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ABSTRACT

As large-scale, commercial storage projects become operational, the problem of utilizing
information from diverse sources becomes more critically important. In this project, we
developed, tested, and applied an advanced joint data inversion system for CO, storage
modeling with large data sets for use in site characterization and real-time monitoring.
Emphasis was on the development of advanced and efficient computational algorithms
for joint inversion of hydro-geophysical data, coupled with state-of-the-art forward
process simulations.

The developed system consists of (1) inversion tools using characterization data, such as
3D seismic survey (amplitude images), borehole log and core data, as well as hydraulic,
tracer and thermal tests before CO, injection, (2) joint inversion tools for updating the
geologic model with the distribution of rock properties, thus reducing uncertainty, using
hydro-geophysical monitoring data, and (3) highly efficient algorithms for directly
solving the dense or sparse linear algebra systems derived from the joint inversion. The
systtem combines methods from stochastic analysis, fast linear algebra, and high
performance computing. The developed joint inversion tools have been tested through
synthetic CO, storage examples.
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I EXECUTIVE SUMMARY

A major factor that impedes the understanding and widespread acceptance of carbon
dioxide storage in the subsurface for climate change mitigation is the difficulty in
monitoring the spatial distribution and movement of injected CO,, in order to prevent
leakages to groundwater systems or to the ground surface. Sparsity of observations and
the geologic complexity of deep subsurface formations introduce significant uncertainties
in methods that attempt to reliably monitor injected carbon dioxide. Existing tools that
use conventional methods for general-purpose model calibration are only limited to
systems with few unknowns and observations and do not provide uncertainty
quantification. Data assimilation techniques can be used to make progress in this
important area; however, existing or “textbook’ methods are not computationally capable
to deal with realistic large-scale cases and multiple types of characterization and
monitoring data.

In this project, we have developed fast and reliable methods for real-time monitoring of
CO, geologic storage sites under incomplete information, with considerations of
uncertainty and risk. The development of advanced sensor and computational
technologies is changing the technological state of the art in real-time monitoring,
allowing the collection of more frequent and more diverse measurements. Our work has
focused on the development of computational tools that can utilize such complex
monitoring datasets to provide accurate real time monitoring of CO, operations. Such
tools can be used to (a) improve our understanding of the natural heterogeneity of storage
systems and (b) to improve predictions of CO; spatial distribution.

This project has developed innovative data assimilation methods and tools that are based
on sound fundamentals and are adapted to the physical and computational challenges
encountered in CO, storage monitoring. We have developed, implemented, and tested
methods that can estimate many unknowns, with quantification of uncertainty, with
speeds that are orders of magnitude higher than traditional data processing methods, such
that they are applicable for real large-scale projects. These methods utilize fast linear
algebra tools, which are revolutionizing the way we do mathematical modeling. Such
tools take advantage of special features (or “structure”) in the mathematical methods,
focus on computing only what is needed, perform computations only at an accuracy that
is sufficient for the application at hand, and take advantage of available computational
environments.

In particular, the tools developed comprise two algorithms for fast offline inversion and
four algorithms for fast dynamic inversion. The common characteristics of these
algorithms are that:
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* They are fast, i.e., able to process large data sets using modest computer resources.
This 1s achieved through the use of numerical techniques that improve
computational efficiency by orders of magnitude. The computational cost of all
methods developed scales linearly with the number of unknowns, as opposed to
the quadratic scaling of conventional methods.

* They provide risk-based estimates to inform decision-making. This is achieved
using sophisticated statistical techniques that provide uncertainty quantification
measures for each estimated quantity.

* Use forward models in a black-box fashion so that the data assimilation code is
generalizable for any data assimilation problem as long as a forward model exists.
No modification of forward models is necessary as in adjoint state methods.

The following table lists the algorithms developed and the particular attributes and
applicability of each one. The conventional methods are included for comparison:

Offline inversion

Conventional n (with adjoint
methods)
Fast linear GA none Any linear problem
(Geostatistical
Approach)

| The method combines the Quasi-Linear Geostatistical approach
with the hierarchical matrices technique to reduce the cost of
matrix-matrix multiplications including the large covariance

matrix.
PCGA K*niter Smooth problems
(Principal Component
Geostatistical
Approach)

The method combines the Quasi-Linear Geostatistical approach
with a matrix factorization technique that compresses the error
covariance matrix based on its eigenspectrum, thereby reducing
the effective number of the unknown quantities.

Dynamic inversion / Kalman Filter

Conventional n (with  adjoint
methods)
HiKF none Fast data acquisition,
(Hierarchical Kalman linear models
Filter)

The method modifies the conventional Kalman Filter by
assuming a random walk forward model, thereby reducing the
Jacobian  calculations and  accelerates = matrix-matrix

7
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multiplications using the hierarchical matrices approach.

SpecKF
(Spectral Kalman Filter)

n Fast data acquisition, non
linear models

The method modifies the conventional Extended Kalman Filter
by employing an approximation to the forward model that allows
efficient cross-covariance updates.

CSKF K Smooth problems

(Compressed State

Kalman Filter)
The method modifies the conventional Extended Kalman Filter
by using a low rank approximation of the covariance matrix
based on its eigenspectrum and fixed eigenbases.

sCSKF 2K Smooth problems,

(Smoothing-based
Compressed State
Kalman Filter)

parameter estimation

The method modifies the conventional Extended Kalman Filter
by using a low rank approximation of the covariance matrix
based on its eigenspectrum and a fixed basis. For improved
parameter estimation and reducing linearization errors, the
method employs a one-step ahead smoothing.

n: number of measurements

m: number of unknowns (typically corresponds to gridded field of unknowns)
K: effective rank of covariance matrix
niter: number of iterations (typically 4-5)

Select tools were applied to synthetic monitoring field data and with two specific CO,
injection sites in mind, including the Frio, Texas pilot and the commercial site at InSalah,
Algeria, where the number of unknowns is close to 10°. Application to these synthetic
datasets illustrates the importance of computational efficiency for data assimilation
applications with more than a few thousands and demonstrates the computational
scalability achieved by our novel algorithms. Conventional algorithms would have

prohibitive costs that would necessitate significantly reducing the resolution of the
forward models and the reliability of the data assimilation method. In particular,
application of our algorithm sCSKF to synthetic three-dimensional monitoring data for
characterization of a site similar to the Frio-I site in Texas, demonstrated that:

* Even for strongly heterogeneous fields with significant anisotropy, large-scale
formations of high and low conductivity can be identified based on a small
number of wells, as long as vertically distributed measurements are available.

* Including thermal and chemical tracer data improves estimation accuracy. The
relative worth of each dataset can be assessed using the Kalman Gain.
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* Uncertainty estimates are extremely valuable as to where more measurements
should be obtained to improve estimation and reliability.

Overall, the tools and methods developed in this project enhance both the actual
reliability and the perceived safety of CCS facilities and are well suited to the policy and
management challenges in CO, capture and storage (CCS).
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2 INTRODUCTION

2.1 COoONTEXT: REAL TIME MONITORING OF CARBON DIOXIDE STORAGE

While the deep subsurface can store much of the CO, produced by coal-powered power
plants, the injection into the subsurface of millions of tons of carbon dioxide per year
involves many technological challenges. @A major difficulty is related to the
heterogeneity of geologic formations and the challenges in characterizing the sites and in
monitoring the progress of injection and storage. Not only is it difficult to identify the
ideal sites, but also it is hard to manage a site, for example to regulate injection rates in
order to optimize performance and minimize the risk of CO; leakage. The consideration
of possible large-scale leakage, however unlikely such a leakage may be considered by
some experts, is expected to be an impediment to the regulatory acceptance of many sites.
The public demands assurances that the storage facility is properly monitored and an
early warning system is in place. For the operators of the storage facility, slow long-term
leakage is a significant financial risk if it must be recompensed by purchasing CO,
emission permits. Reliable monitoring both reduces actual risks and allays fears
associated with perceived risks. Existing methods for monitoring are based on either non-
computational, experience-based evaluation of monitoring data, or rely on history
matching of monitoring data and calibration of a small number of unknowns. There is
need for a systematic, statistically sound, framework for utilization of monitoring data
within numerical simulations, that can provide reliable estimation of unknown quantities
along with uncertainty and risk analysis, in real-time. This need has been the primary
motivation for the work done in this project.

