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DISCLAIMER 

 

“This report was prepared as an account of work sponsored by an agency of the United 
States Government.  Neither the United States Government nor any agency thereof, nor 
any of their employees, makes any warranty, express or implied, or assumes any legal 
liability or responsibility for the accuracy, completeness, or usefulness of any 
information, apparatus, product, or process disclosed, or represents that its use would not 
infringe privately owned rights.  Reference herein to any specific commercial product, 
process, or service by trade name, trademark, manufacturer, or otherwise does not 
necessarily constitute or imply its endorsement, recommendation, or favoring by the 
United States Government or any agency thereof.  The views and opinions of authors 
expressed herein do not necessarily state or reflect those of the United States Government 
or any agency thereof.” 
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ABSTRACT 

As large-scale, commercial storage projects become operational, the problem of utilizing 
information from diverse sources becomes more critically important.  In this project, we 
developed, tested, and applied an advanced joint data inversion system for CO2 storage 
modeling with large data sets for use in site characterization and real-time monitoring. 
Emphasis was on the development of advanced and efficient computational algorithms 
for joint inversion of hydro-geophysical data, coupled with state-of-the-art forward 
process simulations.  

The developed system consists of (1) inversion tools using characterization data, such as 
3D seismic survey (amplitude images), borehole log and core data, as well as hydraulic, 
tracer and thermal tests before CO2 injection, (2) joint inversion tools for updating the 
geologic model with the distribution of rock properties, thus reducing uncertainty, using 
hydro-geophysical monitoring data, and (3) highly efficient algorithms for directly 
solving the dense or sparse linear algebra systems derived from the joint inversion.  The 
system combines methods from stochastic analysis, fast linear algebra, and high 
performance computing. The developed joint inversion tools have been tested through 
synthetic CO2 storage examples.  
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1 EXECUTIVE SUMMARY 
 

A major factor that impedes the understanding and widespread acceptance of carbon 
dioxide storage in the subsurface for climate change mitigation is the difficulty in 
monitoring the spatial distribution and movement of injected CO2, in order to prevent 
leakages to groundwater systems or to the ground surface. Sparsity of observations and 
the geologic complexity of deep subsurface formations introduce significant uncertainties 
in methods that attempt to reliably monitor injected carbon dioxide. Existing tools that 
use conventional methods for general-purpose model calibration are only limited to 
systems with few unknowns and observations and do not provide uncertainty 
quantification. Data assimilation techniques can be used to make progress in this 
important area; however, existing or “textbook” methods are not computationally capable 
to deal with realistic large-scale cases and multiple types of characterization and 
monitoring data.  

In this project, we have developed fast and reliable methods for real-time monitoring of 
CO2 geologic storage sites under incomplete information, with considerations of 
uncertainty and risk.  The development of advanced sensor and computational 
technologies is changing the technological state of the art in real-time monitoring, 
allowing the collection of more frequent and more diverse measurements. Our work has 
focused on the development of computational tools that can utilize such complex 
monitoring datasets to provide accurate real time monitoring of CO2 operations. Such 
tools can be used to (a) improve our understanding of the natural heterogeneity of storage 
systems and (b) to improve predictions of CO2 spatial distribution.  

This project has developed innovative data assimilation methods and tools that are based 
on sound fundamentals and are adapted to the physical and computational challenges 
encountered in CO2 storage monitoring. We have developed, implemented, and tested 
methods that can estimate many unknowns, with quantification of uncertainty, with 
speeds that are orders of magnitude higher than traditional data processing methods, such 
that they are applicable for real large-scale projects.  These methods utilize fast linear 
algebra tools, which are revolutionizing the way we do mathematical modeling.  Such 
tools take advantage of special features (or “structure”) in the mathematical methods, 
focus on computing only what is needed, perform computations only at an accuracy that 
is sufficient for the application at hand, and take advantage of available computational 
environments.  

In particular, the tools developed comprise two algorithms for fast offline inversion and 
four algorithms for fast dynamic inversion. The common characteristics of these 
algorithms are that:  
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• They are fast, i.e., able to process large data sets using modest computer resources.  
This is achieved through the use of numerical techniques that improve 
computational efficiency by orders of magnitude. The computational cost of all 
methods developed scales linearly with the number of unknowns, as opposed to 
the quadratic scaling of conventional methods.  

• They provide risk-based estimates to inform decision-making. This is achieved 
using sophisticated statistical techniques that provide uncertainty quantification 
measures for each estimated quantity. 

• Use forward models in a black-box fashion so that the data assimilation code is 
generalizable for any data assimilation problem as long as a forward model exists. 
No modification of forward models is necessary as in adjoint state methods. 

The following table lists the algorithms developed and the particular attributes and 
applicability of each one. The conventional methods are included for comparison:  

Method Cost (# simulations)  Attributes 
Offline inversion 
Conventional  n (with adjoint 

methods) 
  

Fast linear GA 
(Geostatistical 
Approach) 

none  Any linear problem 

 The method combines the Quasi-Linear Geostatistical approach  
with the hierarchical matrices technique to reduce the cost of 
matrix-matrix multiplications including the large covariance 
matrix.  

PCGA 
(Principal Component 
Geostatistical 
Approach) 

K*niter   Smooth problems 

 The method combines the Quasi-Linear Geostatistical approach 
with a matrix factorization technique that compresses the error 
covariance matrix based on its eigenspectrum, thereby reducing 
the effective number of the unknown quantities.   

 
Dynamic inversion / Kalman Filter 
Conventional n  (with adjoint 

methods) 
  

HiKF 
(Hierarchical Kalman 
Filter) 

none  Fast data acquisition, 
linear models 

 The method modifies the conventional Kalman Filter by 
assuming a random walk forward model, thereby reducing the 
Jacobian calculations and accelerates matrix-matrix 
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multiplications using the hierarchical matrices approach.  
SpecKF 
(Spectral Kalman Filter) 

n  Fast data acquisition, non 
linear models 

 The method modifies the conventional Extended Kalman Filter 
by employing an approximation to the forward model that allows 
efficient cross-covariance updates. 

CSKF 
(Compressed State 
Kalman Filter) 

K  Smooth problems 

 The method modifies the conventional Extended Kalman Filter 
by using a low rank approximation of the covariance matrix 
based on its eigenspectrum and fixed eigenbases. 

    
sCSKF 
(Smoothing-based 
Compressed State 
Kalman Filter) 

2K  Smooth problems, 
parameter estimation 

 The method modifies the conventional Extended Kalman Filter 
by using a low rank approximation of the covariance matrix 
based on its eigenspectrum and a fixed basis. For improved 
parameter estimation and reducing linearization errors, the 
method employs a one-step ahead smoothing.  

n: number of measurements  
m: number of unknowns (typically corresponds to gridded field of unknowns) 
K: effective rank of covariance matrix 
niter: number of iterations (typically 4-5) 
 

Select tools were applied to synthetic monitoring field data and with two specific CO2 
injection sites in mind, including the Frio, Texas pilot and the commercial site at InSalah, 
Algeria, where the number of unknowns is close to 105. Application to these synthetic 
datasets illustrates the importance of computational efficiency for data assimilation 
applications with more than a few thousands and demonstrates the computational 
scalability achieved by our novel algorithms. Conventional algorithms would have 
prohibitive costs that would necessitate significantly reducing the resolution of the 
forward models and the reliability of the data assimilation method. In particular, 
application of our algorithm sCSKF to synthetic three-dimensional monitoring data for 
characterization of a site similar to the Frio-I site in Texas, demonstrated that: 

• Even for strongly heterogeneous fields with significant anisotropy, large-scale 
formations of high and low conductivity can be identified based on a small 
number of wells, as long as vertically distributed measurements are available. 

• Including thermal and chemical tracer data improves estimation accuracy. The 
relative worth of each dataset can be assessed using the Kalman Gain. 
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• Uncertainty estimates are extremely valuable as to where more measurements 
should be obtained to improve estimation and reliability.   

Overall, the tools and methods developed in this project enhance both the actual 
reliability and the perceived safety of CCS facilities and are well suited to the policy and 
management challenges in CO2 capture and storage (CCS).  
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2 INTRODUCTION 
2.1  CONTEXT:  REAL TIME MONITORING OF CARBON DIOXIDE STORAGE   
 

While the deep subsurface can store much of the CO2 produced by coal-powered power 
plants, the injection into the subsurface of millions of tons of carbon dioxide per year 
involves many technological challenges.  A major difficulty is related to the 
heterogeneity of geologic formations and the challenges in characterizing the sites and in 
monitoring the progress of injection and storage.  Not only is it difficult to identify the 
ideal sites, but also it is hard to manage a site, for example to regulate injection rates in 
order to optimize performance and minimize the risk of CO2 leakage.  The consideration 
of possible large-scale leakage, however unlikely such a leakage may be considered by 
some experts, is expected to be an impediment to the regulatory acceptance of many sites.  
The public demands assurances that the storage facility is properly monitored and an 
early warning system is in place.  For the operators of the storage facility, slow long-term 
leakage is a significant financial risk if it must be recompensed by purchasing CO2 
emission permits.  Reliable monitoring both reduces actual risks and allays fears 
associated with perceived risks. Existing methods for monitoring are based on either non-
computational, experience-based evaluation of monitoring data, or rely on history 
matching of monitoring data and calibration of a small number of unknowns. There is 
need for a systematic, statistically sound, framework for utilization of monitoring data 
within numerical simulations, that can provide reliable estimation of unknown quantities 
along with uncertainty and risk analysis, in real-time.  This need has been the primary 
motivation for the work done in this project.   

