Final Report on XStack: Software Synthesis for
High Productivity ExaScale Computing

Principal Investigator:

Prof. Armando Solar-Lezama

Postal Address: The Stata Center, Building 32-G840, 32 Vassar Street, Cambridge, MA 02139
Telephone Number: (617) 258-9727

Email: asolar@csail.mit.edu

Partnering Institution: University of California at Berkeley (UCB)

The goal of the project was to develop a programming model that would significantly improve productivity
in the high-performance computing domain by bringing together three components: a) Automated
equivalence checking, b) Sketch-based program synthesis, and ¢) Autotuning. In more detail, we are
pursuing the following efforts:

¢ Bringing into HPC programming the recent results from automated model-checking, specifically
program equivalence checking, which we use to ascertain the semantic equivalence of an
executable specification and a high-performance implementation, eliminating bugs due to
performance optimizations.

e We are advancing the power of our synthesizer that works outside domains amendable to classical
synthesis such as FFTW. The Sketch synthesizer, which can be guided by programmers without
formal training, is used to implement high-performance implementations.

e We are developing a refinement programming methodology, wherein a high-performance
implementation is obtained by successive optimizations of a specification. These refinements are

checked for correctness with equivalence checking and parts of these optimizations are
synthesized.

The report provides an executive summary of the research accomplished through this project. At the
end of the report is appended a paper that describes in more detail the key technical accomplishments
from this project, and which was published in SC 2014 [1].

Summary
Over the three years of our project, we accomplished the following milestones:

We developed a set of algorithm to support synthesizing SPMD implementations on top of the
Sketch synthesis system.

We developed a set of high-level programming constructs that are easier to analyze compared to
low-level MPI, but are still sufficiently expressive to support implementation of efficient and
scalable implementations of distributed algorithms.

We developed a new set of synthesis constructs to make it easier to reuse insights from one problem
in implementing similar problems.

We implemented a set of kernels from the NAS parallel benchmarks and showed that we could use
high-level sketches to synthesize implementation details necessary to achieve performance
comparable to Fortran implementations.

We have developed a new algorithm for solving synthesis problems much more efficiently by
parallelizing the search for a solution.

Sketch based Synthesis of MPI code

As part of this project, we developed a set of constructs to support synthesis of SPMD implementations.
The new constructs enforce a bulk-synchronous programming model that is determinate by construction
and that eliminates the need to match sends and receives. In this model, all communication happens through
a set of primitives that must be called synchronously by all threads and which have barrier-like behavior.
Reductions naturally have this property, but even point-to-point communication is expressed in this manner.
The constraints on the communication primitives and the determinacy guarantees significantly simplify the
analysis of programs written in terms of these constructs and make it possible to perform the deep semantic
analysis necessary for synthesis. Our synthesizer exploits determinacy through a novel reduction that
converts the SPMD synthesis problem into a sequential synthesis problem which can be solved by our oft-
the-shelf Sketch synthesis system.

One of our major accomplishments is to show that the new programming constructs together with the new
reduction can allow us to scale synthesis to realistic computational kernels. Specifically, we have
demonstrated our synthesis-based methodology through case studies implementing non-trivial distributed
kernels---both regular and irregular---from the NAS parallel benchmarks. We show that our approach can
automatically infer many challenging details from these benchmarks and can enable high-level
implementation ideas to be reused between similar kernels. We also demonstrate that these high-level
notations map easily to low-level C code and show that the performance of this generated code matches
that of hand-written Fortran.

With regard to performance, we were able to show scalability up to 16384 cores on SpMV, MG and 3D
transpose with 2D partitioning. In all cases, the performance matched the performance of hand-written
Fortran. This showed that the higher level programming model and the resulting simplification of the
analysis did not come at the expense of performance.

SpMV (Class E) SpMV (Large) MG Benchmark
7/)\ 90 ! T T T 75 T T T 220 T T T T T T T
3 80k MSL +- - | 70 k= MSL +- -e-- = | 200 @ MSL - - -
5 = Fortran &g § Fortran &g 180 | Fortran #-—&-i |
S 70} g 65 -8 .
& 160 | -
9 60 | - 60 -1 140 F i
2 50 . 55 - . 120 | .
= 40 F . 50 | E 100 | B
|}
S 30 = " 4 45 F i 28 - i
3 20t g . 40 + L & i v]
s} 40
2 10f U 35 2 20 = .
w I 1 1 1 30 L 1 1 0 L 1 1 1 L = =
256 512 1024 2048 4096 8192 16384 256 512 1024 2048 4096 8192 16384
Processes Processes Processes
Transpose (1D Decomp) Transpose (2D Decomp)
—_ 240 T T T T 160 T T T T T T T
8 220 |+ MSL t+--e-- 4 140 | £ MSL +--e- = |
S 200 | Fortran gt J 8 Fortran #--&--
S 180 - - 120 | 5
2 160 L% - 100 b .
140 1 b -]
£ 0 = - 4
E 120 = i 0
= 100 | 1] 4 60 | - 4
5 t W |
= 80 | ! = 40 F 4
5 i ¥
o 60 - — - =
e 4ok L 20 |] .
w 20 L1 1 1 1 0 1 1 1 1 1 L L]
256 512 10242048 256 512 1024 2048 4096 8192 16384

