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IMPACT TESTS AND FRACTURE TOUGHNESS

M. B. Reynolds

ABSTRACT

The problems met in attempting to apply linear elastic fracture mechanics
to moderately tough materials in thin sections are discussed. The possibility
of using impact tests to estimate the toughness of such materials is suggested
and the test conditions which must be met are listed.

INTRODUCTION

Over the years there have been developed a number of tests to classify, if not actually measure,
the sensitivity of engineering alloys with respect to the presence of cracks, flaws, or other stress
concentrators. Of these tests, the plane strain fracture toughness test is unquestionably the most
sophisticated. The advent of linear elastic fracture mechanics and the success with which the technique
has been used to predict the failure behavior of flawed brittle structures has led many to hope that
the same or similar techniques could be used to predict the failure behavior of ductile structures. The
virtue of linear elastic fracture mechanics has been that it made possible the prediction of the load
limit for a flawed structure in terms of flaw size and a single material parameter, the plane strain
fracture toughness, KIc' The material property contribution to the fracture process can be specified
completely hy a single constant only so long as there is negligible plastic deformation at the tip of the
advancing crack. As the size of this plastic zone increases, particularly in relation to the size of the
structure, it is necessafy to correct the measured crack length by an amount dependent on the ratio
of the toughness (KIc) to the yield stress of the material. It should be noted that use of yield stress in
the crack length correction term amounts to use of a second material property constant in the expression
relating load limit to flaw size. The plane strain fracture toughness KIc is proportional to the square
root of GIc’ the fracture energy per unit area of fracture surface. KIc can then be a material constant
and independent of structure size only if the energy expended in forming the layer of plastically deformed
material accompanying the advancing crack is proportional to the crack area produced. For this con-
dition to be met, the material thickness measured in a direction parallel to the crack edge must be
great enough that maximum elastic constraint (and therefore minimum plastic zone size) is achieved
over all but a negligible fraction of the length of the crack front. It is also necessary that the structure
width be great enough relative to the crack depth that the inverse square root stress field character-
istic of linear elastic.fracture mechanics is not greatly distorted by the proximity of a free surface.
How great this width needs to be depends somewhat upon the toughness-yield stress ratio for the
material; obviously the advancing plastic zone boundary must not intersect a free surface on the side
of the structure opposite the crack front.

FRACTURE TOUGHNESS DETERMINATION
In a fracture toughness (KIc) test, a specimen containing a crack prepared according to standard-

ized procedures as specified by the Americal Society for Testing and Materials'"’ is loaded mono-
tonically until unstable crack extension leading to failure occurs. Ideally, in a brittle material, the
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specimen should load linearly and elastically* up to the instability load. Because of the plastic
deformation at the crack tip before crack extension, perfect linearity up to instability is not always
achieved, and a KIc test is not ''valid" unless the deviation from linearity lies within specified
limits. There are also specified limits to the ratio of specimen width to crack depth as well as to
specimgn thickness. This latter sp'ecificatioh requires that for a ""valid" KIc determination the
specimen thickness must be at least 2.5 (KIC/Uy s)2. It is an unfortunate £act that catastrophic fail-
ures have sometimes occurred in materials which are neither manufactured nor used in section
thicknesses great enough to permit fabrication of a valid fracture toughness specimen based on the

ASTM thickness criterion.

A valid” Kie value is that number which defines a lower limit fof' the load which a flawed,
thick-section structure can support. ** It is quite possible that a flawed real structure, particularly
in section thickness less than that required for a valid KIc test, will fail at a load greater than that
which would be predicted from the limiting KIc value. In fact, a Kc value from less than optimum
test conditions may be moare nearly descriptive of the actual failure load than is the true thick
section KIc value. For example it has been found possible to estimate failure loads in axially
flawed low carbon steel pipes in terms of a constant having the dimensions of a stress intensity
factor in spite of the fact that the section (wall) thickness was much less than that required for a
valid fracture toughness test. *** Also, the values obtained in these pipe tests are not markedly
different from those which would be obtained by extrapolation of valid KIc versus temperature curves
for similar material. (4) These values should not he unexpected. The load limit for a brittle
structure which can be treated by linear elastic fracture mechanics decreases monotonically with
increasing flaw size and so does that for a structure made of material of sufficiently low yield
strength that flaw extension occurs by ductile necking and tearing rather than by brittle fracture.
The mathematical expression relating load limit to flaw size, in general, will not be so simple for
the ductile case as for the brittle, but such expressions can be generated from experimental data in
combination with some physical intuition. Furthermore, as the toughness of the material decreases,
the relation of load limit and flaw size predicted by such an expression should approach that of
linear elastic fracture mechanics. Deviation from the ideality of linear elastic fracture mechanics
does not occur suddenly and discontinuously when a certain limiting combination of values of
toughness, yield strength, and section thickness is reached. Rather there appears to be a ''gray
zone' in which constants having at least the dimensions of stress intensity factor can be measured
under less than ideal test ccnditions and can be used to make approximate, if not completely
accurate, estimates of limit loads for structures of section comparable to that of the test specimen.