 

2.2  PROJECT OBJECTIVES 
 

The primary objective of the proposed research is to develop, test, and apply an advanced 
joint inversion tool system for CO2 storage modeling with large sets of different types of 
characterization and monitoring data. The system will enable existing efficient numerical 
simulators for forward modeling of CO2/brine two-phase flow and transport to be utilized 
efficiently in the inversion of field scale characterization and monitoring data. The system 
will also provide a stochastic and statistical framework for (real-time) monitoring, 
modeling, and inversion, which can work consistently with uncertainty quantification, 
risk assessment and mitigation, and optimal control and operation. To this end, the 
developed methods have the following characteristics:  
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- They are fast, i.e., able to process large data sets in real time using modest computer 
resources.  This is achieved through the development of innovative numerical 
techniques that improve computational efficiency by orders of magnitude.   

- They provide risk-based estimates to inform decision-making.  This is achieved using 
sophisticated statistical techniques, that provide estimated quantities along with their 
uncertainties, calculated from the sensitivity between the data and the unknowns. 

The advanced joint inversion tool system developed in this project enhances the 
predictive capability of models (e.g., regarding CO2 plumes) and improves storage 
performance through better understanding of storage systems (e.g., spatially varying 
hydrogeologic properties and potential pathways for leakage), with dynamic reduction in 
uncertainty. It is an ultimate goal that the joint inversion tool system will be the central 
piece for a decision-making system for optimal control of CO2 injection and storage by 
linking forward simulation, dynamic monitoring and inversion, uncertainty quantification, 
and risk assessment under a consistent framework. This project achieved the following 
specific objectives: 

• A package was developed that includes efficient algorithms and fast solvers of 
linear algebraic system arising in inverse optimization problems in the joint 
inversion methodology with a very large number (N) of unknowns, such as Fast 
Direct Solvers with a computational complexity of O(N log N).  

• The algorithms developed can be used for stochastic inversion for optimizing 
spatially varying rock properties using characterization and monitoring data; to 
demonstrate the updates of rock properties with incremental addition of field 
testing and monitoring data and the reduction in the uncertainties of the rock 
properties; and to demonstrate the efficiency of the joint inversion system with the 
developed fast linear solvers on practical data sets.  

• The developed efficient joint inversion tools were tested with synthetic datasets 
for simple test cases for which they can be compared to conventional, exact but 
much more computationally expensive methods, as well as for large-scale 
synthetic examples for characterization with single-phase field tests.   

• The developed algorithms are discussed in the context of the two real CO2 storage 
sites with large characterization/ monitoring data. 

 
The system consists of (1) statistical and computational inversion tools for providing 
prior distribution of rock properties using characterization data, such as 3D seismic 
survey (amplitude images), borehole log and core data, as well as hydraulic, tracer and 
thermal tests before CO2 injection, (2) statistical and computational joint inversion tools 
for estimating the distribution of rock properties and CO2 with uncertainty quantification 
using monitoring data for CO2 injection and storage, and (3) highly efficient algorithms 
for directly solving the dense or sparse linear algebra systems derived from the joint 
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inversion and for performing matrix matrix multiplications involved in inversion 
algorithms. The developed joint inversion tool system is tested with simulated data using 
the TOUGH2-MP/EOS1 and TOUGH2-MP/ECO2N simulations for synthetic single 
phase and CO2 storage examples respectively. The applicability and efficiency of 
developed methods is also discussed in the context of real datasets from two field sites: 
the Frio I Pilot Test and the In Salah Storage Project.  

 

2.3  REPORT ORGANIZATION 
 

This report is organized to be consistent with the Statement of Project Objectives for this 
project. An overview of the developed methods and applications is given and the reader 
is directed to journal articles for more technical details.  This is followed by Summary 
and Conclusions section. 
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3 BAYESIAN JOINT STOCHASTIC INVERSION: 
METHOD DEVELOPMENT AND VALIDATION  

 

The main feature of the methods presented under this section is that they are able to 
handle the excessive computational and storage costs of large-scale stochastic (i.e., with 
quantification of uncertainty) inversions that prohibit the use of traditional inversion 
methods. Each method takes advantage of different properties or characteristics of a 
category of problems in order to simplify or approximate the computations. Our newly 
developed algorithms achieve this objective by capitalizing on the structure and the 
associated properties of the large covariance and sensitivity matrices involved in the 
inversion process, and by using linear algebra techniques that perform fast matrix-vector 
and matrix-matrix multiplications. An important feature of these approximate methods is 
that they are constructed with the requirement that the introduced approximation error is 
small and controllable.  

3.1 EFFICIENT JOINT INVERSION FOR OFF-LINE INVERSION 
 

3.1.1  QUASI-LINEAR GEOSTATISTICAL APPROACH WITH THE FAST MULTIPOLE 
METHOD  

 

The first algorithm developed utilizes the fast multipole method (FMM) (Fong and 
Darve, 2009), in order to speed up a crucial part of linear and nonlinear inversion 
methods and is presented in detail in Ambikasaran et al. (2013). The bottleneck of 
stochastic linear inversion using the quasi linear geostatistical approach (QLGA) is the 
multiplication of the prior covariance matrix Q with the transpose of the measurement 
matrix H, i.e., the Jacobian matrix of observations with respect to the unknowns.  When 
the number of unknowns to be estimated (m) is large compared to the number of 
measurements (n), directly performing this multiplication can have tremendous 
computational and storage cost, as these costs scale with m2. The proposed algorithm has 
a respective cost that scales with m, so that as the problem grows the cost can still be 
manageable. A major advantage of the proposed algorithm compared to other fast 
approaches is that it is not constrained to regular grids, as fast Fourier transform (FFT) 
type methods do, and is not constrained to smooth covariance functions, as low rank 
methods do. The method is general and applicable to irregular grids and a wide range of 
covariance matrices and can be easily applied for both two- and three-dimensional (2D 
and 3D) problems. 

The basic premise of the proposed method can be summarized as follows:  
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A wide range of covariance matrices used in stochastic inversion have a structure called 
hierarchical low-rank, falling into the category of hierarchical (H2) matrices. This is due 
to the fact that the interactions between far away clusters of points (far-field interaction) 
can be efficiently represented by a smooth function, which enables the use of low-rank 
approximations for each cluster. The fast multipole method (FMM) is an algorithm that 
uses the properties of H2 matrices to compute dense matrix-vector products in a 
computationally efficient way and with sharp a priori error bounds. The accuracy of the 
method depends on the number of Chebyshev nodes used (i.e., depth of the hierarchy 
used) as well as the effective rank of each low rank cluster (Fong and Darve, 2009). 

Combining the QLGA with efficient ways to compute matrix matrix multiplications and 
with harnessing the sparsity of some of the matrices involved results in a method that 
overall scales linearly with the number of unknowns, which is the characteristic of this 
algorithm.  

a. Validation 

The method proposed is an approximation of the full QLGA for stochastic inversion. The 
approximation allows for the computational speed up, but also introduces an error, that is 
however small and controllable. To validate the method, we used a synthetic dataset of 
crosswell tomography created to resemble data acquired during monitoring at the Frio II 
test site in Texas. The data were created based on a collection of time-series seismic 
travel times recorded from a seismic source in one borehole and seismic receivers in the 
second borehole (Figure 1).  

 

Figure 1: Schematic of Frio-II seismic monitoring experiment showing the sources and receivers in the two 
boreholes, and the point of CO2 injection.  
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From the baseline measurements made, a delay (or “slowness”) in travel time is produced 
over a period of time due to the presence of CO2.  This delay suggests the ray path 
transverses through material of lower seismic velocity, in this case, the CO2 plume.  To 
create the synthetic data, TOUGH2/ECO2N was used to produce a CO2 saturation image, 
which was converted to an image of the “true” CO2 induced slowness based on a 
petrophysical relationship. The objective of our algorithm is to use noisy travel time data 
obtained for the synthetic “true” CO2 induced slowness image to reconstruct the CO2 
induced slowness.  

Select results are shown in Figure 2, which shows the final estimates of our proposed 
method compared to the true slowness:   

 

Figure 2: (left) true slowness simulated with TOUGH2/ECO2N (middle) reconstructed slowness using the 
proposed algorithm and (right) uncertainty in the estimated solution.  