Processes Processes

Improvements to the Solver Infrastructure

The Sketch synthesizer relies on a counterexample guided inductive synthesis solver (cegis) that takes
synthesis problems in an intermediate representation and solves for their unknowns. Over the course of the
project we made a number of changes to the underlying solver to improve its scalability and its ability to
handle complex synthesis problems. Some of these changes are summarized below:

Support for arrays in the solver. The solver relies on bounded reasoning, so in order to reason about
arrays, the frontend would put a bound on the maximum size of an array and treat it as a set of scalar
variables. This caused a very significant blow-up on the size of the intermediate representation which would
cause the solver to run out of memory on some benchmarks. By introducing arrays into the intermediate
representation and adding algorithms for the solver to reason about them directly, we are able to get order
of magnitude reductions in memory consumption from the cegis solver.

Abstraction refinement for recursive functions. The sketch compiler reasons about most array
manipulation codes using an algorithm that translates them into systems of mutually recursive functions. In
previous versions of the solver these were handled by inlining the functions a fixed number of times as
directed by a compiler flag. We have implemented a new scheme that relies on abstraction refinement to
automatically discover which functions need to be inlined and exactly by how much. This prevents the
system from unnecessarily inlining those functions which do not require it.

Support for max in the solver. The transformation that transforms array codes into mutually recursive
functions relies on solving for the maximum value i that satisfies a predicate p(i) (i.e. max(i,p(i))). A
previous version of the algorithm used a simple algebraic manipulation routine to solve for the value of i
whenever possible. When the algebraic manipulation failed, the system would fall back on an explicit search
for i using a while loop. The huge performance difference between the algebraic solver and the explicit
search meant that small changes in the sketch could lead to huge performance differences in the solver if
the changes caused the algebraic solver to fail. Our new algorithm relies on the solver to find values of i by
relying on a combination of algebraic reasoning and abstraction refinement.

Parallel synthesis. We have been able to significantly improve the scalability of the solver by parallelizing
the search for a correct solution using a combination of solver-based synthesis and randomized search.

[1] "MSL: a Synthesis Enabled Language for Distributed Implementations”, Zhilei Xu, Shoaib Kamil,
Armando Solar-Lezama, Published in SC 2014

SC14: International Conference for High Performance Computing, Networking, Storage and Analysis

MSL: a Synthesis Enabled Language
for Distributed Implementations

Zhilei Xu
MIT CSAIL
timxu@csail.mit.edu

Abstract—This paper demonstrates how ideas from genera-
tive programming and software synthesis can help support the
development of bulk-synchronous distributed memory kernels.
These ideas are realized in a new language called MSL, a C-like
language that combines synthesis features with high level nota-
tions for array manipulation and bulk-synchronous parallelism to
simplify the semantic analysis required for synthesis. The paper
shows that by leveraging these high level notations, it is possible
to scale the synthesis and automated bug-finding technologies that
underlie MSL to realistic computational kernels. Specifically, we
demonstrate the methodology through case studies implementing
non-trivial distributed kernels—both regular and irregular—from
the NAS parallel benchmarks. We show that our approach
can automatically infer many challenging details from these
benchmarks and can enable high level implementation ideas to be
reused between similar kernels. We also demonstrate that these
high level notations map easily to low level C code and show that
the performance of this generated code matches that of hand-
written Fortran.

I. INTRODUCTION

This paper shows how new techniques from the areas of
software synthesis [1], automated bug-finding [2] and generative
programming [3, 4] can be combined to aid the development
of high-performance computational kernels. One of the main
challenges for this work is scaling the symbolic reasoning
techniques required for synthesis and automated bug-finding to
complex distributed memory implementations based on message
passing. The main contribution of this paper is to show that it is
possible to scale symbolic reasoning by restricting the language
to one that uses high level notations for array manipulations and
bulk-synchronous parallelism, and by leveraging these notations
in new symbolic encodings.