2.2  PROJECT OBJECTIVES

The primary objective of the proposed research is to develop, test, and apply an advanced
joint inversion tool system for CO, storage modeling with large sets of different types of
characterization and monitoring data. The system will enable existing efficient numerical
simulators for forward modeling of CO,/brine two-phase flow and transport to be utilized
efficiently in the inversion of field scale characterization and monitoring data. The system
will also provide a stochastic and statistical framework for (real-time) monitoring,
modeling, and inversion, which can work consistently with uncertainty quantification,
risk assessment and mitigation, and optimal control and operation. To this end, the
developed methods have the following characteristics:

10
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- They are fast, i.e., able to process large data sets in real time using modest computer
resources. This is achieved through the development of innovative numerical
techniques that improve computational efficiency by orders of magnitude.

- They provide risk-based estimates to inform decision-making. This is achieved using
sophisticated statistical techniques, that provide estimated quantities along with their
uncertainties, calculated from the sensitivity between the data and the unknowns.

The advanced joint inversion tool system developed in this project enhances the
predictive capability of models (e.g., regarding CO, plumes) and improves storage
performance through better understanding of storage systems (e.g., spatially varying
hydrogeologic properties and potential pathways for leakage), with dynamic reduction in
uncertainty. It is an ultimate goal that the joint inversion tool system will be the central
piece for a decision-making system for optimal control of CO; injection and storage by
linking forward simulation, dynamic monitoring and inversion, uncertainty quantification,
and risk assessment under a consistent framework. This project achieved the following
specific objectives:

* A package was developed that includes efficient algorithms and fast solvers of
linear algebraic system arising in inverse optimization problems in the joint
inversion methodology with a very large number (N) of unknowns, such as Fast
Direct Solvers with a computational complexity of O(N log N).

* The algorithms developed can be used for stochastic inversion for optimizing
spatially varying rock properties using characterization and monitoring data; to
demonstrate the updates of rock properties with incremental addition of field
testing and monitoring data and the reduction in the uncertainties of the rock
properties; and to demonstrate the efficiency of the joint inversion system with the
developed fast linear solvers on practical data sets.

* The developed efficient joint inversion tools were tested with synthetic datasets
for simple test cases for which they can be compared to conventional, exact but
much more computationally expensive methods, as well as for large-scale
synthetic examples for characterization with single-phase field tests.

* The developed algorithms are discussed in the context of the two real CO, storage
sites with large characterization/ monitoring data.

The system consists of (1) statistical and computational inversion tools for providing
prior distribution of rock properties using characterization data, such as 3D seismic
survey (amplitude images), borehole log and core data, as well as hydraulic, tracer and
thermal tests before CO; injection, (2) statistical and computational joint inversion tools
for estimating the distribution of rock properties and CO, with uncertainty quantification
using monitoring data for CO; injection and storage, and (3) highly efficient algorithms
for directly solving the dense or sparse linear algebra systems derived from the joint

11
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inversion and for performing matrix matrix multiplications involved in inversion
algorithms. The developed joint inversion tool system is tested with simulated data using
the TOUGH2-MP/EOS1 and TOUGH2-MP/ECO2N simulations for synthetic single
phase and CO, storage examples respectively. The applicability and efficiency of
developed methods is also discussed in the context of real datasets from two field sites:
the Frio I Pilot Test and the In Salah Storage Project.

2.3 REPORT ORGANIZATION

This report is organized to be consistent with the Statement of Project Objectives for this
project. An overview of the developed methods and applications is given and the reader
is directed to journal articles for more technical details. This is followed by Summary
and Conclusions section.

12
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3 BAYESIAN JOINT STOCHASTIC INVERSION:
METHOD DEVELOPMENT AND VALIDATION

The main feature of the methods presented under this section is that they are able to
handle the excessive computational and storage costs of large-scale stochastic (i.e., with
quantification of uncertainty) inversions that prohibit the use of traditional inversion
methods. Each method takes advantage of different properties or characteristics of a
category of problems in order to simplify or approximate the computations. Our newly
developed algorithms achieve this objective by capitalizing on the structure and the
associated properties of the large covariance and sensitivity matrices involved in the
inversion process, and by using linear algebra techniques that perform fast matrix-vector
and matrix-matrix multiplications. An important feature of these approximate methods is
that they are constructed with the requirement that the introduced approximation error is
small and controllable.

3.1 EFFICIENT JOINT INVERSION FOR OFF-LINE INVERSION

3.1.1 QUASI-LINEAR GEOSTATISTICAL APPROACH WITH THE FAST MULTIPOLE
METHOD

The first algorithm developed utilizes the fast multipole method (FMM) (Fong and
Darve, 2009), in order to speed up a crucial part of linear and nonlinear inversion
methods and is presented in detail in Ambikasaran et al. (2013). The bottleneck of
stochastic linear inversion using the quasi linear geostatistical approach (QLGA) is the
multiplication of the prior covariance matrix Q with the transpose of the measurement
matrix H, i.e., the Jacobian matrix of observations with respect to the unknowns. When
the number of unknowns to be estimated (m) is large compared to the number of
measurements (n), directly performing this multiplication can have tremendous
computational and storage cost, as these costs scale with m°. The proposed algorithm has
a respective cost that scales with m, so that as the problem grows the cost can still be
manageable. A major advantage of the proposed algorithm compared to other fast
approaches is that it is not constrained to regular grids, as fast Fourier transform (FFT)
type methods do, and is not constrained to smooth covariance functions, as low rank
methods do. The method is general and applicable to irregular grids and a wide range of
covariance matrices and can be easily applied for both two- and three-dimensional (2D
and 3D) problems.

The basic premise of the proposed method can be summarized as follows:

13
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A wide range of covariance matrices used in stochastic inversion have a structure called
hierarchical low-rank, falling into the category of hierarchical (H”) matrices. This is due
to the fact that the interactions between far away clusters of points (far-field interaction)
can be efficiently represented by a smooth function, which enables the use of low-rank
approximations for each cluster. The fast multipole method (FMM) is an algorithm that
uses the properties of H° matrices to compute dense matrix-vector products in a
computationally efficient way and with sharp a priori error bounds. The accuracy of the
method depends on the number of Chebyshev nodes used (i.e., depth of the hierarchy
used) as well as the effective rank of each low rank cluster (Fong and Darve, 2009).

Combining the QLGA with efficient ways to compute matrix matrix multiplications and
with harnessing the sparsity of some of the matrices involved results in a method that
overall scales linearly with the number of unknowns, which is the characteristic of this
algorithm.

a. Validation

The method proposed is an approximation of the full QLGA for stochastic inversion. The
approximation allows for the computational speed up, but also introduces an error, that is
however small and controllable. To validate the method, we used a synthetic dataset of
crosswell tomography created to resemble data acquired during monitoring at the Frio II
test site in Texas. The data were created based on a collection of time-series seismic
travel times recorded from a seismic source in one borehole and seismic receivers in the
second borehole (Figure 1).

Distance between wells is 30m

1620 Injection well Observat.i{)n well
2
, 3
1630 4
2 1640 :
e :
£ :
& 1650 - Target region to be imaged :
- 1 :
& 1660 2 :
A 5|3 13
45
1670 5 \}9
6 48
1680 :

©@- Sources; o - Receivers; @ - Injection point

Figure 1: Schematic of Frio-II seismic monitoring experiment showing the sources and receivers in the two
boreholes, and the point of CO, injection.

14
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From the baseline measurements made, a delay (or “slowness”) in travel time is produced
over a period of time due to the presence of CO,. This delay suggests the ray path
transverses through material of lower seismic velocity, in this case, the CO, plume. To
create the synthetic data, TOUGH2/ECO2N was used to produce a CO, saturation image,
which was converted to an image of the “true” CO, induced slowness based on a
petrophysical relationship. The objective of our algorithm is to use noisy travel time data
obtained for the synthetic “true” CO, induced slowness image to reconstruct the CO,
induced slowness.

Select results are shown in Figure 2, which shows the final estimates of our proposed
method compared to the true slowness:

8 LI
< E
g K=
a) 3
(@]
0 10 20 30 0 10 20 30 0 10 20 30
Distance (m) Distance (m) Distance (m)

Figure 2: (left) true slowness simulated with TOUGH2/ECO2N (middle) reconstructed slowness using the
proposed algorithm and (right) uncertainty in the estimated solution.

In terms of our methods accuracy, the only source of error in the computations is the
approximation of the QH' matrix. To investigate this, we computed the error as a
function of the Chebyshev nodes:

15
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Figure 3: Relative error in QH” versus the number of Chebyshev nodes along one direction for m=51249-

As shown in Figure 3, using as few as five Chebyshev nodes results in a negligible
relative error in QH', and as a consequence, in the final estimates (Figure 2). An
important attribute of the method is that it provides uncertainty estimates (right panel of
Figure 2). Quantification of uncertainty is crucial in the context of inverse problems as it
allows the assessment of the solution provided by inversion for a given set of data.

b. Computational efficiency

The approach speeds up the geostatistical method of inversion dramatically. The same
crosswell tomography problem was solved for different discretization schemes so as to
vary the number of unknowns and the results are shown in Figure 4:
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Figure 4: (left) Comparison of the time taken by the fast QLGA versus the conventional direct algorithm (right)
same comparison for the storage cost.