In terms of our methods accuracy, the only source of error in the computations is the 
approximation of the QHT matrix. To investigate this, we computed the error as a 
function of the Chebyshev nodes:  
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Figure 3: Relative error in QHT versus the number of Chebyshev nodes along one direction for m=51249- 

As shown in Figure 3, using as few as five Chebyshev nodes results in a negligible 
relative error in QHT, and as a consequence, in the final estimates (Figure 2). An 
important attribute of the method is that it provides uncertainty estimates (right panel of 
Figure 2). Quantification of uncertainty is crucial in the context of inverse problems as it 
allows the assessment of the solution provided by inversion for a given set of data.  

b. Computational efficiency 

The approach speeds up the geostatistical method of inversion dramatically. The same 
crosswell tomography problem was solved for different discretization schemes so as to 
vary the number of unknowns and the results are shown in Figure 4: 

 

Figure 4: (left) Comparison of the time taken by the fast QLGA versus the conventional direct algorithm (right) 
same comparison for the storage cost. 

 

In conclusion, we have developed a fast inversion algorithm for large-scale linear 
inversion that can be used for problems with large number of unknowns and relatively 
few observations.  The computational speed up achieved by the proposed algorithms 
allows estimation of the unknowns and of the associated uncertainty, with a negligible 
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and controllable error. The computational speed achieved enables the use of our 
algorithm for use with large-scale systems with fine discretization, as well as for purposes 
of optimizing data collection. For example, and as discussed in more detail in 
Ambikasaran et al. (2013), the ability to run an inversion of 250,000 unknowns in less 
than 20 minutes allowed the optimization of the tomography sources and receivers and 
consequently of the capture zone. This attribute has a great impact for real field 
applications where collection of data is expensive and time and labor intensive.  

 

 

3.1.2 PRINCIPAL COMPONENT GEOSTATISTICAL APPROACH 
 

The second algorithm we developed to improve the computational efficiency of offline 
large scale inversions, is based on state compression methods. We proposed a new state 
compression method that can be used to significantly reduce both the computational time 
and the storage space requirements when solving large inverse problems. The method can 
be used to solve static inverse problems and is called Principal Component Geostatistical 
Approach (PCGA) (Kitanidis and Lee, 2014, Lee and Kitanidis, 2014). PCGA utilizes a 
matrix-free approach to calculate the required derivative information, overcoming the 
need for computationally expensive computation of a full Jacobian matrix and of 
performing matrix multiplications. In addition, PCGA exploits the properties of 
covariance matrices with low effective rank to reduce the size of the problem by orders of 
magnitude. The method is ideal for problems with smooth solutions and noisy 
measurements, such as hydraulic tomography and geophysical monitoring methods.    

a. Validation 

The PCGA is developed and detailed in Kitanidis and Lee, 2014. The premise of the 
method is that certain smooth covariance matrices can be well approximated by much 
smaller matrices obtained by eigenvalue decomposition. In particular, covariance 
matrices with an eigenspectrum that drops rapidly are most amenable to this 
approximation, as good accuracy can be obtained with very few principal components 
(N) compared to the number of unknowns (N<<m). This is shown for a synthetic one-
dimensional flow with variable and unknown conductivity example with 100 unknowns. 
With just 20 principal components, the PCGA closely resembles the solution given by the 
full GA, as shown in Figure 5. The efficiency of the method is even greater for cases with 
noisy observations. 
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b. Evaluation 

The PCGA was implemented for a large-scale two dimensional problem of hydraulic 
tomography, and was used to illustrate the efficiency and accuracy of the method as well 
as the advantages of joint inversion.  The method is based on low rank approximation of 
the covariance matrix, which is performed in a computationally effective manner using 
the randomized eigenvalue decomposition method. This is combined with a matrix-free 
approach, which avoids direct evaluation of Jacobian matrices. The matrix-free approach 
also has the advantage that uses the forward simulation as a black box, and no 
modifications are necessary as in adjoint-state methods. The accuracy and efficiency of 
PCGA is determined by the number of principal components N used, which in turn 
determines the number of forward model evaluations. When the number of principal 
components is small, which is the case in many geoscience applications, the PCGA is 
scalable for very high dimensional problems.    

 

 

Figure 5: Comparison between the true conductivity, the estimates obtained by the textbook geostatistical 
approach (est textbook) and the estimates obtained by the proposed method PCGA (estPrinGeos).  

The computational efficiency of the method was demonstrated using synthetic  
benchmark applications showing the applicability of the algorithm for inversion problems 
with more than one million of unknowns (Lee and Kitanidis, 2014). Two synthetic 
applications are considered for characterizing a two-dimensional heterogeneous domain: 
one where only pressure data are used, and one where pressure and tracer data are used. 
One of the two heterogeneous domains considered as well as the well locations used for 
monitoring are shown in Figure 6: 
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Figure 6: Domain and boundary conditions for synthetic applications of PCGA. Background color shows one of 
the two heterogeneous permeability fields (referred to as Case 2 below and in the paper) used to evaluate the 

method (Lee and Kitanidis, 2014).  

Figure 7, shows the estimation for the case where only pressure data were used. It can be 
seen that the two heterogeneous conductivity fields are reconstructed, even with only 36 
and 48 principal components respectively. The point-wise accuracy of estimation is 
related to the location and information carried in each measurement, as also reflected in 
the estimated uncertainty.  

 

Figure 7: True log transmissivity fields (a) and best estimates (b) and uncertainties (c) using the PCGA.   

The PCGA was also used to illustrate the benefits of joint inversion. For the same domain 
as above, the inversion was conducted using both head data, and tracer travel time data. 
The latter dataset is considered more informative as solute transport is more sensitive to 
conductivity variations compared to single-phase flow. Figures 8 and 9 show the 
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improvement in the data-fit and in the estimated conductivities respectively, when tracer 
data were included in the inversion.   

 
Figure 8: Measurement data fitting: simulated versus measured mean travel time for only head data (left) and 

from joint inversion of head and tracer data (right 

 

Figure 9: True log transmissivity field and best estimate for head data inversion (b) and head and mean travel 
time data inversion (c). The monitoring locations are indicated by circle for head and asterisk for tracer data. 

In conclusion, the PCGA is a method that makes joint inversion for systems with millions 
of unknowns possible. This is particularly relevant for large-scale applications where it is 
important to characterize fine scale heterogeneity of the subsurface. The method takes 
advantage of fast linear algebra techniques to accelerate computations, and its accuracy is 
controllable and depends on the eigenspectrum of the error covariance of the unknown 
field. PCGA is a general-purpose inversion method and can be used with any simulation 
model.  
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3.2 EFFICIENT JOINT INVERSION METHODS FOR DYNAMIC 
MONITORING 

 

Online or real-time estimation methods, in which observations are assimilated as they are 
obtained in time, are required for dynamic monitoring of a process. Such is the case for 
monitoring CO2 during and after injection.  Such data assimilation can be performed with 
various methods, the most well established being the Kalman Filter (KF). In simple 
terms, the Kalman Filter is a Bayesian approach (or minimum variance unbiased 
estimation method) for correcting the predictions of an uncertain dynamic model using 
observations that may be affected by error.  Being a stochastic inversion approach, the 
Kalman Filter models the unknowns and the data as random variables and gives optimal 
estimates of the mean and standard deviation in the linear Gaussian case, i.e., when the 
errors are zero mean Gaussian random variables, and the forward model and 
measurement operators are linear. When these assumptions do not hold, the Extended 
Kalman Filter (EKF) can be used, which applies the KF equations after linearization.  
Notwithstanding the linearization errors, the EKF can provide reasonable accuracy in 
many non-Gaussian, non-linear cases encountered in practice. However, the 
computational cost of applying the textbook version of the KF and the EKF is prohibitive 
for large-scale applications due to the large covariance matrices involved, the cost of 
computing Jacobian (i.e., derivative) matrices, and matrix products involving the 
covariance matrix.  In this section, we present four methods that have been developed to 
approximate the KF and EKF with a much smaller computational cost. Error analysis for 
all methods indicates that the proposed methods have a small and controllable error and 
have advantages over other, ensemble based, Kalman Filter methods.  

3.2.1 HIERARCHICAL KALMAN FILTER (HIKF) 
 

The first method is the Hierarchical Kalman Filter (HiKF) which is a fast implementation 
of the Kalman Filter that utilizes the FMM method and hierarchical matrices to improve 
storage and computational time requirements.  

The version of HiKF that is presented in Li et al., (2014) is customized to the random-
walk dynamical model, which is tailored to a class of data assimilation problems in which 
measurements are collected quasi-continuously. Using the random walk dynamical 
model, Jacobian-matrix computations are significantly simplified, such that the major 
bottleneck becomes the computation of the product QHT, where Q is the error covariance 
matrix, and H is the measurement operator.  As discussed in section 3.1.1, this bottleneck 
can be tackled by the FMM approach, which harnesses the structure of the covariance, 
which possesses the properties of H2 matrices. In addition, the method adopts a dynamic 
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update of cross-covariances (mxn) instead of the much larger covariance matrices. These 
features of the new method result in an overall computational cost that scales linearly 
with the number of unknowns and gives high accuracy as it does not involve  any low-
rank approximations.  