We have developed a language called MSL as a vehicle
to explore these ideas. The goal of MSL is not to replace
commonly used languages like C++ and Fortran, but to demon-
strate how synthesis can be incorporated into an imperative
language given suitable abstractions for communication and
array manipulations. MSL is able to assist programmers
by synthesizing messy low level details involved in writing
complex distributed memory implementations. By using a set
of NAS parallel benchmarks [5] as a target, we show how the
synthesis features of MSL can help in deriving the details of
complex distributed implementations and check for bugs against
a sequential reference implementation. MSL is not intended to
develop full programs, but it generates standard C++ code that
can be integrated with larger programs written in traditional
languages, and we show that this code generation does not
introduce performance or scalability problems by comparing

978-1-4799-5500-8/14 $31.00 © 2014 TEEE
DOI 10.1109/5C.2014.31

Shoaib Kamil
MIT CSAIL
skamil @csail.mit.edu

311

Armando Solar-Lezama
MIT CSAIL
asolar @csail.mit.edu

the performance of our generated code with that of standard
Fortran implementations. In the rest of this section, we provide
a high level overview of MSL and the programming model
that it supports.

A. The MSL Programming Model

We illustrate the MSL programming model through a simple
example: transposing a three dimensional array. Below is a
simple reference implementation of transpose in MSL.
void trans(int nx, int ny, int nz,

double[nz,ny,nx] A, ref double[nx,ny,nz] B) {

for (int x = 0; x < nx; x++)
for (int y = 0; y < ny; y++)
for (int z=0; z < nz; z++)
Blxy.z = Alzy.xl;

The core language is similar to C, but with additional features
to facilitate analysis of programs. One such feature illustrated
in this example is native support for multi-dimensional arrays,
including the ability to describe the dimensions of an array as
part of its type. For example, in the code above, the expression
Alz,y,x] is legal for all 0<z<nz, 0<y<ny, 0<x<nx. Arrays are
row-major so nx represents the unit-stride dimension of A and
nz represents the slowest-growing dimension. The language also
supports reference parameters, but places strong restrictions on
aliasing to simplify the analysis: the parameters of a function
are enforced to not alias with each other, similar to what Fortran
requires for array types.

Transitioning from shared to distributed memory is usually
a challenge because data must be partitioned across different
processes, with each owning a portion of the global data. For
our running example, we illustrate how this process works in
MSL for the case where the 3-dimensional grid is partitioned
across one of its dimensions; specifically, given N processes,
we partition the z dimension of array A, and the = dimension of
the transposed array . Because the dimension across which we
partition is different for the two arrays, the transpose requires
a re-distribution of data across the machine.

void dtrans(int nx, int ny, int nz, int N,
double[nz/N, ny, nx] LA, ref double[nx/N, ny, nz] LB) {
int bufsz = (nx/N)xnyx(nz/N);
view LA as double[N, bufsz
view LB as double
pack(LA, bbuf);
All_to_all(bbuf, abuf); /

unpack(nx, ny, nz, abuf, LB);

abuf;

N, bufsz] bbuf;

re—distribute

IEEE
computer
pSOC|ety

The implementation in MSL shown above uses the efficient
transposition strategy used by the NAS FT benchmark [5]. The
first observation is that in typical SPMD style, the code now
operates on a local partition of the original arrays. Specifically,
note that the size of the innermost dimension for each array has
now been divided by the number of processes. It is possible to
generalize this to non-uniform partitions, but we use this form
in the introduction for clarity of presentation.

The code involves three steps: a local packing step that
groups together data that must be sent to the same destination
process, a global exchange through All_to_all(), and a local

rearrangement to unpack the received data into the output array.

The function All_to_all() is part of the MSL standard library
and is implemented efficiently in terms of MPI_Alltoall(). As
its interface shows below, it takes as input a source 2D array
containing the data to send to each destination process, and
returns a new array with the data received by every process. The
bracket around the first parameter indicates that it is implicit;
if it is not passed, as is the case in the example above, the
system infers it from the type of the other arguments. nprocs
is a pre-defined expression that refers to the total number of
processes, which equals N in dtrans() here.

void All_to_all([int bufsz],
double[nprocs, bufsz] src, ref double[nprocs, bufsz] dst);

An important optimization in the dtrans() code above is that
the temporary buffers abuf and bbuf used to send and receive
information through All_to_all() are not allocated as separate
buffers; instead, they are different views of the original arrays
LA and LB. These views introduce an aliasing relationship
between LA/LB and abuf/bbuf respectively but the language
does not suffer from the typical aliasing problems because the
aliasing relationship is static and the underlying analysis in
MSL ensures that the two views are compatible, e.g. a legal
access to abuf will always translate to a legal access to LA.