In conclusion, we have developed a fast inversion algorithm for large-scale linear
inversion that can be used for problems with large number of unknowns and relatively
few observations. The computational speed up achieved by the proposed algorithms
allows estimation of the unknowns and of the associated uncertainty, with a negligible

16
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and controllable error. The computational speed achieved enables the use of our
algorithm for use with large-scale systems with fine discretization, as well as for purposes
of optimizing data collection. For example, and as discussed in more detail in
Ambikasaran et al. (2013), the ability to run an inversion of 250,000 unknowns in less
than 20 minutes allowed the optimization of the tomography sources and receivers and
consequently of the capture zone. This attribute has a great impact for real field
applications where collection of data is expensive and time and labor intensive.

3.1.2 PRINCIPAL COMPONENT GEOSTATISTICAL APPROACH

The second algorithm we developed to improve the computational efficiency of offline
large scale inversions, is based on state compression methods. We proposed a new state
compression method that can be used to significantly reduce both the computational time
and the storage space requirements when solving large inverse problems. The method can
be used to solve static inverse problems and is called Principal Component Geostatistical
Approach (PCGA) (Kitanidis and Lee, 2014, Lee and Kitanidis, 2014). PCGA utilizes a
matrix-free approach to calculate the required derivative information, overcoming the
need for computationally expensive computation of a full Jacobian matrix and of
performing matrix multiplications. In addition, PCGA exploits the properties of
covariance matrices with low effective rank to reduce the size of the problem by orders of
magnitude. The method is ideal for problems with smooth solutions and noisy
measurements, such as hydraulic tomography and geophysical monitoring methods.

a. Validation

The PCGA is developed and detailed in Kitanidis and Lee, 2014. The premise of the
method is that certain smooth covariance matrices can be well approximated by much
smaller matrices obtained by eigenvalue decomposition. In particular, covariance
matrices with an eigenspectrum that drops rapidly are most amenable to this
approximation, as good accuracy can be obtained with very few principal components
(N) compared to the number of unknowns (N<<m). This is shown for a synthetic one-
dimensional flow with variable and unknown conductivity example with 100 unknowns.
With just 20 principal components, the PCGA closely resembles the solution given by the
full GA, as shown in Figure 5. The efficiency of the method is even greater for cases with
noisy observations.

17
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b. Evaluation

The PCGA was implemented for a large-scale two dimensional problem of hydraulic
tomography, and was used to illustrate the efficiency and accuracy of the method as well
as the advantages of joint inversion. The method is based on low rank approximation of
the covariance matrix, which is performed in a computationally effective manner using
the randomized eigenvalue decomposition method. This is combined with a matrix-free
approach, which avoids direct evaluation of Jacobian matrices. The matrix-free approach
also has the advantage that uses the forward simulation as a black box, and no
modifications are necessary as in adjoint-state methods. The accuracy and efficiency of
PCGA is determined by the number of principal components N used, which in turn
determines the number of forward model evaluations. When the number of principal
components is small, which is the case in many geoscience applications, the PCGA 1is
scalable for very high dimensional problems.

compare Textbook with Principal

1 ——true
est PrinGeos
------- esttextbook ||

lbg-conductivity

—-18 L L 1 L
0 } ' !

Figure 5: Comparison between the true conductivity, the estimates obtained by the textbook geostatistical
approach (est textbook) and the estimates obtained by the proposed method PCGA (estPrinGeos).

The computational efficiency of the method was demonstrated using synthetic
benchmark applications showing the applicability of the algorithm for inversion problems
with more than one million of unknowns (Lee and Kitanidis, 2014). Two synthetic
applications are considered for characterizing a two-dimensional heterogeneous domain:
one where only pressure data are used, and one where pressure and tracer data are used.
One of the two heterogeneous domains considered as well as the well locations used for
monitoring are shown in Figure 6:

18
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Figure 6: Domain and boundary conditions for synthetic applications of PCGA. Background color shows one of
the two heterogeneous permeability fields (referred to as Case 2 below and in the paper) used to evaluate the
method (Lee and Kitanidis, 2014).

Figure 7, shows the estimation for the case where only pressure data were used. It can be
seen that the two heterogeneous conductivity fields are reconstructed, even with only 36
and 48 principal components respectively. The point-wise accuracy of estimation is
related to the location and information carried in each measurement, as also reflected in
the estimated uncertainty.

(a) True field for Case 1 In(T) (M/s)  (b) True field for Case 2 In(T) (m?%s)

(¢)InT__ (K = 36) for Case 1 In(T) (mz/s)
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0.2
03

Figure 7: True log transmissivity fields (a) and best estimates (b) and uncertainties (c) using the PCGA.

The PCGA was also used to illustrate the benefits of joint inversion. For the same domain
as above, the inversion was conducted using both head data, and tracer travel time data.
The latter dataset is considered more informative as solute transport is more sensitive to
conductivity variations compared to single-phase flow. Figures 8 and 9 show the

19
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improvement in the data-fit and in the estimated conductivities respectively, when tracer

data were included in the inversion.

simulated mean travel time (d)

Figure 8: Measurement data fitting: simulated versus measured mean travel time for only head data (left) and
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Figure 9: True log transmissivity field and best estimate for head data inversion (b) and head and mean travel
time data inversion (c). The monitoring locations are indicated by circle for head and asterisk for tracer data.

In conclusion, the PCGA is a method that makes joint inversion for systems with millions
of unknowns possible. This is particularly relevant for large-scale applications where it is
important to characterize fine scale heterogeneity of the subsurface. The method takes
advantage of fast linear algebra techniques to accelerate computations, and its accuracy is
controllable and depends on the eigenspectrum of the error covariance of the unknown
field. PCGA is a general-purpose inversion method and can be used with any simulation
model.
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3.2 EFFICIENT JOINT INVERSION METHODS FOR DYNAMIC
MONITORING

Online or real-time estimation methods, in which observations are assimilated as they are
obtained in time, are required for dynamic monitoring of a process. Such is the case for
monitoring CO, during and after injection. Such data assimilation can be performed with
various methods, the most well established being the Kalman Filter (KF). In simple
terms, the Kalman Filter is a Bayesian approach (or minimum variance unbiased
estimation method) for correcting the predictions of an uncertain dynamic model using
observations that may be affected by error. Being a stochastic inversion approach, the
Kalman Filter models the unknowns and the data as random variables and gives optimal
estimates of the mean and standard deviation in the linear Gaussian case, i.e., when the
errors are zero mean Gaussian random variables, and the forward model and
measurement operators are linear. When these assumptions do not hold, the Extended
Kalman Filter (EKF) can be used, which applies the KF equations after linearization.
Notwithstanding the linearization errors, the EKF can provide reasonable accuracy in
many non-Gaussian, non-linear cases encountered in practice. However, the
computational cost of applying the textbook version of the KF and the EKF is prohibitive
for large-scale applications due to the large covariance matrices involved, the cost of
computing Jacobian (i.e., derivative) matrices, and matrix products involving the
covariance matrix. In this section, we present four methods that have been developed to
approximate the KF and EKF with a much smaller computational cost. Error analysis for
all methods indicates that the proposed methods have a small and controllable error and
have advantages over other, ensemble based, Kalman Filter methods.

3.2.1 HIERARCHICAL KALMAN FILTER (HIKF)

The first method is the Hierarchical Kalman Filter (HiKF) which is a fast implementation
of the Kalman Filter that utilizes the FMM method and hierarchical matrices to improve
storage and computational time requirements.

The version of HiKF that is presented in Li et al., (2014) is customized to the random-
walk dynamical model, which is tailored to a class of data assimilation problems in which
measurements are collected quasi-continuously. Using the random walk dynamical
model, Jacobian-matrix computations are significantly simplified, such that the major
bottleneck becomes the computation of the product QH', where Q is the error covariance
matrix, and H is the measurement operator. As discussed in section 3.1.1, this bottleneck
can be tackled by the FMM approach, which harnesses the structure of the covariance,
which possesses the properties of H2 matrices. In addition, the method adopts a dynamic
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update of cross-covariances (mxn) instead of the much larger covariance matrices. These
features of the new method result in an overall computational cost that scales linearly
with the number of unknowns and gives high accuracy as it does not involve any low-
rank approximations.