The new method was validated and evaluated using the application of time-lapse cross-
well seismic tomography discussed in Section 3.1.1, where measurements are collected 
periodically and the observations are used to track a CO2 plume in the subsurface (Figure 
10).  Measurements of travel time between a network of sources and receivers (Figure 1) 
are used to estimate the CO2 induced changes in slowness (i.e. delay in travel time) in a 
two dimensional domain due to the seismic velocity decrease in the reservoir from the 
CO2 plume. This case is based on the model developed for the Frio-II brine pilot CO2 
injection experiment (Daley et al., 2007). The true slowness data associated with the 
presence of CO2 were generated based on saturations from TOUGH2-ECO2N and using 
a petrophysical relationship between slowness and saturation. 

 

 

 

Figure 10: True CO2 induced changes in compressional wave slowness between two wells used for validation of 
HiFK generated. 

a. Validation 

The HiKF is an approximation of the KF, with the approximation error introduced by the 
FMM method for the calculation of QHT. First, for validation purposes, the HiKF was 
compared to the KF. As can be seen in Figure 11, the results from KF and HiKF are 
indistinguishable. This high accuracy is due to the fact that the FMM considers the full 
spectrum of the covariance, unlike low-rank methods. This is especially important for 
CO2 applications, where the image to be estimated may have sharp interfaces and high 
frequency components that require a covariance with a slowly decreasing spectrum.  
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Figure 11: Estimated CO2 induced changes in compressional wave slowness between two wells for KF (top) and 
HiKF (bottom).  

b. Accuracy  

The HiKF was able to reconstruct the true image of the CO2 plume with high accuracy 
using the travel time measurements (Figure 12). The predictions of slowness become 
increasingly accurate over time as more data are assimilated. Such high accuracy is 
expected when data are available at frequent time intervals such that the assumption of 
the random walk model is applicable. 

The HiKF results were also compared to results obtained by the Ensemble Kalman Filter, 
which is a popular low rank method used for data assimilation. As mentioned above, the 
test case discussed here, as is typical of CO2 injection scenarios, has sharp interfaces that 
a low rank filter is not expected to capture well. As shown in Figure 13, the EnKF has a 
higher estimation error relative to both the true solution and the KF solution for the same 
computational cost, as expected. More specifically, the EnKF solution is smeared and has 
numerous random features that are not present in the true solution. These shortcomings 
are also prevalent in the uncertainty estimated by EnKF, which is significantly noisier 
compared to HiKF. In contrast the HiKF gives accurate uncertainty estimation, 
practically equivalent to that given by KF, with lower uncertainty in the region with high 
seismic ray coverage. 

KF 

HiKF 
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Figure 12: True and HiKF estimates for the compressional wave slowness.  

 

Figure 13: Estimation error relative to the true solution (left) and relative to the KF solution (right).  

c. Efficiency 

The HiKF is significantly faster than the textbook version of Kalman filter and has much 
lower storage costs, as it scales linearly with the number of unknowns, as opposed to the 
quadratic KF scaling. In the particular application discussed here, for a number of 
unknowns m=50778, the computational time is reduced from approximately 4 hours to 
less than 2 minutes. The improvement that our method provides in storage and 
computational time requirements increases as the inversion problem becomes larger, 
which manifests the advantage of HiKF for large-scale applications, and as shown in 
Figure 14.  
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Figure 14: Computational time and storage cost of each data assimilation method plotted as a function of the 
number of unknowns. The proposed HiKF algorithm outperforms the full Kalman Filter (KF) and the 
Ensemble Kalman Filter (EnKF) in both storage and computational time requirements (Li et al., 2014) 

Overall, the Hierarchical Kalman filter (HiKF) provides high accuracy and significant 
computational savings and is ideally suited for cases with large number of unknowns, 
relatively smaller number of measurements at a given point in time, and when 
measurements are collected frequently such that a random walk model can be used to 
approximate the forward model operator. Details about the experiments and results can 
be found in Li et al. (2014). 

 

3.2.2 SPECTRAL KALMAN FILTER (SPECKF) 
 

The second dynamic inversion method developed is the Spectral Kalman Filter (SpecKF) 
and is described in detail in Ghorbanidehno et al. (2015). The SpecKF is an extension of 
the HiKF for more general cases where the transition matrix is not the identity matrix (i.e.  
random walk model), such as forward models in hydrogeologic applications (e.g., 
TOUGH2). The method uses a forward model approximation and is better suited for 
cases where the time interval between observations is reasonably small. The algorithm is 
designed such that it can be used for any non-linear problem for which a forward model 
is available. The forward model is used as a black box to compute the Jacobian of the 
state transition equation using a finite differences approach. The computational speed-up 
of the SpecKF is achieved by updating cross-covariance matrices instead of the larger 
covariance matrices. The benefit can be considerable, especially in large systems, 
because the computational complexity of the SpecKF scales with the number of 
measurements, as opposed to the effective rank of the covariance matrix in low-rank KFs 
or the number of ensemble members in ensemble methods. The filter sacrifices a little 
accuracy in the operations involving the forward model to achieve a large improvement 
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in implementation speed. A great advantage of the SpecKF is that it does not suffer from 
errors from low rank approximation of the state covariance matrix.  

a. Validation 

We have validated the SpecKF by comparing it to the full KF. To be able to run KF with 
reasonable computational times for this comparison we used a simple linear diffusion 
problem.  

 

Figure 15: Average relative error between the SpecKF and the KF estimate with time.  

Agreement with the full Kalman Filter verifies that the algorithm and implementation are 
correct. A very small relative error of the order of 10-3 confirms that the performance of 
the SpecKF is satisfactory (Figure 15). Our error analysis demonstrated that the SpecKF 
also provides accurate estimates of the uncertainty at the measurement points. The 
SpecKF algorithm does not provide the entire spatial distribution of the uncertainty to 
save on computational cost, but it is possible to obtain uncertainty estimates at a specified 
location, at a cost of one additional forward simulation per location. 

b. Accuracy and efficiency 

We have implemented and tested our method for a non-linear forward model where CO2 
is injected in a homogeneous two-dimensional domain. The filter is initiated with 
erroneous initial conditions representing a case where the initial CO2 saturation is 
unknown, and is using 25 noisy measurements of saturation and 9 pressures collected 
every 15 days to update the field of pressure and CO2 distribution on a 45x45 
computational grid (2x2025=4050 unknowns).  
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Figure 16: Comparison of true saturation with the SpecKF and the EnKF estimations for the case with small 
measurement error. First row: the SpecKF estimation for saturation; second row: the EnKF estimation for 

saturation with the same computational cost. 

We compare the results of SpecKF to the EnKF, which is the most commonly applied 
fast Kalman Filter. We tested the algorithm under a variety of scenarios and found that 
the SpecKF provides same or better accuracy than the EnKF. More specifically, we 
demonstrate that SpecKF has superior performance than EnKF, which is known to fail 
under two specific scenarios: firstly, for cases with low measurement error, the EnKF is 
known to diverge, producing spurious features that are inconsistent with the physical 
model. This is shown in Figure 16, which demonstrates that SpecKF is more robust than 
EnKF for low measurement error and for the same computational cost.  

 

Figure 17: Comparison of the relative error of EnKF and SpecKF saturation estimation with respect to the true 
solution for three different number of measurements 

Secondly, the EnKF is known to require a large number of realizations as the number of 
measurements increases to achieve the same accuracy, thus increasing its computational 
cost. The SpecKF computational cost scales exactly linearly with the number of 
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measurements, having a predictable increase in computational cost as the number of 
measurements increases, unlike EnKF where the number of realizations required is 
unknown.  This is shown in Figure 17, where the estimation error is shown for the two 
algorithms for the same computational cost, and varying the number of measurements 
used. As shown, the EnKF error increases with the number of measurements, while the 
SpecKF error remains relatively constant.  

Overall, the SpecKF is advantageous for non-linear estimation in systems with sharp 
interfaces since it considers the full covariance spectrum with no low-rank 
approximations and since its accuracy depends on controllable, physically meaningful 
parameters. Its computational cost scales linearly with the number of measurements and 
unknowns, thus being applicable for large-scale systems where the traditional KF is 
computationally prohibitive to apply. Compared to EnKF, SpecKF provides more reliable 
uncertainty quantification.  