The function pack() which packs the data for All_to_all()
illustrates some of the benefits of relying on synthesis to support
the implementation. Instead of having to derive by hand the
necessary code to collect the data, the user provides a sketch
of the necessary code.

void pack([int anl, int an2, int an3, int bnl],
double[anl, an2, an3] in, ref double[nprocs, bnl] out) {
view out as double[nprocs:bnl] fout;
gen int num() {
return {| anl | an2 | an3 | bnl | nprocs |};

gen int dim(

return {| ??ﬁ num() | num()/nprocs | dim()«dim() |};

for (inti = 0; i < anl; i++)
for (int j = 0; j < an2; j++)
for (int k = 0; k < an3; k++)
fou.t[[i.*c!im()+j*dim()+k*dim()]
infil][K]

/ i+j*anl4kxanlxan2

}

In the sketch above, the user first creates flat views of out to
give the synthesizer maximum flexibility as to how to index into
the output array. The programmer then defines two generators,
num() and dim(), which together define a grammar of expressions
involving all the available scalar variables. Specifically, the
choice syntax {|-|-|} lets the synthesizer choose among many
possible expressions, including recursively generated ones. The
generator contains high level insight into how dimensions
combine when indexing into a flat array: for example, dividing
one of the dimension sizes (such as an3) by nprocs might be

312

useful because we might want to break one of the dimension
into nprocs pieces; multiplying two dimensions together also
makes sense and may be useful, so is also included as a choice.
The programmer can then use these generators within her code
in place of actual expressions and the synthesizer will discover
the correct expressions (shown in the comments). Here the
input array in is visited normally, and fout is indexed by a
combination of the loop variables and dim() generators.

The function unpack() is written in a similar way, as shown
below. The exact indexing logic for this function is trickier
than pack(), but the programmer can rely on the synthesizer to
discover it automatically.

void unpack([int anl, int bnl, int bn2, int bn3],
double[nprocs, anl] in, ref double[bnl, bn2, bn3] out) {
view in as double[nprocs=«anl] fin;
view out as double[bn1xbn2xbn3] fout;

gen int num() {
return {| anl | bnl | bn2 | bn3 | nprocs |};

gen int dim()

return {| ??ﬂ num() | num()/nprocs | dim()=dim() |};

for (int p = 0; p < nprocs; p++)
for (int i =0;i < dim(); i++) /
for (int j = 0; j < dim(); j++) // bn2
for (int k = 0; k < dim(); k++) // bn3/nprocs
fout[p+dim() + ixdim() + jxdim() + kxdim()]
// bn3/nprocs, bn2xbn3, bn3, 1
= fin[pxdim() + ixdim() + jxdim() + kxdim()];
// anl, bn2xbn3/nprocs, bn3/nprocs, 1

}

In order for the synthesizer to discover the details of these
methods, the developer has to specify the relationship between
the behaviors of trans() and dtrans(). To do this, the programmer
must specify two things: the relationship between the compu-
tation performed by the two functions, and the relationship
between the purely-local and distributed data used by each.
Relating the computation is done by writing a test harness like
the one below.

void tester(int nx, int ny, int nz,
double[nz,ny,nx] A, ref double[nx,ny,nz] B) implements trans {
assume nz % nprocs == 0 && nx % nprocs == 0;
spmdfork {
double
double

dtrans(nx, ny, nz, nprocs, LA, LB);
coIIectEA, LAg;

nz/nprocs,ny,nx] LA = distribute(A);
nx/nprocs,ny,nz] LB = distribute(B

collect(B, LB

) }

The keyword implements states that tester() should perform
equivalent computation to what trans() does, except that the
tester works by distributing the initial arrays and then collecting
the results back into the sequential one. spmdfork indicates that
the computation is distributed to a set of parallel processes,
each executing the same code. The equivalence is checked
exhaustively for a bounded set of inputs satisfying assumptions
at the beginning of the harness.

In addition to relating the computation, the programmer
needs to provide distribute()/collect() functions that relate the
distributed and sequential data layouts. The distribute()/collect()
functions partition the global array ga along its slowest growing
dimension. It is important to note that these functions will not be
part of the kernel we are trying to synthesize; the programmer is
providing them simply as a means to describe how the different
representations of the data are related so the system can reason
about the equivalence of the two implementations.