The new method was validated and evaluated using the application of time-lapse cross-
well seismic tomography discussed in Section 3.1.1, where measurements are collected
periodically and the observations are used to track a CO, plume in the subsurface (Figure
10). Measurements of travel time between a network of sources and receivers (Figure 1)
are used to estimate the CO, induced changes in slowness (i.e. delay in travel time) in a
two dimensional domain due to the seismic velocity decrease in the reservoir from the
CO, plume. This case is based on the model developed for the Frio-II brine pilot CO,
injection experiment (Daley et al., 2007). The true slowness data associated with the
presence of CO, were generated based on saturations from TOUGH2-ECO2N and using
a petrophysical relationship between slowness and saturation.

30 hrs 45 hrs 90 hrs 120 hrs AS (x 10" s/m)
0.6
0.5
0.4
0.3
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0.2
0.1
0

-0.1

0 10 20 30 0 10 20 300 10 20 300 10 20 30
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Figure 10: True CO, induced changes in compressional wave slowness between two wells used for validation of
HiFK generated.

a. Validation

The HiKF is an approximation of the KF, with the approximation error introduced by the
FMM method for the calculation of QH”. First, for validation purposes, the HiKF was
compared to the KF. As can be seen in Figure 11, the results from KF and HiKF are
indistinguishable. This high accuracy is due to the fact that the FMM considers the full
spectrum of the covariance, unlike low-rank methods. This is especially important for
CO, applications, where the image to be estimated may have sharp interfaces and high
frequency components that require a covariance with a slowly decreasing spectrum.
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Figure 11: Estimated CO, induced changes in compressional wave slowness between two wells for KF (top) and
HiKF (bottom).

b. Accuracy

The HiKF was able to reconstruct the true image of the CO, plume with high accuracy
using the travel time measurements (Figure 12). The predictions of slowness become
increasingly accurate over time as more data are assimilated. Such high accuracy is
expected when data are available at frequent time intervals such that the assumption of
the random walk model is applicable.

The HiKF results were also compared to results obtained by the Ensemble Kalman Filter,
which is a popular low rank method used for data assimilation. As mentioned above, the
test case discussed here, as is typical of CO; injection scenarios, has sharp interfaces that
a low rank filter is not expected to capture well. As shown in Figure 13, the EnKF has a
higher estimation error relative to both the true solution and the KF solution for the same
computational cost, as expected. More specifically, the EnKF solution is smeared and has
numerous random features that are not present in the true solution. These shortcomings
are also prevalent in the uncertainty estimated by EnKF, which is significantly noisier
compared to HiKF. In contrast the HiKF gives accurate uncertainty estimation,
practically equivalent to that given by KF, with lower uncertainty in the region with high
seismic ray coverage.
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Figure 12: True and HiKF estimates for the compressional wave slowness.
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Figure 13: Estimation error relative to the true solution (left) and relative to the KF solution (right).

c. Efficiency

The HiKF is significantly faster than the textbook version of Kalman filter and has much
lower storage costs, as it scales linearly with the number of unknowns, as opposed to the
quadratic KF scaling. In the particular application discussed here, for a number of
unknowns m=50778, the computational time is reduced from approximately 4 hours to
less than 2 minutes. The improvement that our method provides in storage and
computational time requirements increases as the inversion problem becomes larger,
which manifests the advantage of HiKF for large-scale applications, and as shown in
Figure 14.
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Figure 14: Computational time and storage cost of each data assimilation method plotted as a function of the
number of unknowns. The proposed HiKF algorithm outperforms the full Kalman Filter (KF) and the
Ensemble Kalman Filter (EnKF) in both storage and computational time requirements (Li et al., 2014)

Overall, the Hierarchical Kalman filter (HiKF) provides high accuracy and significant
computational savings and is ideally suited for cases with large number of unknowns,
relatively smaller number of measurements at a given point in time, and when
measurements are collected frequently such that a random walk model can be used to
approximate the forward model operator. Details about the experiments and results can
be found in Li et al. (2014).

3.2.2 SPECTRAL KALMAN FILTER (SPECKF)

The second dynamic inversion method developed is the Spectral Kalman Filter (SpecKF)
and is described in detail in Ghorbanidehno et al. (2015). The SpecKF is an extension of
the HiKF for more general cases where the transition matrix is not the identity matrix (i.e.
random walk model), such as forward models in hydrogeologic applications (e.g.,
TOUGH2). The method uses a forward model approximation and is better suited for
cases where the time interval between observations is reasonably small. The algorithm is
designed such that it can be used for any non-linear problem for which a forward model
is available. The forward model is used as a black box to compute the Jacobian of the
state transition equation using a finite differences approach. The computational speed-up
of the SpecKF is achieved by updating cross-covariance matrices instead of the larger
covariance matrices. The benefit can be considerable, especially in large systems,
because the computational complexity of the SpecKF scales with the number of
measurements, as opposed to the effective rank of the covariance matrix in low-rank KFs
or the number of ensemble members in ensemble methods. The filter sacrifices a little
accuracy in the operations involving the forward model to achieve a large improvement
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in implementation speed. A great advantage of the SpecKF is that it does not suffer from
errors from low rank approximation of the state covariance matrix.

a. Validation

We have validated the SpecKF by comparing it to the full KF. To be able to run KF with
reasonable computational times for this comparison we used a simple linear diffusion
problem.
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Figure 15: Average relative error between the SpecKF and the KF estimate with time.

Agreement with the full Kalman Filter verifies that the algorithm and implementation are
correct. A very small relative error of the order of 10~ confirms that the performance of
the SpecKF is satisfactory (Figure 15). Our error analysis demonstrated that the SpecKF
also provides accurate estimates of the uncertainty at the measurement points. The
SpecKF algorithm does not provide the entire spatial distribution of the uncertainty to
save on computational cost, but it is possible to obtain uncertainty estimates at a specified
location, at a cost of one additional forward simulation per location.

b. Accuracy and efficiency

We have implemented and tested our method for a non-linear forward model where CO;
is injected in a homogeneous two-dimensional domain. The filter is initiated with
erroneous initial conditions representing a case where the initial CO, saturation is
unknown, and is using 25 noisy measurements of saturation and 9 pressures collected
every 15 days to update the field of pressure and CO, distribution on a 45x45
computational grid (2x2025=4050 unknowns).
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Figure 16: Comparison of true saturation with the SpecKF and the EnKF estimations for the case with small
measurement error. First row: the SpecKF estimation for saturation; second row: the EnKF estimation for
saturation with the same computational cost.

We compare the results of SpecKF to the EnKF, which is the most commonly applied
fast Kalman Filter. We tested the algorithm under a variety of scenarios and found that
the SpecKF provides same or better accuracy than the EnKF. More specifically, we
demonstrate that SpecKF has superior performance than EnKF, which is known to fail
under two specific scenarios: firstly, for cases with low measurement error, the EnKF is
known to diverge, producing spurious features that are inconsistent with the physical
model. This is shown in Figure 16, which demonstrates that SpecKF is more robust than
EnKF for low measurement error and for the same computational cost.
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Figure 17: Comparison of the relative error of EnKF and SpecKF saturation estimation with respect to the true
solution for three different number of measurements

Secondly, the EnKF is known to require a large number of realizations as the number of
measurements increases to achieve the same accuracy, thus increasing its computational
cost. The SpecKF computational cost scales exactly linearly with the number of

27



FINAL SCIENTIFIC REPORT FE 0009260

measurements, having a predictable increase in computational cost as the number of
measurements increases, unlike EnKF where the number of realizations required is
unknown. This is shown in Figure 17, where the estimation error is shown for the two
algorithms for the same computational cost, and varying the number of measurements
used. As shown, the EnKF error increases with the number of measurements, while the
SpecKF error remains relatively constant.

Overall, the SpecKF is advantageous for non-linear estimation in systems with sharp
interfaces since it considers the full covariance spectrum with no low-rank
approximations and since its accuracy depends on controllable, physically meaningful
parameters. Its computational cost scales linearly with the number of measurements and
unknowns, thus being applicable for large-scale systems where the traditional KF is
computationally prohibitive to apply. Compared to EnKF, SpecKF provides more reliable
uncertainty quantification.