 

3.2.3 COMPRESSED STATE KALMAN FILTER (CSKF) 
 

The third dynamic inversion method developed is the Compressed State Kalman Filter 
(CSKF) (Kitanidis, (2014); Li et al., (2015)). The CSKF uses N preselected orthogonal 
bases to compute an accurate rank-N approximation of the covariance that is close to the 
optimal spectral approximation given by SVD. The CSKF uses an efficient matrix-free 
approach that propagates uncertainties using N + 1 forward model evaluations, where N 
is the effective rank. As the CSKF is a low-rank method, it is ideally suited for smooth-
state problems where the covariance eigenspectrum of the state covariance decays 
rapidly. In such cases, a great computational speed up can be achieved.  

a. Validation 

We first validate the CSKF for a linear state-space model, as in this case it is possible to 
evaluate the full KF and use the KF estimates (i.e., the optimal estimate) to validate the 
generalized CSKF algorithm. We show that as the rank N increases, the CSKF converges 
to the KF (Figure 18). The CSKF accurately reproduced the Kalman gain and state 
estimates of KF with a small number of bases and gave high quality uncertainty 
quantification. 
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Figure 18: Convergence analysis for validation of CSKF (left) SD3: log-log plot of errors in the Frobenius norm 
of the posterior covariance and (right) SD4: log-log plot of errors in the Frobenius norm of Kalman gain K. All 

metrics measure errors relative to KF. 

b. Accuracy and computational efficiency 

The CSKF was further evaluated for a CO2 monitoring case, which is a more complex, 
nonlinear problem governed by multiphase physics. CO2 saturation in a two-dimensional 
homogeneous domain is estimated from measurements of pressure, flow rate, and 
saturation, given erroneous initial conditions, i.e. assuming that no CO2 is present initially 
in the domain. The forward simulator TOUGH2-ECO2N is used for the forward 
simulations. The CSKF was shown to perform equally well to the EnKF in terms of the 
estimated mean, identifying the main features of the saturation distribution (Figure 19). 
However, large discrepancies were observed between the two methods in the computed 
posterior variance (Figure 20). In particular, the CSKF provided robust Kalman gain and 
uncertainty estimates that did not degrade as more data were assimilated, as opposed to 
drastic variance reductions predicted by the EnKF. 

 

Figure 19: Solution given by CSKF and EnKF with N = 50:  true CO2 saturation and its posterior mean given by 
each method. The sampling locations of saturation are marked by circles. 
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Figure 20: Posterior standard deviation given by CSKF and EnKF, and EnKF+LOC with N = 50 The sampling 
locations of saturation are marked by circles. 

The CSKF provides a reliable and robust method to control the trade-off between the 
accuracy and the computational cost of low-rank Kalman filtering for nonlinear 
estimation problems and is a practical alternative to conventional computationally 
intensive inversion techniques and ensemble-based compression techniques. 

 

3.2.4 SMOOTHING BASED COMPRESSED STATE KALMAN FILTER (SCSKF) 
 

The fourth dynamic inversion method developed is a variant of the CSKF, and is termed 
the smoothing-based Compressed State Kalman Filter (sCSKF). The sCSKF was created 
to handle cases in which strong non-linearities cause significant linearization errors 
during the estimation, which are often manifested with state updates that are not 
consistent with each other and the physics of the problem. One such case is when the 
parameters of the forward model are unknown and are being estimated as part of the data 
assimilation problem. In the CCS context, this would be a case where the permeability of 
the injection formation is unknown and is being estimated from the data, together with 
the CO2 saturation and pressure. In this case, the uncertainty in the permeability may 
cause CO2 saturation estimations that are not consistent with multiphase physics.  

To address these problems, the sCSKF algorithm includes the addition of a smoothing 
step for each data assimilation step that improves the initial guess around which the 
update is linearized, thus reducing the linearization error. This algorithm has a higher 
computational cost than CSKF, but is better suited for joint parameter and state 
estimation, and is still significantly more computationally efficient than the full Kalman 
Filter.  
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Figure 21: Estimated permeability and associated uncertainty at different times as more data are assimilated 
(left to right).  

Figure 21 shows the results for a two dimensional application similar to the one shown in 
Figure 19, where in addition to CO2 saturation and pressure, the underlying 
heterogeneous permeability field is also estimated. It can be seen that as more data are 
being assimilated (left to right) more features of the heterogeneous permeability 
distribution are being identified, and the uncertainty associated with these features is 
reduced.   
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3.3 EFFICIENT SOLVERS FOR LARGE DENSE LINEAR SYSTEMS 

3.3.1 BLACK BOX FAST MULTIPOLE METHOD (BBFMM) 
 

The Fast Multipole Method (FMM) (Fong and Darve, 2009) is a numerical technique to 
calculate matrix-vector products, of matrices of a special structure, or equivalently sums 
of the form 

f x! =  K x!, y!  σ!

!

!!!

 

where i ∈ 1,2,…M , in O M+ N  operations as opposed to O MN  with a controllable 
error ϵ, where M and N are the dimensions of the matrix K. 

The FMM is applicable for a class of matrices called hierarchical matrices, which are 
data-sparse approximations of dense matrices arising in applications like boundary 
integral equations or stochastic analysis. An example of a hierarchical matrix arising out 
of a two-dimensional application is shown in Figure 22. Of the class of all hierarchical 
matrices, H2 -matrices are matrices whose structure can be harnessed by the FMM in 
order to efficiently calculate matrix vector products.   

 

Figure 22: Hierarchical matrices arising out of a two dimensional problem at different levels in the tree 

 

The Black Box Fast Multipole Method (BBFMM) is a tool developed in this project that 
has extended the kernels (covariance matrices) for which the FMM is applicable. The 
approximation scheme used in the BBFMM relies on Chebyshev interpolation to 
construct low-rank approximations for well-separated clusters. In addition the use of 
Singular Value Decomposition ensures that the computational cost is minimal. In 
particular the rank is optimally chosen for a given error. Some significant advantages of 
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the BBFMM are that it is very convenient for complex kernels for which analytical 
expansions might be difficult to obtain; it is easy to implement and have known error 
bounds. Its computational efficiency can be significant and can be increased depending 
on the accuracy required, while the pre-computation cost is very small. 

The BBFMM forms the backbone of our fast offline inversion algorithm presented in 
Section 2, and of the fast Kalman Filters developed in this project, HiKF and the SpecKF, 
where they are used to perform matrix-matrix and matrix-vector multiplications with 
dense covariance matrices in an efficient way.   

The BBFMM code has been developed for 2D and 3D systems and is available to the 
public at: 

https://github.com/sivaramambikasaran/BBFMM2D 

https://github.com/ruoxi-wang/BBFMM3D 

https://github.com/judithyueli/mexBBFMM2D 

https://github.com/ruoxi-wang/mexBBFMM3D 

 

3.3.2 FAST DIRECT LINEAR SOLVER AND DETERMINANT COMPUTATION FOR 
DENSE LINEAR SYSTEMS  

 

In addition to the fast numerical algorithms specifically developed for Kalman filters and 
stochastic inversing, we have also developed a series of general fast algorithms for linear 
algebra, in particular for solving linear systems. A series of algorithms and codes were 
developed to address a range of problems: 

1. Dense matrices. Extending ideas from the fast multipole method, we have 
designed algorithms to solve Ax = b where A is a dense matrix defined by an 
RBF (radial basis function) kernel such as a Gaussian or exponential kernel. This 
solver has cost O(n) where n is the size of the matrix. The details of this work can 
be found at Coulier et al., 2015.  

2. Sparse matrices: multifrontal methods. Multifrontal techniques form the basis of 
efficient direct linear solvers for sparse matrices. In 3D, however, these solvers 
have a cost of O(n2) and become prohibitive. We have been able to reduce this 
cost to O(n4/3) by accelerating the calculation with the dense blocks using the 
hierarchical matrix format. The details of this work can be found at Aminfar et al., 
2016.  
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3. Sparse matrices: multilevel methods. The hierarchical matrix format was used to 
extend and generalize algebraic multigrid methods (AMG). This has led to a new 
class of O(n) preconditioners that are more robust and black-box than 
conventional AMG methods, which typically require optimizations specific to the 
problem at hand. The details of this work can be found at Pouransari et al., 2015.  

 

3.3.3 BLOCK BASIS FACTORIZATION METHOD (BBF) 
 

The block basis factorization (BBF) algorithm was developed to speed up matrix-vector 
multiplications where the kernel matrix is generated from high dimensional data. The 
BBF overcomes the complexity issue in Fast Multipole Method where there is an 
exponential dependence on the dimension; it also generalizes vanilla low-rank matrix 
approximations to the cases where low-rank approximation fails to be efficient. The latter 
characteristic is most relevant to the applications of interest to this problem. 

 

Figure 23: Schematic showing the Block Basis Factorization of a dense matrix M. 

 

The BBF conceptualization, shown in Figure 23, gives a rank-rk approximation with O(nr 
+ (rk)^2)  storage. This should be contrasted with a traditional low-rank scheme that 
gives a rank-r approximation using O(nr) memory. Since the memory cost is a close 
approximation of the running time for a matrix-vector multiplication, BBF therefore 
offers an efficient scheme that is linear in both memory and application time. 