We have used the strategy described above to synthesize
more sophisticated kernels from NAS parallel benchmarks. As
in the example, the synthesizer is leveraged to avoid having to
specify low level details regarding loop iteration bounds and
array indexing patterns. Just as important, synthesis allows us to
reuse the same patterns to implement many related computations
without having to write additional code. For example, in the
case transpose in this section, the same generators can be reused
to transpose any pair of dimensions, and can even be reused
to transpose grids partitioned across two dimensions instead
of one. Without synthesis, the two approaches to coping with
such repeating code patterns are to (a) copy and paste the
source code and change low level details manually, which is
prone to introducing bugs [6]; or (b) wrap the implementation
strategy in generic subroutines, specifying details as extra
parameters, and manually defining the extra parameters in
a “magic number table” (as is done in the official Fortran
implemetation of FT), which is also error-prone, and introduces
runtime costs. The synthesis features in MSL help make the
implementation strategy generic yet clean and performant, and
equivalence checking helps prevent the kinds of bugs introduced
by specifying low level details manually.

B. Contributions
Overall, the paper makes the following contributions.

* We describe a new language, MSL, which builds on previous
work on constraint based synthesis and generative program-
ming to support programming of high-performance kernels
on distributed memory machines.

* We describe a mechanism for expressing bulk-synchronous
SPMD computation in MSL and demonstrate an encoding
that reduces synthesis of such computations to a tractable
sequential synthesis problem.

* We implement a strategy for generating efficient distributed
MPI code from synthesized MSL kernels. Our generated
code obtains comparable efficiency to hand-written code in
Fortran with MPL

* We evaluate the expressiveness, performance and reusability
of code in MSL by implementing core parts of three
distributed applications: 3D matrix transpose, Sparse Matrix
Vector Multiplication (SPMV), and MG from the NAS
parallel benchmarks. We show that MSL does not sacrifice
performance compared with hand-written Fortran code, even
when running across thousands of cores.

II. KEY LANGUAGE FEATURES IN MSL

The MSL language builds on previous work on synthesis
enabled languages [7-9] and generative programming [10] to
give the programmer the ability to create high level reusable
abstractions with minimal runtime cost. The language also
provides a clean mechanism to describe coordination and
communication patterns for SPMD computation.

The design of MSL revolves around the problem of enabling
programmability without sacrificing two key goals: a) efficient
code generation, and b) deep semantic analysis to support
synthesis and help discover bugs. In the remainder of this
section, we describe the key design decisions that we made to
navigate the tradeoff between programmability, performance
and analyzability.

313

A. Basic Synthesis Features

The SKETCH language [7] first showed how to add synthesis
capabilities to an imperative language by combining unknown
integer constants with generators. Unknown integer constants
are denoted by the token ??, which acts as a placeholder
that the synthesizer must replace with a concrete value. The
synthesizer’s goal is to ensure that the resulting code avoids
assertion failures for any input in the input space under
consideration. Another construct is the choice expression (like
{] a| b |}) which represents an unknown choice of its several
branches.

Simple integer unknowns and choices can be used to define
spaces of more complex program fragments by packaging
them into gemerators. A generator can be thought of as a
function that will get inlined into its calling context and partially
evaluated after all unknowns are resolved. Each invocation of
the generator is replaced by potentially different code fragments.
This property was used in the running example: because dim()
was defined as a generator in unpack, different uses of it lead
to different concretizations.

B. Array language

MSL provides a number of features to support the develop-
ment of array-centric code. Arrays in MSL have copy semantics,
impose aliasing restrictions when passed by reference, and must
specify the size using an immutable expression. A novel feature
in MSL is support for dependent array types: for any integer
expression n and type T, one can use the notation T[n] as the
type of arrays with n elements of type T. Multidimensional
arrays are supported, but unlike languages like Java, sizes of all
dimensions must be specified, resulting in more efficient, singly-
indirect accesses: any multidimensional array is transformed
into a (row-major) one-dimensional array of the same element
type, and the compiler uses the size information declared in the
array type to map the multiple index accesses to single index
accesses and adds assertions to check for array bounds. Note
that in MSL all the assertions are checked at compile time by
a bounded model checker and do not impose runtime costs.

In general, checking that all array accesses conform to the
bounds declared in their type is undecidable. Nevertheless,
the MSL compiler performs bounded correctness checking to
identify out-of-bound accesses. This requirement of avoiding
out-of-bounds accesses also serves as a lightweight specification
when synthesizing details of code; in the case of the introductory
example, the constraints on out-of-bound accesses played an
important role in ruling out many incorrect choices for index
expressions and loop iteration bounds.

MSL includes a number of syntactic conveniences around
dependent-typed arrays; for example, it is common to pass
a dependent-typed array and its size together to a function.
MSL supports implicit parameters for succintness: when an int
parameter is used as the size of a later array parameter, it can
be declared as implicit, just as the All_to_all and pack functions
in Section I-A. Also, it is convenient in many cases to view the
same array under different dimensional configurations. MSL
supports creating array views, as shown below:

int[n, m] a;
view a as int[mxn] b;
view a as int[2, n/2, m] ¢;

In the above example, both b and c are views of a, but with
different types (dimensions). MSL examines the array types
and adds assertions to enforce that an array view cannot be
bigger than the original array. Array views provide an easy way
to access the same underlying one-dimensional array under
different dimensional configurations. Similar functionality is
present in languages such as Fortran and HPF [11], and in
distributed array libraries such as Adlib [12].