3.2.3 COMPRESSED STATE KALMAN FILTER (CSKF)

The third dynamic inversion method developed is the Compressed State Kalman Filter
(CSKF) (Kitanidis, (2014); Li et al., (2015)). The CSKF uses N preselected orthogonal
bases to compute an accurate rank-N approximation of the covariance that is close to the
optimal spectral approximation given by SVD. The CSKF uses an efficient matrix-free
approach that propagates uncertainties using N + 1 forward model evaluations, where N
is the effective rank. As the CSKF is a low-rank method, it is ideally suited for smooth-
state problems where the covariance eigenspectrum of the state covariance decays
rapidly. In such cases, a great computational speed up can be achieved.

a. Validation

We first validate the CSKF for a linear state-space model, as in this case it is possible to
evaluate the full KF and use the KF estimates (i.e., the optimal estimate) to validate the
generalized CSKF algorithm. We show that as the rank N increases, the CSKF converges
to the KF (Figure 18). The CSKF accurately reproduced the Kalman gain and state
estimates of KF with a small number of bases and gave high quality uncertainty
quantification.
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Figure 18: Convergence analysis for validation of CSKF (left) SD3: log-log plot of errors in the Frobenius norm
of the posterior covariance and (right) SD4: log-log plot of errors in the Frobenius norm of Kalman gain K. All
metrics measure errors relative to KF.

b. Accuracy and computational efficiency

The CSKF was further evaluated for a CO, monitoring case, which is a more complex,
nonlinear problem governed by multiphase physics. CO, saturation in a two-dimensional
homogeneous domain is estimated from measurements of pressure, flow rate, and
saturation, given erroneous initial conditions, i.e. assuming that no CO,is present initially
in the domain. The forward simulator TOUGH2-ECO2N is used for the forward
simulations. The CSKF was shown to perform equally well to the EnKF in terms of the
estimated mean, identifying the main features of the saturation distribution (Figure 19).
However, large discrepancies were observed between the two methods in the computed
posterior variance (Figure 20). In particular, the CSKF provided robust Kalman gain and
uncertainty estimates that did not degrade as more data were assimilated, as opposed to
drastic variance reductions predicted by the EnKF.

Figure 19: Solution given by CSKF and EnKF with N =50: true CO, saturation and its posterior mean given by
each method. The sampling locations of saturation are marked by circles.
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Figure 20: Posterior standard deviation given by CSKF and EnKF, and EnKF+LOC with N =50 The sampling
locations of saturation are marked by circles.

The CSKF provides a reliable and robust method to control the trade-off between the
accuracy and the computational cost of low-rank Kalman filtering for nonlinear
estimation problems and is a practical alternative to conventional computationally
intensive inversion techniques and ensemble-based compression techniques.

3.2.4 SMOOTHING BASED COMPRESSED STATE KALMAN FILTER (SCSKF)

The fourth dynamic inversion method developed is a variant of the CSKF, and is termed
the smoothing-based Compressed State Kalman Filter (sSCSKF). The sCSKF was created
to handle cases in which strong non-linearities cause significant linearization errors
during the estimation, which are often manifested with state updates that are not
consistent with each other and the physics of the problem. One such case is when the
parameters of the forward model are unknown and are being estimated as part of the data
assimilation problem. In the CCS context, this would be a case where the permeability of
the injection formation is unknown and is being estimated from the data, together with
the CO, saturation and pressure. In this case, the uncertainty in the permeability may
cause CO, saturation estimations that are not consistent with multiphase physics.

To address these problems, the sCSKF algorithm includes the addition of a smoothing
step for each data assimilation step that improves the initial guess around which the
update is linearized, thus reducing the linearization error. This algorithm has a higher
computational cost than CSKF, but is better suited for joint parameter and state
estimation, and is still significantly more computationally efficient than the full Kalman
Filter.
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Figure 21: Estimated permeability and associated uncertainty at different times as more data are assimilated
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Figure 21 shows the results for a two dimensional application similar to the one shown in
Figure 19, where in addition to CO, saturation and pressure, the underlying
heterogeneous permeability field is also estimated. It can be seen that as more data are
being assimilated (left to right) more features of the heterogeneous permeability
distribution are being identified, and the uncertainty associated with these features is
reduced.
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3.3 EFFICIENT SOLVERS FOR LARGE DENSE LINEAR SYSTEMS

3.3.1 BLACK Box FAST MULTIPOLE METHOD (BBFMM)

The Fast Multipole Method (FMM) (Fong and Darve, 2009) is a numerical technique to
calculate matrix-vector products, of matrices of a special structure, or equivalently sums
of the form

N

f(x;) = Z K(x1, ;) o

j=1

where i € {1,2,...M}, in O(M + N) operations as opposed to O(MN) with a controllable
error €, where M and N are the dimensions of the matrix K.

The FMM is applicable for a class of matrices called hierarchical matrices, which are
data-sparse approximations of dense matrices arising in applications like boundary
integral equations or stochastic analysis. An example of a hierarchical matrix arising out
of a two-dimensional application is shown in Figure 22. Of the class of all hierarchical
matrices, H2 -matrices are matrices whose structure can be harnessed by the FMM in
order to efficiently calculate matrix vector products.

LTI

[l - Full rank block ——Low rank block

Figure 22: Hierarchical matrices arising out of a two dimensional problem at different levels in the tree

The Black Box Fast Multipole Method (BBFMM) is a tool developed in this project that
has extended the kernels (covariance matrices) for which the FMM is applicable. The
approximation scheme used in the BBFMM relies on Chebyshev interpolation to
construct low-rank approximations for well-separated clusters. In addition the use of
Singular Value Decomposition ensures that the computational cost is minimal. In
particular the rank is optimally chosen for a given error. Some significant advantages of
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the BBFMM are that it is very convenient for complex kernels for which analytical
expansions might be difficult to obtain; it is easy to implement and have known error
bounds. Its computational efficiency can be significant and can be increased depending
on the accuracy required, while the pre-computation cost is very small.

The BBFMM forms the backbone of our fast offline inversion algorithm presented in
Section 2, and of the fast Kalman Filters developed in this project, HiKF and the SpecKF,
where they are used to perform matrix-matrix and matrix-vector multiplications with
dense covariance matrices in an efficient way.

The BBFMM code has been developed for 2D and 3D systems and is available to the
public at:

https://github.com/sivaramambikasaran/BBFMM2D

https://github.com/ruoxi-wang/BBFMM3D

https://github.com/judithyueli/mexBBFMM2D

https://github.com/ruoxi-wang/mexBBFMM3D

3.3.2 FAST DIRECT LINEAR SOLVER AND DETERMINANT COMPUTATION FOR
DENSE LINEAR SYSTEMS

In addition to the fast numerical algorithms specifically developed for Kalman filters and
stochastic inversing, we have also developed a series of general fast algorithms for linear
algebra, in particular for solving linear systems. A series of algorithms and codes were
developed to address a range of problems:

1. Dense matrices. Extending ideas from the fast multipole method, we have
designed algorithms to solve Ax = b where A is a dense matrix defined by an
RBF (radial basis function) kernel such as a Gaussian or exponential kernel. This
solver has cost O(n) where n is the size of the matrix. The details of this work can
be found at Coulier et al., 2015.

2. Sparse matrices: multifrontal methods. Multifrontal techniques form the basis of
efficient direct linear solvers for sparse matrices. In 3D, however, these solvers
have a cost of O(n?) and become prohibitive. We have been able to reduce this
cost to O(n*?) by accelerating the calculation with the dense blocks using the
hierarchical matrix format. The details of this work can be found at Aminfar et al.,
2016.
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3. Sparse matrices: multilevel methods. The hierarchical matrix format was used to
extend and generalize algebraic multigrid methods (AMG). This has led to a new
class of O(n) preconditioners that are more robust and black-box than
conventional AMG methods, which typically require optimizations specific to the
problem at hand. The details of this work can be found at Pouransari et al., 2015.

3.3.3 BLOCK BASIS FACTORIZATION METHOD (BBF)

The block basis factorization (BBF) algorithm was developed to speed up matrix-vector
multiplications where the kernel matrix is generated from high dimensional data. The
BBF overcomes the complexity issue in Fast Multipole Method where there is an
exponential dependence on the dimension; it also generalizes vanilla low-rank matrix
approximations to the cases where low-rank approximation fails to be efficient. The latter
characteristic is most relevant to the applications of interest to this problem.
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Figure 23: Schematic showing the Block Basis Factorization of a dense matrix M.

The BBF conceptualization, shown in Figure 23, gives a rank-rk approximation with O(nr
+ (rk)A2) storage. This should be contrasted with a traditional low-rank scheme that
gives a rank-r approximation using O(nr) memory. Since the memory cost is a close
approximation of the running time for a matrix-vector multiplication, BBF therefore
offers an efficient scheme that is linear in both memory and application time.

For the low dimensional cases of interest to this project, the BBF structure provides a
generalization of the low-rank scheme, especially for the cases where the low-rank
property breaks and traditional low-rank methods fail. It also provides an alternative to
the FMM in cases where a large number of Chebyshev nodes is needed for the desired
accuracy.
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BBF method is highly memory efficient, since the basis U and V are block-diagonal
instead of dense. In terms of applicability, it is more accurate when h is small: it
considers local interactions instead of only global ones (which low-rank methods do);

We have tested the efficiency of the BBF by comparing it to various low rank schemes
using different sampling methods (Wang et al., 2015). Figure 24 compares the accuracy
of the BBF structure vs. the low-rank structure; the results show that BBF approximates
the kernel matrix better than the low-rank structure, regardless of the sampling method
used in the algorithm.
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Figure 24: Kernel approximation error versus memory for BBF and low rank structure with different sampling
methods. Different symbols represent different sampling methods.