For the low dimensional cases of interest to this project, the BBF structure provides a 
generalization of the low-rank scheme, especially for the cases where the low-rank 
property breaks and traditional low-rank methods fail. It also provides an alternative to 
the FMM in cases where a large number of Chebyshev nodes is needed for the desired 
accuracy.  
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BBF method is highly memory efficient, since the basis U and V are block-diagonal 
instead of dense. In terms of applicability, it is more accurate when h is small: it 
considers local interactions instead of only global ones (which low-rank methods do); 

We have tested the efficiency of the BBF by comparing it to various low rank schemes 
using different sampling methods (Wang et al., 2015). Figure 24 compares the accuracy 
of the BBF structure vs. the low-rank structure; the results show that BBF approximates 
the kernel matrix better than the low-rank structure, regardless of the sampling method 
used in the algorithm. 

 

Figure 24: Kernel approximation error versus memory for BBF and low rank structure with different sampling 
methods. Different symbols represent different sampling methods.  

For further testing, we benchmarked BBF against other state-of-art kernel approximation 
methods on some real datasets (Figure 22). BBF exhibits a significantly higher accuracy 
than the competing methods. We are comparing against the naive Nystrom (Nys), k-
means Nystrom (kNys), leverage score Nystrom (lsNys), the Memory Efficient Kernel 
Approximation method (MEKA), and the Random Kitchen Sinks (RKS). It is worth 
noting that due to its flexible structure, it outperforms the exact SVD (cubic time). 
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Figure 25: Kernel reconstruction error versus memory footprint (on a loglog scale) for BBF and different state- 
of-art kernel approximation methods on real datasets.  

3.4 MATRIX VECTOR MULTIPLICATION WITH GPUS 
 

This work focuses on harnessing GPUs for performing matrix vector multiplications 
efficiently (Wong et al., 2015). This type of calculation is critical when solving linear 
systems arising from PDEs, in particular in reservoir simulations (see TOUGH2, etc). 

Recently, graphics processing units (GPUs) have been increasingly leveraged in a variety 
of scientific computing applications. However, architectural differences between CPUs 
and GPUs necessitate the development of algorithms that take advantage of GPU 
hardware. Inversion algorithms and finite-element analysis typically involve sparse 
matrix vector (SPMV) multiplication operations that can be accelerated by parallelization 
using GPUs. We developed a new SPMV algorithm and several variations for 
unstructured finite element meshes on GPUs. The effective bandwidth of current GPU 
algorithms and the newly proposed algorithms were measured and analyzed for 15 sparse 
matrices of varying sizes and varying sparsity structures. The effects of optimization and 
differences between the new GPU algorithm and its variants were then subsequently 
studied. Lastly, both new and current SPMV GPU algorithms were utilized in the GPU 
CG solver in GPU finite element simulations.  

To validate the newly developed algorithm, we compare our results against parallel 
PETSc finite element implementation results. The effective bandwidth tests indicated that 
the new algorithms compare favorably with current algorithms for a wide variety of 
sparse matrices and can yield very notable benefits. GPU finite element simulation results 
demonstrate the benefit of using GPUs for finite element analysis and also show that the 
proposed algorithms can yield speedup factors up to 12-fold for real finite element 
applications. More details on these results can be found in Wong et al., 2015.  
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Figure 26 shows the speed-up of various methods compared to the single core CPU. 
CUSP, CUSPARSE, MGPU are existing GPU libraries. K1 and K2 are two variants of 
our new GPU algorithm. Jacobi and Block Jacobi are multicore solvers in PETSc 
(benchmarked with 1 to 4 cores). 

 

 

Figure 26: The resulting factor of the increase in speed for the GPU CG solver (with a standard single core 
CPU-based element assembly routine) and the GPU finite element method.  
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4 METHOD TESTING FOR 3D SYNTHETIC CCS 
EXAMPLE  

4.1 SYNTHETIC EXAMPLE DESCRIPTION 
 

A synthetic (i.e., simulated on the computer) field scale case was used to demonstrate the 
applicability of the developed methods for large-scale problems. The synthetic example 
was generated so that it resembles the Frio-I CO2 storage pilot experiment in terms of its 
size and for a domain with strong heterogeneity and high connectivity of large-scale 
features, and small-scale heterogeneity within the large-scale features. To generate the 
true permeability field, for the large-scale features the program TProGs  (Carle and Fogg, 
1997) was used, which is a transition probability based hydrofacies generator, while 
small-scale heterogeneity was generated using an exponential covariance model. The 
code for generating realizations requires only a small set of basic input parameters, like a 
training image for the first type of heterogeneity, and a correlation length and variance 
for the second type. This code can easily produce a variety of “true” fields. An example 
of one such “true” field generated, and the one used as true in the synthetic inversions, is 
shown in Figure 27:  

 

Figure 27: One example of a “true” field generated with TPROGS for large scale features connectivity, 
combined with small scale heterogeneity.  

The domain for the synthetic experiments was chosen to be similar to Test Site one (Frio 
C Sand formation), in terms of the injection well spacing (30 m) and the thickness of the 
heterogeneous sand formation (20 m). The entire domain being considered is 640 m x 
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640 m x 20 m (width x length x thickness). Within the 640 m x 640 m horizontal extent 
of the domain, we focus on a 128 m x 128 m rectangular domain of heterogeneity. The 
discretization is chosen to be fine enough to allow a reasonably accurate representation of 
the multiphase physics (Figure 28). This inversion problem results in a total of 24030 
unknown permeability values for each grid block that the inversion algorithm will 
estimate, providing a high-resolution characterization. 

 

Figure 28:  Plan view of the domain and discretization of synthetic geologic carbon storage example. The 
domain within the red rectangle is considered heterogeneous (the “true” field), and is padded to a large extent 
by a homogeneous domain to avoid excessive boundary condition effects.  

4.2 SYNTHETIC DATA GENERATION 
 

The synthetic experiments performed using the “true” fields to generate the synthetic 
monitoring dataset include a hydraulic tomography experiment and a hydrothermal tracer 
test experiment. A monitoring network consisting of eight monitoring wells has been 
chosen so that it covers sufficiently the domain of unknown permeabilities.  

The first phase of inversion includes data from synthetic pumping tests (hydraulic 
tomography). The pumping tests were designed as a sequence of five 1-day pumping 
tests, each performed at a different pumping well and followed by 2 days of rest (no 
pumping), for a total of 15 days. Pressure data collected at all wells during each pumping 
test can be assimilated in the inversion algorithm to infer the unknown heterogeneous 
permeability field. In terms of spatial density of monitoring data, a maximum of thirteen 
wells (active and monitoring wells) can be used for pressure measurements; each well has 
10 vertical ports. In total, a maximum of 130 transient pressure measurements (simulated 
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and contaminated with noise) can be used in the stochastic inversion at each data 
assimilation step.   

Following the pumping tests, a sequence of four dipole hydraulic-thermal tests were 
conducted. The design of the tests is as follows: a 10-day injection in the central active 
well with simultaneous pumping at one of the other four active wells are followed by 20 
days of pressure temperature decay. Measurements of pressure are taken at all wells, and 
temperature profiles at the five active wells are used for the inversion; the eight 
monitoring wells are not used because they have no signal of thermal perturbations. 

For the simulation of the pumping tests and thermal tests, we used TOUGH2-MP 
combined with the single-phase flow module EOS1 (isothermal or non-isothermal flow 
of water with one or two components). For the sequence of dipole hydraulic-thermal test, 
non-isothermal flow of single-component water is used (Figure 29).  

 

Figure 29: Representative results from forward simulations of synthetic experiments (left) Pumping test showing 
pressure distribution and (right) Hydrothermal test showing temperature distribution. 

 

4.3 SYNTHETIC INVERSION OF PUMPING DATA 
 

Since we are interested in parameter estimation, for the inversion of the hydro-tracer-
thermal and CO2 injection synthetic datasets we used the smoothing based Compressed 
State Kalman Smoother (sCSKF). The results showed that sCSKF was able to reconstruct 
the major features of the permeability field (Figure 30) and provide uncertainty estimates 
that are informative (Figure 31).  
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We explored the sensitivity of the results to the number of bases selected and found that 
25 bases sufficed for reasonable accuracy and exceptional computational efficiency (each 
inversion step lasted only 2 hours).  

 

 

Figure 30: Estimated mean log permeability for synthetic pumping tests. 

 

Figure 31: Standard deviation for estimated log permeabilities for synthetic pumping tests.  
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4.4 SYNTHETIC JOINT HYDROTHERMAL TRACER TEST INVERSION 
 

For the inversion of the hydro-tracer-thermal and CO2 injection synthetic datasets, 
measurements of both pressure and temperature were used to estimate the same 
permeability field using the sCSKF (Figure 32). The results showed a marked reduction 
in uncertainty of estimation procured by the additional measurements and increased 
sensitivity of heat transport to the permeability variations in the domain (Figure 33). The 
added value of temperature was evident in the results, where more detailed features of the 
permeability were identified compared to the pumping tests. 

 

 

Figure 32: Estimated mean log permeability for synthetic hydrothermal tracer tests 

 

Figure 33: Standard deviation associated with estimated mean log permeability for synthetic hydrothermal 
tracer test. 
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In this inversion, the same compression rate of 25 bases was again possible, due to the 
smoothness of the temperature distribution, such that the inversion was highly 
computationally efficient with only 25x2 forward simulations being required for 
assimilation of each dataset. 