C. SPMD programming in MSL

MSL supports SPMD style programming, and allows pro-
grammers to relate the behavior of an SPMD implementation
to that of a sequential one. In order to enable the analysis
necessary to support synthesis for SPMD code, the language
provides a restricted but expressive set of features for describing
computation in a bulk-synchronous style. In this style of
programming, algorithms iterate between a local computation
phase and a communication/synchronization phase.

Communication is achieved through a set of functions
that support all-to-all communication, reductions and point-to-
point communication. We have seen in Section I the All_to_all
function that sends data from and to all processes. It is an
abstraction of the MPI_Alltoall function. MSL also supports
reduce, which is similar to MPI_Allreduce:

void reduce([int n], double[n] sendbuf, ref double[n] recvbuf, int opcode)

For each index i from O to n-1, all processes reduce their
sendbuf[i], and the result is stored to recvbuffi] on every process.
opcode specifies the actual reduction, which can be chosen from
pre-defined constants SPMD_MAX, SPMD_SUM and so on.

Point-to-point communication is supported by transfer:

void transfer([int n], bool scond, double[n] sendbuf,
int rid, bool rcond, ref double[n] recvbuf)

Each process passes the information it wants to send through
the sendbuf parameter and uses rid to indicate the id of the
intended receipient. When the call returns, recvbuf will contain
the information received by the process. The arguments scond
and rcond determine whether data will be sent and received
by the current process, respectively. A programmer familiar
with two-sided messaging models such as MPI can think
of transfer as encapsulating a Send-Receive communication
between two processes, where the call does not complete until
the communication is finished. Our system additionally includes
a few variants of transfer to handle, for example, the case when
the send and receive buffers have to be of different length.

MSL imposes some constraints on how communication
functions are used. The most important one is that all commu-
nication functions are designed to be called in bulk-synchronous
fashion; in particular, when a communication function is called,
the path condition cannot depend on the rank of the process—
while in principle it is possible to write correct programs that
violate this condition, it is generally considered good practice to
avoid calling collective operations from branches that are taken
by only some processes, which is why other SPMD languages
such as Titanium also enforce this restriction [13]. In our case,
all communication functions are considered collectives.

In the case of transfer, this means that if we only want
some subset of the processes to send or receive messages, all

314

processes must still call transfer, but those that do not engage
in communication can set scond and rcond to false. transfer
also has two additional constraints: a) each process can only
receive messages from one other process for a given transfer
call; and b) if a process sends a message to recipient r, then
rcond of process r should be true, and if no process sends
to r, then rcond of process r should be false. The conditions
imposed on transfer, along with the SPMD nature of the program,
ensure that all the messages will reach their destinations and
that execution will be fully deterministic. Thus, after checking
that all the conditions are satisfied, the synthesizer can reason
about the parallel distributed memory program using the same
tools that are used for reasoning about sequential programs, as
demonstrated in Section III.

Some computations naturally can be decomposed into oper-
ations over subsets of the processes. MSL supports a restricted
form of process hierarchy through process grouping. Groups
are defined through communicators which are similar in spirit
to MPI communicators but restricted to ensure analyzability. A
communicator is created with a declaration of the form:

CommSplit c(g, i);

The declaration must be called collectively by all processes;
each process will indicate what group ¢ it wants to join and
which id ¢ it wants to have within that group. We enforce that
two processes joining the same group cannot claim the same
id, and that the set of ids and groups must be contiguous.

The in_group block takes as a parameter a communicator
and defines a scope where that communicator is active.
CommSplit cgg, i);

in_group(c)
//communicator c is active here.

Within the in_group block, communication functions refer
to the group-local process id, and All_to_all and reduce are
done within the group, and expressions like mypid and nproc
refer to their group-local meanings. This is useful when the
programmer wants to divide the workload to a multidimensional
process grid rather than a flat process row. Like CommSplit,
in_group is a collective operation and must adhere to the
restrictions on path conditions. Note also that every process
becomes a member of some group, and that groups cannot
overlap; similar restrictions are found in implementations of
hierarchical communicators [14] and are useful for performance
and analyzability while not presenting too onerous of a burden
on the programmer.