For further testing, we benchmarked BBF against other state-of-art kernel approximation
methods on some real datasets (Figure 22). BBF exhibits a significantly higher accuracy
than the competing methods. We are comparing against the naive Nystrom (Nys), k-
means Nystrom (kNys), leverage score Nystrom (IsNys), the Memory Efficient Kernel
Approximation method (MEKA), and the Random Kitchen Sinks (RKS). It is worth
noting that due to its flexible structure, it outperforms the exact SVD (cubic time).
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Figure 25: Kernel reconstruction error versus memory footprint (on a loglog scale) for BBF and different state-
of-art kernel approximation methods on real datasets.

3.4 MATRIX VECTOR MULTIPLICATION WITH GPUS

This work focuses on harnessing GPUs for performing matrix vector multiplications
efficiently (Wong et al., 2015). This type of calculation is critical when solving linear
systems arising from PDEs, in particular in reservoir simulations (see TOUGH2, etc).

Recently, graphics processing units (GPUs) have been increasingly leveraged in a variety
of scientific computing applications. However, architectural differences between CPUs
and GPUs necessitate the development of algorithms that take advantage of GPU
hardware. Inversion algorithms and finite-element analysis typically involve sparse
matrix vector (SPMV) multiplication operations that can be accelerated by parallelization
using GPUs. We developed a new SPMV algorithm and several variations for
unstructured finite element meshes on GPUs. The effective bandwidth of current GPU
algorithms and the newly proposed algorithms were measured and analyzed for 15 sparse
matrices of varying sizes and varying sparsity structures. The effects of optimization and
differences between the new GPU algorithm and its variants were then subsequently
studied. Lastly, both new and current SPMV GPU algorithms were utilized in the GPU
CG solver in GPU finite element simulations.

To validate the newly developed algorithm, we compare our results against parallel
PETSc finite element implementation results. The effective bandwidth tests indicated that
the new algorithms compare favorably with current algorithms for a wide variety of
sparse matrices and can yield very notable benefits. GPU finite element simulation results
demonstrate the benefit of using GPUs for finite element analysis and also show that the
proposed algorithms can yield speedup factors up to 12-fold for real finite element
applications. More details on these results can be found in Wong et al., 2015.
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Figure 26 shows the speed-up of various methods compared to the single core CPU.
CUSP, CUSPARSE, MGPU are existing GPU libraries. K1 and K2 are two variants of
our new GPU algorithm. Jacobi and Block Jacobi are multicore solvers in PETSc
(benchmarked with 1 to 4 cores).
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Figure 26: The resulting factor of the increase in speed for the GPU CG solver (with a standard single core
CPU-based element assembly routine) and the GPU finite element method.
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4 METHOD TESTING FOR 3D SYNTHETIC CCS
EXAMPLE

4.1 SYNTHETIC EXAMPLE DESCRIPTION

A synthetic (i.e., simulated on the computer) field scale case was used to demonstrate the
applicability of the developed methods for large-scale problems. The synthetic example
was generated so that it resembles the Frio-I CO, storage pilot experiment in terms of its
size and for a domain with strong heterogeneity and high connectivity of large-scale
features, and small-scale heterogeneity within the large-scale features. To generate the
true permeability field, for the large-scale features the program TProGs (Carle and Fogg,
1997) was used, which is a transition probability based hydrofacies generator, while
small-scale heterogeneity was generated using an exponential covariance model. The
code for generating realizations requires only a small set of basic input parameters, like a
training image for the first type of heterogeneity, and a correlation length and variance
for the second type. This code can easily produce a variety of “true” fields. An example
of one such “true” field generated, and the one used as true in the synthetic inversions, is
shown in Figure 27:
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Figure 27: One example of a “true” field generated with TPROGS for large scale features connectivity,
combined with small scale heterogeneity.

The domain for the synthetic experiments was chosen to be similar to Test Site one (Frio
C Sand formation), in terms of the injection well spacing (30 m) and the thickness of the
heterogeneous sand formation (20 m). The entire domain being considered is 640 m x
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640 m x 20 m (width x length x thickness). Within the 640 m x 640 m horizontal extent
of the domain, we focus on a 128 m x 128 m rectangular domain of heterogeneity. The
discretization is chosen to be fine enough to allow a reasonably accurate representation of
the multiphase physics (Figure 28). This inversion problem results in a total of 24030
unknown permeability values for each grid block that the inversion algorithm will
estimate, providing a high-resolution characterization.
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Figure 28: Plan view of the domain and discretization of synthetic geologic carbon storage example. The
domain within the red rectangle is considered heterogeneous (the “true” field), and is padded to a large extent
by a homogeneous domain to avoid excessive boundary condition effects.

4.2 SYNTHETIC DATA GENERATION

The synthetic experiments performed using the “true” fields to generate the synthetic
monitoring dataset include a hydraulic tomography experiment and a hydrothermal tracer
test experiment. A monitoring network consisting of eight monitoring wells has been
chosen so that it covers sufficiently the domain of unknown permeabilities.

The first phase of inversion includes data from synthetic pumping tests (hydraulic
tomography). The pumping tests were designed as a sequence of five 1-day pumping
tests, each performed at a different pumping well and followed by 2 days of rest (no
pumping), for a total of 15 days. Pressure data collected at all wells during each pumping
test can be assimilated in the inversion algorithm to infer the unknown heterogeneous
permeability field. In terms of spatial density of monitoring data, a maximum of thirteen
wells (active and monitoring wells) can be used for pressure measurements; each well has
10 vertical ports. In total, a maximum of 130 transient pressure measurements (simulated
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and contaminated with noise) can be used in the stochastic inversion at each data
assimilation step.

Following the pumping tests, a sequence of four dipole hydraulic-thermal tests were
conducted. The design of the tests is as follows: a 10-day injection in the central active
well with simultaneous pumping at one of the other four active wells are followed by 20
days of pressure temperature decay. Measurements of pressure are taken at all wells, and
temperature profiles at the five active wells are used for the inversion; the eight
monitoring wells are not used because they have no signal of thermal perturbations.

For the simulation of the pumping tests and thermal tests, we used TOUGH2-MP
combined with the single-phase flow module EOS1 (isothermal or non-isothermal flow
of water with one or two components). For the sequence of dipole hydraulic-thermal test,
non-isothermal flow of single-component water is used (Figure 29).

Pumping test - Phase | Thermal tracer test - Phase |

a9

y(m) 260 260 x(m)

.
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Pressure (Pa) x 10 Temperature (°C)

Figure 29: Representative results from forward simulations of synthetic experiments (left) Pumping test showing
pressure distribution and (right) Hydrothermal test showing temperature distribution.

4.3 SYNTHETIC INVERSION OF PUMPING DATA

Since we are interested in parameter estimation, for the inversion of the hydro-tracer-
thermal and CO, injection synthetic datasets we used the smoothing based Compressed
State Kalman Smoother (SCSKF). The results showed that sSCSKF was able to reconstruct
the major features of the permeability field (Figure 30) and provide uncertainty estimates
that are informative (Figure 31).
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We explored the sensitivity of the results to the number of bases selected and found that
25 bases sufficed for reasonable accuracy and exceptional computational efficiency (each
inversion step lasted only 2 hours).

1380

340 >
320 s
300

i 260 260 x(m)

Figure 30: Estimated mean log permeability for synthetic pumping tests.

Figure 31: Standard deviation for estimated log permeabilities for synthetic pumping tests.
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4.4 SYNTHETIC JOINT HYDROTHERMAL TRACER TEST INVERSION

For the inversion of the hydro-tracer-thermal and CO, injection synthetic datasets,

measurements of both pressure and temperature were used to estimate the same
permeability field using the sCSKF (Figure 32). The results showed a marked reduction
in uncertainty of estimation procured by the additional measurements and increased

sensitivity of heat transport to the permeability variations in the domain (Figure 33). The
added value of temperature was evident in the results, where more detailed features of the

permeability were identified compared to the pumping tests.
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Figure 33: Standard deviation associated with estimated mean log permeability for synthetic hydrothermal

tracer test.
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In this inversion, the same compression rate of 25 bases was again possible, due to the
smoothness of the temperature distribution, such that the inversion was highly
computationally efficient with only 25x2 forward simulations being required for
assimilation of each dataset.

