1.2 m 

.6 m 

External View 

Ei 

Hi 



Geometry D_cavity 
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Internal View 

Dielectric 

Cavity 

.375m 



Results  

 The magnitude of the scattered electric field will be 
considered. 

 

 This field value will be calculated on planes both inside the 
cavity and outside the cavity. 

 

 Because of the proximity of these observation points to the 
object these are near field quantities. 

21 



Data Results Observation Plane 
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Observation Plane 

Slots (yellow) 



Data Results Observation Plane 
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Observation Plane 

Slots 



Results - Mesh 3   D_cavity 

 Object  1.2 m in length 

 

 Frequency  5.5 GHz 

 

 Number of Unknowns 247604 

 

 Epsilon   3.1e-03 

 

 Memory 
 Full matrix 16*(61)  GBytes  

 Compressed 16*(36.8 + .2) Gbytes 

 ~40% compressed. 
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Results - Mesh 3   D_cavity 
Magnitude of Scattered Field 
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Results - Mesh 3   D_cavity 
Magnitude of Scattered Field 
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Conclusions 

 The matrix compression has been successfully integrated in 
EIGER. 
 For parallel machines 

 With iterative solver 

 

 The viability of the technique has been demonstrated on a 
diverse group of problems. 
 Exterior problems 

 Problems with external geometry connected through slots. 

 Uses the thin-slot formulation already integrated in EIGER 
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Future Work - Compression 

 Improve the load balancing of the matrix: 
 For the MOM blocks, by the block size not just by block number. 

 Use preprocessing to generate block matrix structure. 

 

 Improve solution time by reducing the iteration count 
 Preliminary work performed by Matt Bettencourt on preconditioning 

revealed: 

 Standard methods ILU, Diagonal preconditioning will fail 

 Use Sparse Approximate Inverse (SAI) 

 Applied it to the two smaller problems discussed earlier. 

 Defined the algorithm to implement and tested it in MATLAB. 

 

 Continue testing on problems of interest to Sandia. 
 Verify and quantify errors for a robust implementation. 28 



Congratulations to Prof. Uslenghi 
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“George” 

G   --   gracious 

E   --   encouraging 

O   --   outgoing 

R   --   respectful and respected 

G   --  generous 

E  --  energetic 



Final Comments 

 Thanks for allowing me to be one of your students. 

 

 Thanks for your example over the years: 
 Technical expertise 

 Relational wisdom 

 

 Thanks for being a friend. 

 

 Please slow down – “I can’t keep up with you” 
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