D. Establishing SPMD-sequential equivalence

As described in the overview, the language provides a
spmdfork construct that allows the programmer to describe how
the SPMD computation relates to the sequential computation.
All uses of spmdfork are required to have the same form as the
code in the example: a call to distribute, followed by a call to
the SPMD kernel, followed by a call to collect. distribute/collect
are created by the user and together they define the distributed
memory partitioning of data. For each piece of global data,
distribute returns the partition of that data belonging to process
mypid. collect takes the partition in process mypid and defines
how the global data would be “updated” with the values from the
partition. They are normal MSL functions, so the programmer
can use generators to help derive more sophisticated partitioning

x |L[t].x]G.x

tid|v|n|e ope;

= v=-elassert e| si;s, | if(v) s1 elses; |
while(v){s:.}| reduce(e,y) | transf er(sc, e rid,rc,x)

P = Sdise; T ork{s}; scottect

S

Fig. 1: The simplified language Lsmaii

schemes, for instance when the problem size is not evenly
divided by the number of processes. When some details are left
unspecified, the compiler will synthesize the missing details in
order to let the programmer know exactly what mapping from
sequential to distributed data it is assuming.

It is important to note that distribute/collect exist solely to
allow the analysis engine to relate the distributed memory
implementation to the original reference implementation; they
do not actually perform any communication, and will not be part
of the synthesized kernel. These functions enable the reasoning
in the next section.

I11.

The system follows a three step process to generate efficient
code from the MSL program given by the user. (1) First, a series
of transformations is applied to the MSL program to create a
“sequential equivalent”: a sketch of a sequential program with
unknowns and a guarantee that if the sequential program has
its sketch filled in, the same details can be used to correctly
implement the parallel program. (2) Taking the transformed
program and its specification as input, a synthesis tool uses a
counterexample guided inductive synthesis algorithm (CEGIS)
to solve the sequential synthesis problem, as will be outlined
in Section IV. (3) Finally, the code fragments derived from the
sequential problem are filled in the original MSL program and
a code generation phase performs low level optimizations such
as overlapping communication with computation to produce
efficient C++ code as described in Section V.

REASONING ABOUT SPMD PROGRAMS

This section describes our approach to reduce SPMD
programs in MSL to sequential programs in a way that
captures SPMD semantics as well as the restrictions imposed
by the different language constructs. More specifically, given a
sequential reference implementation F;.q, the goal is to create a
transformation that allows us to check the correctness of Py, g
by checking the sequential equivalence between the reduced
SPMD program and Fs.q. However, this does not mean that the
semantics of MSL are sequential; the purpose of this reduction
is purely for analyzability, to reduce the synthesis problem for
SPMD into an analyzable sequential synthesis problem.

For space reasons, we will only outline the transformation
and give a flavor as to why it works on a minimal language
Lsman that preserves the key features of MSL from the
perspective of SPMD programming. Examining new features or
analysis ideas in a minimal language is a standard approach
that makes it possible to gain a better understanding of how
those features will behave and interact with each other. In the
remaining section we describe how programs in this small
language can be transformed into semantically equivalent

. . seq
programs in a sequential language L. /.

A. The Lgy .1 Language

The Lgman language, shown in Figure 1, is a minimal
imperative language with a few additional constructs to express

315

bulk-synchronous SPMD computation. A program in Lgy, . 1S
a stylized version of the tester harness shown in the introduction
which distributes the global state, computes in SPMD style on
the distributed state and then collects the state back.

The fork statement spawns N processes each with a unique
id t; all processes execute the body of the fork and forks cannot
be nested. Normally, we would expect statements inside fork to
only be able to access their process-local state—because we are
modeling distributed memory programs—and statements outside
fork to be able to access only global state. However, distribute
and collect need to be able to access both local and global
state. For the purpose of formalization, we will assume without
loss of generality that all statements before fork correspond
to distribute and all statements after fork correspond to collect.
Therefore, within fork all variables are assumed to be process-
local and only process-local variables can be accessed. Outside
the fork, the notation L[t].« refers to process-local variable x:
of process ¢t and G.x refers to global variable z. In essence,
we will be modeling a distributed language with a shared-
memory language, while preserving the race-free characteristics
of the distributed language. The purpose of this modeling is to
eventually transform into a fully-serial language on which we
can perform tractable synthesis.

Lgman includes two communication primitives: reduce and
transfer. reduce(e,y) evaluates an expression e at every process,
adds all their values, and writes the sum to the output parameter
y on every process. transfer(sc,e,rid,rc,x) sends and receives data
from peer processes: rid is the process id of the receiver, sc
is the send condition, e is data to be sent, rc is the receive
condition, and the output parameter x stores received data.