Application of the sSCSKF to the 3D synthetic datasets illustrated that the computational
scalability achieved by our algorithms is imperative for data assimilation at a reasonably
fine resolution where the number of unknowns exceeds a few thousands. Conventional
algorithms would have prohibitive costs that would necessitate significantly reducing the
resolution of the forward models and the reliability of the data assimilation method. In
particular, application of our algorithm sCSKF to synthetic three-dimensional monitoring
data for characterization of a site similar to the Frio I site in Texas, demonstrated that:

* Even for strongly heterogeneous fields with significant anisotropy, large-scale
formations of high and low conductivity can be identified even based on a small
number of wells, as long as vertically distributed measurements are available.

* Including thermal and chemical tracer data improves estimation accuracy. The
relative worth of each dataset can be assessed using the Kalman Gain.

* Uncertainty estimates are extremely valuable as to where more measurements
should be obtained to improve estimation and reliability.
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5 APPLICATION OF METHODOLOGY TO FIELD
TEST SITES

5.1 Frio-I PILOT TEST

5.1.1 PROBLEM DESCRIPTION

The Frio I pilot test of CO, injection was conducted in October 2004 by injecting ~1600
metric tonnes of supercritical CO, into the Frio C sand at a depth of ~1500 m. During and
after the 10-day CO, injection test, the pressure and temperature were continuously
monitored at two bottomhole gauges at the injection well and the monitoring well, as well
as at their wellheads. Figure 34 shows the regional caprock of Anahuac Shale and the
Frio Formation with Frio A, B, and C sands, the injection well (IW) and the monitoring
well (MW), as well as the two bottomhole pressure/temperature gauges.
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Figure 34: Thickness of the caprock (Anahuac Shale), the storage formation (Frio Sand), and the injection unit
(Frio C Sand) in the vicinity of the injection well (IW) and the monitoring well (MW) at the Frio I test site. Also
shown are the depth of the pressure/temperature gauges in both wells and formation/unit tops and bottoms.

The vertical profiles of pressure, temperature and CO, saturation were obtained three
times at the injection well and seven times at the monitoring well. Different tracers were
released with injected CO, and their concentrations were monitored using the U-tube
system installed.

Before the CO, injection test, a pumping test was conducted for one day by pumping
formation water from the monitoring well, and then a pumping and re-injection dipole
test was conducted for 15 days. The pressure and temperature at the two bottomhole
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gauges and wellheads were continuously monitored. Significant temperature
perturbations were also observed in the temperature profiles obtained before the CO,
injection test started. A conservative tracer was released with injected water under the
quasi-steady-state flow condition induced by the dipole test.

During the experiment, significant temperature perturbations along the wellbores and in
the storage formation were observed. Such large perturbations can be seen in the vertical
temperature profiles along both wells after the dipole test was completed (Figure 35).
More specifically, Figure 35 shows a significant temperature spike at the injection point
(far left panel), which at closer look (middle and right panels) was also changing in time,
likely in response to the movement of the CO, plume. The temperature time series and
vertical temperature profiles provide invaluable data for characterizing the Frio

formation.
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Figure 35: Comparison of vertical profiles of temperature observed at different times (a) at the injection well
(IW) and the monitoring well (MW) before and during CO, injection, (b) Close up at the injection interval at the
injection well after CO, injection, and (c) close-up at the monitoring well before, during and after CO, injection.
Also shown are the Gamma Ray logs (in pink), RST logs, and well perforation intervals (in black rectangles).
Note different scale between graphs.

For the CO, injection test, Figure 36 shows the vertical profiles of CO, saturation for six
Reservoir Saturation Tool (RST) logs. We can see that the CO, plume is confined in a 4
m thick Frio C sand and the CO, saturations as high as 0.88 are observed. Figure 37
shows the breakthrough curves of three tracers released with injected CO, at three
different times. The CO, arrival is quick, 50 hours after CO, injection started. Note that
injected CO, may not have a sufficient temperature signal at the monitoring well because
all the monitored temperature perturbations stems from the dipole test conducted before
CO, injection and decays with time.
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Figure 36: Vertical profiles of CO, saturation in the Frio C sand in the monitoring wells estimated using the
pulsed neutron logging on October 8 (RST2), October 14 (RST3), November 2 (RST4), December 9, 2004
(RSTS5), and February 23,2005 (RST6), as compared to the volumetric shale, porosity and permeability logs.
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Figure 37: Time-dependent concentrations of PFT in tracer tests 1,2 and 3, and gas tracer concentrations (SF6
and Kr) in tracer test 3.

The above datasets are available for use in the inversion in order to identify main
pathways that CO, followed during the Frio I experiment. The objective is to confirm
findings from geophysical data that preferential pathways were present that led to a non-
uniform distribution of the CO, (Figure 38).
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Figure 38: P-wave tomograph with RST logs at wells.

5.1.2 MODEL DEVELOPMENT & INVERSION

Figure 39 shows the geological model in a transformed coordinate system, with
Transformed X to the northeastern direction. Two bounding faults form an impervious
boundary of the model domain, along with three minor faults acting as flow barriers.
Figure 40 shows the plan view of the generated 3D mesh with zoom in the vicinity of the
two wells. The 3D mesh is 1000 m by 1000 m in the horizontal direction, and 80 m in
thickness including Frio A, B, and C sands. We also included the two wells of 1500 m in
length from the ground surface to the top of the model domain for the reservoir. 150 1D
elements were used to represent each well. The thermal gradient is 0.0252 °C/m. The heat
exchange between the wellbores and their surrounding formations was simulated using a
semi-analytical solution implemented in TOUGH?2. In total, we have 2072 2D elements
and 45584 3D elements, in addition to the 300 well elements.

-1600 -1580 -1560 -1540 -1520 -1500
mmma

1500

1000

Transformed Y (m)

500

1000 1500 2000 2500
Transformed X (m)

Figure 39: The elevation (in flood contour) of the top of Frio C sand in the transformed coordinate system, the
injection and monitoring wells, and the two bounding faults used to define model boundary, and three internal
minor faults.
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The inversion of this data is performed in two phases: pressure gauge data are used in a
calibration mode to obtain wellbore information, while vertical temperature profiles and

tracer concentrations are used for characterizing the main preferential pathways in the
Frio formation. For this first modeling phase a reduced model is used, shown in Figure

40. The second modeling phase focuses on CO, migration prediction for which a second
TOUGH2 model is built which includes the complex geology of the Frio-I site, including
local faults that constrain the CO, plume, as shown in Figure 39. The results are tested for

their consistency with available geophysical data that indicate the presence of two major
preferential pathways in the region of interest, likely due to high permeability sand

channels, between the injection and monitoring well.

Figure 40: Plan view of the generated 3D mesh, with zoom in the vicinity of the injection well and monitoring

well for locally refined mesh.

Work on the inversion of the real Frio dataset is ongoing. A few considerations regarding

the inversion of the Frio-II pilot experiment include the following:

a)

b)

Inversion and monitoring through data assimilation requires the development of a
forward model for the domain and experiments of interest. The bottleneck of the
inversion is often the development of such a model.

The use of monitoring data often requires judgment calls from an expert. For
example, the Frio-II monitoring data for wellhead pressure provide more
information regarding the wellbore, rather than the underlying formation. For this
purpose, such information can be used in a pre-processing calibration step to
obtain a small number of model parameters, in order to simplify the forward
modeling and the inversion scheme for the spatially distributed unknowns (e.g.
permeability) and make better use of computational resources. For the same
purpose, preprocessing of data collected continuously in time may be necessary to
reduce the cost of data assimilation.

48



FINAL SCIENTIFIC REPORT FE 0009260

¢) Availability of monitoring data directly related to features of the underlying
formation is crucial for heterogeneity characterization. In the Frio case, the
vertical temperature profiles provide the best available information for
characterization of heterogeneity, while tracer tests are useful for constraining the
overall average permeability, but not for delineating fine scale features of the
formation.

5.2 IN SALAH

5.2.1 PROBLEM DESCRIPTION

The application of our methods to the In Salah pilot test aims to understand the relation
between CO, injection and resulting ground surface deformation, measured and
monitored by Interferometric Synthetic Aperture Radar (InSAR) data. The InSalah CO,
project in Algeria, one of the first large scale commercial carbon sequestration projects,
injected 3 million tons of CO, in three horizontal wells, which resulted in a measureable
surface displacement of approximately 5 mm/year (Vasco et al., 2010).