Methods of Estimating Approximate Fracture Toughness

The ASTM restrictions on specimen size for valid K, tests were mentioned above. In some
cases, a standard fracture toughness specimen (for example the 1X WOL specimen) will load
linearly to a sharp instability although the KIc—to-yield strength ratio for the material is greater
than the acceptable limit for the specimen section thickness. The critical stress intensity factor
calculated from the instability load in this case should be indicative of the fracture behavior of the
material in structures of this section thickness even though it does deviate from the true value of KIc'

* As indicated by crack opening or other suitable measure of deformation.

** Increasing refinement of Kj. measurement techniques should result in decreasing values until
a limiting value is reached. This mipimum value should represent the true Ky, for the material.

*** Eiber, et al., (2) obtained a value of approximately 300 ksi vin. at about 600°F; Reynolds(3') )
obtained a valuc of approximately 100 ksi vin. at 60°F. Both investigators used ASTM A106B pipe.

2
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One source of approximate fracture toughness inforination which is of some value is the
impact test. It was pointe'd out that GIc is a measure of the energy required f_o create unit area
of fracture surface. The impact fracture energy measured in a conventional Charpy test is the
sum of the energy required to create the central flat fracture and the shear lips at the boundaries
of the fracture surface. The energy required to form the shear lips normally is much greater
than that to form the flat fracture. If the energy per unit area of flat fracture surface can be
obtained either by extrapolation based on tests of specimens of different thickness(s) or by suppres-
sing the shear lips to negligible dimensions, this value W/A may be used to estimate an upper
limit on KIc' We may safely assume that

< W
GIc - K
and that KIC = E(W/A

Shear lip suppression may be accomplished with varying degrees of success by nitriding, side
notching, or fatigue pre-cracking the impact specimen used for fracture toughness estimation.
Because of the increase in yield strength with increasing strain rate exhibited by most materials,
dynamic fracture toughness values are lower than static KIc values. This effect may to some
extent compensate for the effect of plastic deformation (shear lip formation) at the specimen surfaces.
To measure the rather low (a few foot-pounds) fracture energies obtained in such tests, a low '
range impact test machine is rcquired and corrections should he made for the kinetic energy of
broken specimens. If all necessary corrections are made, the data obtained for materials of
reasonably low toughness, such as low-strength ferritic steels, by the impact test are comparable
with data obtained with standard fracture toughness specimens.

To illustrate this point, a comparison of the data from several specimen types is presented
in Figure 1. All specimens with the exc/eption of three of A106B were made from a single
1 X 1-inch bar of cold-rolled steel. Specimens used included: )

IMPACT

5.5xX1.0 X1.0 cm, nitrided, 0.008 cm notch root;
5.5%1.0 x1.0 cm, nitrided, 0.025 cm notch root;
5.5x%X1.0 X0.5 c¢m, nitrided, 0. 025 c¢m notch root;
5.5 %1.27 %X 1,27 cm, nitrided, 0. 008 ¢cm notch root and notched on 3 sides.'

STATIC
1 X WOL, nitridéd;
1 X2 x5,5cm, 3 point-bend (pre-cracked Charpy).

The impact tests were made with a Manlabs Test machine of 24-ft-1b maximum capacity. Impact
velocity was approximately 11.2 ft/sec.

In loading the nitrided WOL specimens, initial pop-inwhich corresponded to the fracture of
the nitride case was followed by crack arrest when the crack had extended into the tougher base ‘
material. Upon increasing the load, the specimens loaded linearly until a second pop-in '
followed by complete brittle fracture occurred. The load at the second pop-in was taken to be
representative of the base material and was used in the calculation of Kc'

*Assuming the Poisson ratio v to have the usual value of 0, 3, the factor (1 -2v) in the expression
relating K; . to GIc contributes but 5% to the value of KIc and may be neglected here.