Application of the sCSKF to the 3D synthetic datasets illustrated that the computational 
scalability achieved by our algorithms is imperative for data assimilation at a reasonably 
fine resolution where the number of unknowns exceeds a few thousands. Conventional 
algorithms would have prohibitive costs that would necessitate significantly reducing the 
resolution of the forward models and the reliability of the data assimilation method. In 
particular, application of our algorithm sCSKF to synthetic three-dimensional monitoring 
data for characterization of a site similar to the Frio I site in Texas, demonstrated that: 

• Even for strongly heterogeneous fields with significant anisotropy, large-scale 
formations of high and low conductivity can be identified even based on a small 
number of wells, as long as vertically distributed measurements are available. 

• Including thermal and chemical tracer data improves estimation accuracy. The 
relative worth of each dataset can be assessed using the Kalman Gain. 

• Uncertainty estimates are extremely valuable as to where more measurements 
should be obtained to improve estimation and reliability.   
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5 APPLICATION OF METHODOLOGY TO FIELD 
TEST SITES  

5.1 FRIO-I PILOT TEST 

5.1.1 PROBLEM DESCRIPTION 
 

The Frio I pilot test of CO2 injection was conducted in October 2004 by injecting ~1600 
metric tonnes of supercritical CO2 into the Frio C sand at a depth of ~1500 m. During and 
after the 10-day CO2 injection test, the pressure and temperature were continuously 
monitored at two bottomhole gauges at the injection well and the monitoring well, as well 
as at their wellheads. Figure 34 shows the regional caprock of Anahuac Shale and the 
Frio Formation with Frio A, B, and C sands, the injection well (IW) and the monitoring 
well (MW), as well as the two bottomhole pressure/temperature gauges. 

 

Figure 34: Thickness of the caprock (Anahuac Shale), the storage formation (Frio Sand), and the injection unit 
(Frio C Sand) in the vicinity of the injection well (IW) and the monitoring well (MW) at the Frio I test site. Also 
shown are the depth of the pressure/temperature gauges in both wells and formation/unit tops and bottoms. 

 

The vertical profiles of pressure, temperature and CO2 saturation were obtained three 
times at the injection well and seven times at the monitoring well. Different tracers were 
released with injected CO2 and their concentrations were monitored using the U-tube 
system installed.  

Before the CO2 injection test, a pumping test was conducted for one day by pumping 
formation water from the monitoring well, and then a pumping and re-injection dipole 
test was conducted for 15 days. The pressure and temperature at the two bottomhole 
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gauges and wellheads were continuously monitored. Significant temperature 
perturbations were also observed in the temperature profiles obtained before the CO2 
injection test started. A conservative tracer was released with injected water under the 
quasi-steady-state flow condition induced by the dipole test. 

During the experiment, significant temperature perturbations along the wellbores and in 
the storage formation were observed. Such large perturbations can be seen in the vertical 
temperature profiles along both wells after the dipole test was completed (Figure 35). 
More specifically, Figure 35 shows a significant temperature spike at the injection point 
(far left panel), which at closer look (middle and right panels) was also changing in time, 
likely in response to the movement of the CO2 plume. The temperature time series and 
vertical temperature profiles provide invaluable data for characterizing the Frio 
formation. 

 

Figure 35: Comparison of vertical profiles of temperature observed at different times (a) at the injection well 
(IW) and the monitoring well (MW) before and during CO2 injection, (b) Close up at the injection interval at the 
injection well after CO2 injection, and (c) close-up at the monitoring well before, during and after CO2 injection. 
Also shown are the Gamma Ray logs (in pink), RST logs, and well perforation intervals (in black rectangles). 
Note different scale between graphs.  

For the CO2 injection test, Figure 36 shows the vertical profiles of CO2 saturation for six 
Reservoir Saturation Tool (RST) logs. We can see that the CO2 plume is confined in a 4 
m thick Frio C sand and the CO2 saturations as high as 0.88 are observed. Figure 37 
shows the breakthrough curves of three tracers released with injected CO2 at three 
different times. The CO2 arrival is quick, 50 hours after CO2 injection started. Note that 
injected CO2 may not have a sufficient temperature signal at the monitoring well because 
all the monitored temperature perturbations stems from the dipole test conducted before 
CO2 injection and decays with time. 
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Figure 36: Vertical profiles of CO2 saturation in the Frio C sand in the monitoring wells estimated using the 
pulsed neutron logging on October 8 (RST2), October 14 (RST3), November 2 (RST4), December 9, 2004 
(RST5), and February 23, 2005 (RST6), as compared to the volumetric shale, porosity and permeability logs. 

 

Figure 37: Time-dependent concentrations of PFT in tracer tests 1, 2 and 3, and gas tracer concentrations (SF6 
and Kr) in tracer test 3. 

The above datasets are available for use in the inversion in order to identify main 
pathways that CO2 followed during the Frio I experiment. The objective is to confirm 
findings from geophysical data that preferential pathways were present that led to a non-
uniform distribution of the CO2 (Figure 38).  
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Figure 38: P-wave tomograph with RST logs at wells. 

5.1.2 MODEL DEVELOPMENT & INVERSION 
 

Figure 39 shows the geological model in a transformed coordinate system, with 
Transformed X to the northeastern direction. Two bounding faults form an impervious 
boundary of the model domain, along with three minor faults acting as flow barriers. 
Figure 40 shows the plan view of the generated 3D mesh with zoom in the vicinity of the 
two wells. The 3D mesh is 1000 m by 1000 m in the horizontal direction, and 80 m in 
thickness including Frio A, B, and C sands. We also included the two wells of 1500 m in 
length from the ground surface to the top of the model domain for the reservoir. 150 1D 
elements were used to represent each well. The thermal gradient is 0.0252 °C/m. The heat 
exchange between the wellbores and their surrounding formations was simulated using a 
semi-analytical solution implemented in TOUGH2. In total, we have 2072 2D elements 
and 45584 3D elements, in addition to the 300 well elements.  

 

Figure 39: The elevation (in flood contour) of the top of Frio C sand in the transformed coordinate system, the 
injection and monitoring wells, and the two bounding faults used to define model boundary, and three internal 

minor faults. 
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The inversion of this data is performed in two phases: pressure gauge data are used in a 
calibration mode to obtain wellbore information, while vertical temperature profiles and 
tracer concentrations are used for characterizing the main preferential pathways in the 
Frio formation. For this first modeling phase a reduced model is used, shown in Figure 
40. The second modeling phase focuses on CO2 migration prediction for which a second 
TOUGH2 model is built which includes the complex geology of the Frio-I site, including 
local faults that constrain the CO2 plume, as shown in Figure 39. The results are tested for 
their consistency with available geophysical data that indicate the presence of two major 
preferential pathways in the region of interest, likely due to high permeability sand 
channels, between the injection and monitoring well. 

 

Figure 40: Plan view of the generated 3D mesh, with zoom in the vicinity of the injection well and monitoring 
well for locally refined mesh. 

Work on the inversion of the real Frio dataset is ongoing. A few considerations regarding 
the inversion of the Frio-II pilot experiment include the following: 

a) Inversion and monitoring through data assimilation requires the development of a 
forward model for the domain and experiments of interest. The bottleneck of the 
inversion is often the development of such a model. 

b) The use of monitoring data often requires judgment calls from an expert. For 
example, the Frio-II monitoring data for wellhead pressure provide more 
information regarding the wellbore, rather than the underlying formation. For this 
purpose, such information can be used in a pre-processing calibration step to 
obtain a small number of model parameters, in order to simplify the forward 
modeling and the inversion scheme for the spatially distributed unknowns (e.g. 
permeability) and make better use of computational resources. For the same 
purpose, preprocessing of data collected continuously in time may be necessary to 
reduce the cost of data assimilation.  
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c) Availability of monitoring data directly related to features of the underlying 
formation is crucial for heterogeneity characterization. In the Frio case, the 
vertical temperature profiles provide the best available information for 
characterization of heterogeneity, while tracer tests are useful for constraining the 
overall average permeability, but not for delineating fine scale features of the 
formation.  

 

5.2 IN SALAH  

5.2.1 PROBLEM DESCRIPTION 
 

The application of our methods to the In Salah pilot test aims to understand the relation 
between CO2 injection and resulting ground surface deformation, measured and 
monitored by Interferometric Synthetic Aperture Radar (InSAR) data. The InSalah CO2 
project in Algeria, one of the first large scale commercial carbon sequestration projects, 
injected 3 million tons of CO2 in three horizontal wells, which resulted in a measureable 
surface displacement of approximately 5 mm/year (Vasco et al., 2010).   

 

Figure 41: InSAR surface uplifting velocity measurements in mm/year (Vasco et al., 2010) 

The focus of our inversion is to identify and characterize the source of the deformation, 
and specifically to answer the question of, whether the volume increase in the reservoir or 
a fracture opening or a combination of those disturbances resulted in the observed surface 
uplifting. This has been a major point of discussion in the literature, in particular, related 
to the double lobed appearance of the uplifting above well KB 502 (Figure 41).  