Distance North (km)

Distance East (km)

e I I I A N O |
-50 Range Velocity (mm/year) 10

Figure 41: InSAR surface uplifting velocity measurements in mm/year (Vasco et al., 2010)

The focus of our inversion is to identify and characterize the source of the deformation,
and specifically to answer the question of, whether the volume increase in the reservoir or
a fracture opening or a combination of those disturbances resulted in the observed surface
uplifting. This has been a major point of discussion in the literature, in particular, related
to the double lobed appearance of the uplifting above well KB 502 (Figure 41).

The advantages of our analysis compared to previous inversions done with the InSAR
dataset are the following: Firstly, satellite data collected at 41 different times are used
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simultaneously in the same inversion in our dynamic Kalman Filter framework, in order
to capture the dynamic expansion of the CO, plume in the reservoir, possible CO, leakage
in the nearby fault, and the expansion or creation of the fault due to the injection as this
changed in time. Secondly, we evaluate the above in a statistical framework considering
uncertainty in the forward model as well as in the rock hydrological and geomechanical
properties and obtain uncertainty estimates associated with the inverted quantities and
their variation in space. This allows us to evaluate different scenarios that may have
caused the double lobe formation above KB 502 and establish which scenario is more
likely, based on its uncertainty.

5.2.2 MODEL DEVELOPMENT & INVERSION

For the InSalah inversion, we employ a combination of the HiKF and SpecKF, in order to
facilitate the special nature of the InNSAR dataset. The forward model for the evolution of
pressure and fracture changes is assumed to be the random walk model, as in HiKF,
instead of a hydrogeomechanical forward model. Despite the simplified forward model,
this setup of the Kalman Filter allows the consideration of continuity in the physics
between the 41 InSAR images, without requiring a costly computational forward model
to simulate the pressure and geomechanics of this complex system. The observation
model that relates the state (volume and fracture change) to the observations
(deformation) is given by a semi- analytical model that is used in a black box fashion to
calculate sensitivities, in the same manner done in SpecKF. Combining these two filters
reduces greatly the computational cost, and allows characterization at a fine resolution
with quantification of uncertainty.

The observation model used for the InSalah field site is a semi-analytical model that
simulates the surface deformation resulting from CO, injection at the InSalah site. More
specifically, the forward model used calculates the co- and post-seismic deformation that
is caused by four possible dislocation sources in a viscoelastic-gravitational
homogeneous half-space (Wang et al., 2006). The model comprises two calculation steps:
One that calculates the Green functions corresponding to a given half space, and one
where the dislocations are calculated for the given dislocation source; the latter step is the
least computationally expensive and is the only one that needs to be repeatedly run in an
inversion. For this reason, the forward model is well suited for evaluating our inversion
algorithms.

The observation model development follows previous work by Vasco et al., (2010),
where the same InSAR dataset was used in a deterministic inversion to obtain the
changes in reservoir volume and fracture aperture that resulted in the observed surface
deformation. The model assumes an improved layered earth model that is derived from
well log observations, and that has been previously found to provide more physically
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consistent results (Vasco et al., 2010). Furthermore, a composite model of both the
reservoir and the damage zone (fault) is considered here, as previous work has shown that
neither the reservoir nor the damage zone alone can account for the double lobed pattern
observed.

Work on the inversion of the InSalah InSAR dataset is ongoing. The InSAR dataset
provides an opportunity to tailor our inversion algorithms for spatially distributed
datasets, 1.e. datasets provided as images like the InSAR data. In such cases, although the
number of data points available is significant, it is not necessary that they all provide
useful information for the inversion. In addition, the more data are considered the higher
the computational cost in terms of sensitivities that need to be calculated and forward
model simulations. To reduce the computational cost we examine different ways of
compressing the datasets, while maximizing the information that can be obtained from
them.

This inversion provides better understanding the behavior of the fault during CO,
injection at the In Salah site, which is essential in order to conduct forward simulations of
the CO, injection at the site.
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6 CODE DEVELOPMENT AND VALIDATION

6.1 CODE DEVELOPMENT

All code developed for stochastic joint inversion has been developed in Matlab ®. Code
for fast linear algebra methods is developed in C++. Fast linear algebra codes area
available to the public at:

https://github.com/sivaramambikasaran/BBFMM2D

https://github.com/ruoxi-wang/BBFMM3D

https://github.com/judithyueli/mexBBFMM2D

https://github.com/ruoxi-wang/mexBBFMM3D

6.2 VALIDATION OF DEVELOPED ALGORITHMS

Validation of all developed stochastic inversion algorithms has been conducted and is
described in the respective section.
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7 SUMMARY & CONCLUSIONS

This project developed a suite of computational methods for accurate and
computationally efficient data utilization for characterization and monitoring of large-
scale subsurface systems. A summary of these computational tools along with attributes
and applicability is listed in the following:

Offline inversion

Conventional n (with adjoint
methods)
Fast linear GA none Any linear problem
(Geostatistical
Approach)

The method combines the Quasi-Linear Geostatistical approach
with the hierarchical matrices technique to reduce the cost of
matrix-matrix multiplications including the large covariance

matrix.
PCGA K*niter Smooth problems
(Principal Component
Geostatistical
Approach)

The method combines the Quasi-Linear Geostatistical approach
with a matrix factorization technique that compresses the error
covariance matrix based on its eigenspectrum, thereby reducing
the effective number of the unknown quantities.

Dynamic inversion / Kalman Filter

Conventional n (with  adjoint
methods)
HiKF none Fast data acquisition,
(Hierarchical Kalman linear models
Filter)

The method modifies the conventional Kalman Filter by
assuming a random walk forward model, thereby reducing the
Jacobian  calculations and  accelerates = matrix-matrix
multiplications using the hierarchical matrices approach.

SpecKF n Fast data acquisition, non

(Spectral Kalman Filter) linear models
The method modifies the conventional Extended Kalman Filter
by employing an approximation to the forward model that allows
efficient cross-covariance updates.

CSKF K Smooth problems
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(Compressed State

Kalman Filter)
The method modifies the conventional Extended Kalman Filter
by using a low rank approximation of the covariance matrix
based on its eigenspectrum and fixed eigenbases.

sCSKF 2K Smooth problems,

(Smoothing-based
Compressed State
Kalman Filter)

parameter estimation

The method modifies the conventional Extended Kalman Filter
by using a low rank approximation of the covariance matrix
based on its eigenspectrum and a fixed basis. For improved
parameter estimation and reducing linearization errors, the

method employs a one-step ahead smoothing.

n: number of measurements

m: number of unknowns (typically corresponds to gridded field of unknowns)
K: effective rank of covariance matrix

niter: number of iterations (typically 4-5)

These algorithms were built, tested and demonstrated in the context of Carbon Storage
projects in deep subsurface geological formations. Such applications involve diverse
datasets and large numbers of unknowns that render the use of traditional inversion
methods infeasible. The project addressed the need for new algorithms that use advanced
mathematical ideas to reduce the computational cost and provide accurate estimates with
reliable quantification of uncertainty at a reasonable cost.

The fast inversion algorithms developed in the project combine Bayesian methods, for
stochastic inversion, with fast linear algebra techniques that accelerate matrix-matrix
multiplications, the latter being the bottleneck of traditional inversion. Two fast linear
algebra techniques that we harness are the fast multipole method, and efficient matrix
decomposition techniques, such as SVD and eigenvalue decomposition. With these
mathematical tools, alternatives to traditional inversion techniques were created, each of
which is best suited for different CCS applications. Parameters that determine which of
the developed algorithms is most suitable include the frequency of data acquisition, the
type of data used, and the heterogeneity of the system. The major advantages of the
algorithms developed are:

* They are fast, i.e., able to process large data sets using modest computer resources.

* They provide reliable uncertainty quantification to inform decision-making.

* Use forward models in a black-box fashion so that the methods are generalizable
to any data type for which a forward model exists.
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We demonstrated the efficiency of our methods using a large realistic three-dimensional
synthetic scenario with datasets similar to those collected at real field sites, and were able
to demonstrate that in reasonable time frames, good quality estimates are possible even
with limited and diverse datasets, a typical scenario in real CCS projects.

The contributions of this work to the CCS state of knowledge are multifold. With these
novel algorithms for inversion that go beyond traditional deterministic, low-resolution
inversion, it is possible to better characterize potential CCS field sites, thus being able to
better evaluate carbon capacities. It also becomes possible to reliably monitor ongoing
operations and prevent undesirable incidents like CO, leakage or migration to sensitive
areas. With efficient estimation algorithms like those developed in this project,
optimization of CCS operations and more informed decision-making will also become
possible. Furthermore, these methods can be used to perform data worth analysis as to
better design data collection and thereby minimize the overall cost of CCS projects.
Combination of these methods to automatic control systems is the logical next step of this
work, which will further enhance our ability to implement CCS as a possible climate
change mitigation measure.
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