3 .
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FIGURE 1. K VALUE: SPECIMEN DEPENDENCE

@® 1 X1 Charpy, Precracked X 1X WOL, Fatigued
-0O- 1 X 1 Charpy, Nitrided . + 1 x 2 Slow Bend .
O 1 x 3 Charpy, Nitrided Dotted Lines Envelop Wessel

A Side Notched, 0.008 cm root  Data for Annealed A302B
A Side Notched, 0.025 cm root ¥ K_ Value from Burst Tests on Axially-

O 1x1Ch Nitrided ALOS flawed A106B Pipes
/ arpy, Nitride O K. Value from Bend Test on Circum-

O 1X WOL, Nitrided ¢ ferentially Flawed A106B Pipe

The dotted lines in Figure 1 envelop the valid KIc data obtained by Wessel.(4) for A302B

pressure vessel steel. Since this scatter band will also encompasé available K;  versus temperature

data for a surprising nuniber of low-to-medium-strength ferritic steels at tempIeCratures below

the brittle-ductile transition, it is felt to be a reasonable standard against which to compare the
impact test data. The fracture toughness of those materials which exhibit increasing yield strength
with increasing strain rate decreases with increasing fracture velocity. Hence, the impact test
K. values may be expected to lie below the A302B scatter band if the tests have been properly con-
ducted; that they do not at low temperatures is probably because specimen residual kinetic energy,
fraction, and other experimental errors become more significant at low energy values and lead to
positive errors in the measured fracture energy. Negative errors, which would appear to exist

if comparison with the A302B data is valid, would lead to conservative estimates of the load limits
for real structures. It may he noted in passing that a scatter band encompassing the impact data
in Figure 1 would be little wider than the A302B band.

There arc several ways of suppressing shear lip formation. All of them have some disadvantage
which must be evaluated with reference to the material of interest. Fatigue cracking the notch in a
Charpy specimen has little or no effect on shear lip formation along the sides of the specimen,"t')ut
does produce some decrease in measured fracture energy because of the reduction in energy re-
quired to initiaté fracture. Surface nitriding is most effective in suppressing shear lip formation,

4
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but the process requires exposure of the specimen to elevated temperatures with possibility of
resultant metallurgical changes. In the experiments upon which the data reported were based,
subjecting standard C_harpy specimens.of low carbon steel to the same temperature cycle

(24 hours at 250°F) as used in the nitriding process produced an increase in fracture energy as
indicated by tests on standard Charpy specimens. It is quite possible that this temperatire cycle
would adversely alter the properties of some materials. ‘

Although it does not y1e1d W/A values so low as does the nitrided Charpy specimen, the 1 27 cm
(1/2 inch) square triple- notched specmlen appears to be a good compromise when nitriding is pre-

“cluded hecause of. adverse thermal effects. The three notches of 0. 008 cm or smaller root radius
are easily cut by broaching and can be further sharpened’if desired by pressing' a hardened knife
'edge into the notch root. This specimen is of larger than- standard Charpy cross section and may .

" require some modification of the test machme to accommodate it, but side-notching a standard
Charpy specimen cons1derab1y reduces the fracture area and increases the ratio of shear lip to flat
fracture area. Early, rather quahtatlve tests with this specimen appeared encouraging, but to
date no further effort has been made to optimize its dimension.'

In summary, it would appear that the impact test may be a useful source of upper-limit, -
fracture toughness values where available section thickness does not permit valid fracture toughness
testing under the ASTM criteria. For impact W/A data to be applicable to KC estimation the
following conditions must be met: :

1. A sensitive, rigid impact test machine must be used to minimize energy
-absorption by vibration and machine friction.
. 2. All possible corrections must be made for broken specimen kinetic energy,
windage, and so forth, particularly at low energy values.

3. The contribution of shear lip formation to the measured impact fracture
energy must be removed either by an extrapolation process based on
multiple specimen widths or by modification of the specimen by nitriding,
side notching, or other means cithcr to eliminate shear lip formation or
to reduce it to an insignificant portion of the fracture surface.

Impact fracture testing is-not recommended as a replacement for valid static fracture toughness
testing, but rather for those cases in which nothing else is available for estlmatmg fracture
toughness.
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