The advantages of our analysis compared to previous inversions done with the InSAR 
dataset are the following: Firstly, satellite data collected at 41 different times are used 
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simultaneously in the same inversion in our dynamic Kalman Filter framework, in order 
to capture the dynamic expansion of the CO2 plume in the reservoir, possible CO2 leakage 
in the nearby fault, and the expansion or creation of the fault due to the injection as this 
changed in time. Secondly, we evaluate the above in a statistical framework considering 
uncertainty in the forward model as well as in the rock hydrological and geomechanical 
properties and obtain uncertainty estimates associated with the inverted quantities and 
their variation in space.  This allows us to evaluate different scenarios that may have 
caused the double lobe formation above KB 502 and establish which scenario is more 
likely, based on its uncertainty.  

5.2.2 MODEL DEVELOPMENT & INVERSION 
 

For the InSalah inversion, we employ a combination of the HiKF and SpecKF, in order to 
facilitate the special nature of the InSAR dataset. The forward model for the evolution of 
pressure and fracture changes is assumed to be the random walk model, as in HiKF, 
instead of a hydrogeomechanical forward model. Despite the simplified forward model, 
this setup of the Kalman Filter allows the consideration of continuity in the physics 
between the 41 InSAR images, without requiring a costly computational forward model 
to simulate the pressure and geomechanics of this complex system. The observation 
model that relates the state (volume and fracture change) to the observations 
(deformation) is given by a semi- analytical model that is used in a black box fashion to 
calculate sensitivities, in the same manner done in SpecKF. Combining these two filters 
reduces greatly the computational cost, and allows characterization at a fine resolution 
with quantification of uncertainty.  

The observation model used for the InSalah field site is a semi-analytical model that 
simulates the surface deformation resulting from CO2 injection at the InSalah site. More 
specifically, the forward model used calculates the co- and post-seismic deformation that 
is caused by four possible dislocation sources in a viscoelastic-gravitational 
homogeneous half-space (Wang et al., 2006). The model comprises two calculation steps: 
One that calculates the Green functions corresponding to a given half space, and one 
where the dislocations are calculated for the given dislocation source; the latter step is the 
least computationally expensive and is the only one that needs to be repeatedly run in an 
inversion. For this reason, the forward model is well suited for evaluating our inversion 
algorithms.   

The observation model development follows previous work by Vasco et al., (2010), 
where the same InSAR dataset was used in a deterministic inversion to obtain the 
changes in reservoir volume and fracture aperture that resulted in the observed surface 
deformation. The model assumes an improved layered earth model that is derived from 
well log observations, and that has been previously found to provide more physically 
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consistent results (Vasco et al., 2010). Furthermore, a composite model of both the 
reservoir and the damage zone (fault) is considered here, as previous work has shown that 
neither the reservoir nor the damage zone alone can account for the double lobed pattern 
observed.  

Work on the inversion of the InSalah InSAR dataset is ongoing. The InSAR dataset 
provides an opportunity to tailor our inversion algorithms for spatially distributed 
datasets, i.e. datasets provided as images like the InSAR data. In such cases, although the 
number of data points available is significant, it is not necessary that they all provide 
useful information for the inversion. In addition, the more data are considered the higher 
the computational cost in terms of sensitivities that need to be calculated and forward 
model simulations. To reduce the computational cost we examine different ways of 
compressing the datasets, while maximizing the information that can be obtained from 
them.  

This inversion provides better understanding the behavior of the fault during CO2 
injection at the In Salah site, which is essential in order to conduct forward simulations of 
the CO2 injection at the site. 
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6 CODE DEVELOPMENT AND VALIDATION 
6.1 CODE DEVELOPMENT 
 

All code developed for stochastic joint inversion has been developed in Matlab ®. Code 
for fast linear algebra methods is developed in C++. Fast linear algebra codes area 
available to the public at:  

https://github.com/sivaramambikasaran/BBFMM2D 

https://github.com/ruoxi-wang/BBFMM3D 

https://github.com/judithyueli/mexBBFMM2D  

https://github.com/ruoxi-wang/mexBBFMM3D 

 

6.2 VALIDATION OF DEVELOPED ALGORITHMS 
 

Validation of all developed stochastic inversion algorithms has been conducted and is 
described in the respective section.  
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7 SUMMARY & CONCLUSIONS 
 

This project developed a suite of computational methods for accurate and 
computationally efficient data utilization for characterization and monitoring of large-
scale subsurface systems.  A summary of these computational tools along with attributes 
and applicability is listed in the following: 

Method Cost (# simulations)  Attributes 
Offline inversion 
Conventional  n (with adjoint 

methods) 
  

Fast linear GA 
(Geostatistical 
Approach) 

none  Any linear problem 

 The method combines the Quasi-Linear Geostatistical approach  
with the hierarchical matrices technique to reduce the cost of 
matrix-matrix multiplications including the large covariance 
matrix.  

PCGA 
(Principal Component 
Geostatistical 
Approach) 

K*niter   Smooth problems 

 The method combines the Quasi-Linear Geostatistical approach 
with a matrix factorization technique that compresses the error 
covariance matrix based on its eigenspectrum, thereby reducing 
the effective number of the unknown quantities.   

 
Dynamic inversion / Kalman Filter 
Conventional n  (with adjoint 

methods) 
  

HiKF 
(Hierarchical Kalman 
Filter) 

none  Fast data acquisition, 
linear models 

 The method modifies the conventional Kalman Filter by 
assuming a random walk forward model, thereby reducing the 
Jacobian calculations and accelerates matrix-matrix 
multiplications using the hierarchical matrices approach.  

SpecKF 
(Spectral Kalman Filter) 

n  Fast data acquisition, non 
linear models 

 The method modifies the conventional Extended Kalman Filter 
by employing an approximation to the forward model that allows 
efficient cross-covariance updates. 

CSKF K  Smooth problems 
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(Compressed State 
Kalman Filter) 
 The method modifies the conventional Extended Kalman Filter 

by using a low rank approximation of the covariance matrix 
based on its eigenspectrum and fixed eigenbases. 

    
sCSKF 
(Smoothing-based 
Compressed State 
Kalman Filter) 

2K  Smooth problems, 
parameter estimation 

 The method modifies the conventional Extended Kalman Filter 
by using a low rank approximation of the covariance matrix 
based on its eigenspectrum and a fixed basis. For improved 
parameter estimation and reducing linearization errors, the 
method employs a one-step ahead smoothing.  

n: number of measurements  
m: number of unknowns (typically corresponds to gridded field of unknowns) 
K: effective rank of covariance matrix 
niter: number of iterations (typically 4-5) 
 

These algorithms were built, tested and demonstrated in the context of Carbon Storage 
projects in deep subsurface geological formations. Such applications involve diverse 
datasets and large numbers of unknowns that render the use of traditional inversion 
methods infeasible. The project addressed the need for new algorithms that use advanced 
mathematical ideas to reduce the computational cost and provide accurate estimates with 
reliable quantification of uncertainty at a reasonable cost.  

The fast inversion algorithms developed in the project combine Bayesian methods, for 
stochastic inversion, with fast linear algebra techniques that accelerate matrix-matrix 
multiplications, the latter being the bottleneck of traditional inversion. Two fast linear 
algebra techniques that we harness are the fast multipole method, and efficient matrix 
decomposition techniques, such as SVD and eigenvalue decomposition. With these 
mathematical tools, alternatives to traditional inversion techniques were created, each of 
which is best suited for different CCS applications. Parameters that determine which of 
the developed algorithms is most suitable include the frequency of data acquisition, the 
type of data used, and the heterogeneity of the system. The major advantages of the 
algorithms developed are: 

• They are fast, i.e., able to process large data sets using modest computer resources.  
• They provide reliable uncertainty quantification to inform decision-making.  
• Use forward models in a black-box fashion so that the methods are generalizable 

to any data type for which a forward model exists.  
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We demonstrated the efficiency of our methods using a large realistic three-dimensional 
synthetic scenario with datasets similar to those collected at real field sites, and were able 
to demonstrate that in reasonable time frames, good quality estimates are possible even 
with limited and diverse datasets, a typical scenario in real CCS projects.  

The contributions of this work to the CCS state of knowledge are multifold. With these 
novel algorithms for inversion that go beyond traditional deterministic, low-resolution 
inversion, it is possible to better characterize potential CCS field sites, thus being able to 
better evaluate carbon capacities. It also becomes possible to reliably monitor ongoing 
operations and prevent undesirable incidents like CO2 leakage or migration to sensitive 
areas. With efficient estimation algorithms like those developed in this project, 
optimization of CCS operations and more informed decision-making will also become 
possible.  Furthermore, these methods can be used to perform data worth analysis as to 
better design data collection and thereby minimize the overall cost of CCS projects. 
Combination of these methods to automatic control systems is the logical next step of this 
work, which will further enhance our ability to implement CCS as a possible climate 
change mitigation measure.  
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