The semantics of reduce and transfer are particularly im-
portant to our transformation. Recall that all communication
operations in MSL are collective operations. The semantics of
reduce and transfer are defined in terms of a channel C[t] that
is a temporary buffer for the communication operations. Thus,
the semantics for reduce(e,y) can be specified as
reduce(e, y) {

Clt] =&
barrier;

L[t].y = sum(C[0:max(t)])
barrier;

That is, reduce contains barriers that ensure no process executes
past the reduction operation unless all processes have completed
the reduction. This barrier-like property also applies to transfer,
and is essential to our reduction to sequential semantics, since
it ensures synchronization points for all processes after each
communication operation.

B. SPMD-to-Sequential Transformation

The goal of the transformation process is to produce
a sequential program with the following property: for any
execution produced by the original program, the execution of
the transformed program either produces the same final state,
or causes an assertion failure if the original program failed
to satisfy the rules of usage for communication primitives.
The basic logic behind the transformation is simple; the goal
is to sequentialize a parallel region by recursively breaking
it into a sequential composition of smaller parallel regions
until the parallel regions are simple enough to easily establish
their equivalence to a sequential code fragment. The key for

this strategy to work is to show that after every step of this
process the set of possible outcomes of the execution remains
unchanged—despite the fact that the set of possible interleavings

has been reduced due to the introduction of sequential ordering.

The formal correctness argument, which we will elide here,
is based on Lipton’s theory of left-mover and right-mover
actions [15, 16]. Instead, we will cover a high level view of
the transformations that demonstrates how they work.

Since the parallel region is contained in a fork statement, we
can restrict our transformation to work solely on the body s of
fork{s}. Then, the following five cases cover all the interesting
possibilites for the transformation; the first two cases correspond
to base cases for the transformation, while the latter three
recursively sequentialize larger statements.

Private Statement If the body s of fork{s} does not invoke
any communication functions, then it must operate only on
local state. In this case, all interleaving orders are equivalent,
so the transformation can choose any one of them; we choose
the interleaving that executes one process at a time. As a trivial
example, the statement fork{ x=y;} would be sequentialized into
the code below; i.e. the local value of y on every process is
copied to the local value of = following some sequential order.

forall t: L[t].x = L[t].y;

Transfer or Reduce Statement In the case of a reduction,
we use the barrier-like behavior to define a straightforward
translation to a sequential operation. Due to the synchronization
statements, we can replace the collective fork{ reduce(e,y) } with
the sequential statements

sum = 0;

forall t: sum += L[t].e;

forall t: L[t].y = sum;

Clearly, without the implicit barriers within the reduction, we
would not be able to sequentialize the statement due to possible
interleavings of operations. The argument if s corresponds to a
transfer statement is similar to that of reduce; again, we use the
collective nature of our communication operations to trivially
reduce the operation into a sequentially-equivalent one.

Conditional Statement If s corresponds to an if statement that
contains communication within one or both of its branches,
then we must transform it to lift out the conditional from
within fork. Our rules of usage require that the condition
expression must evaluate to the same value on each process
(since the path condition cannot depend on rank); this means
we can consider this code equivalent to one which, after
checking the condition, spawns processes to execute the
appropriate branch. As long as the rest of the transformations
preserve semantics, fork{if (v) sl else s2} will be equivalent to
if (v) fork{sl} else fork{s2}.

Loop In this case, the body must involve communication
operations, otherwise the rule for a private statement would
apply. As in the case for a conditional statement, the usage
rules require the loop condition to always evaluate to the
same value on every process , due to our restriction that path
conditions cannot be rank-dependent. The case in which the
number of iterations is zero is trivial. In the other case, we
can transform fork{while(x) s} to fork{s; while (x) s}. Assuming
that the final rule (for sequences of statements, which we will
discuss below) is correct, we can further transform this into
fork{s}; fork{while(x) s}. Recursively applying this will give a

316

complete schedule that has turned into a sequence of fork
statements. Thus the transformation schedules all processes to
perform the first iteration before any can start the next iteration,
and under our semantics, this is equivalent to any other schedule
that can occur.

Statement Sequences Finally, we need to transform a statement
of the form fork{sl; s2} into an equivalent sequential statement
fork{s1}; fork{s2}. To prove this is correct, we must ensure that
the transformation is semantics-preserving. Consider a trace ¢
produced by fork {s1; s2}; we prove that there is an equivalent
trace ¢ in which any action originating from s4 occurs before
any action originating from s (we call this a “good” trace).
The main idea is that if ¢ is not already a good trace, there will
be two consecutive actions ap, a4 in ¢t where aq comes from
s1 and ap comes from sp. If we can show that we can always
swap ap,aq to aq,ap, then we will have a strategy to convert
t into a good trace t’. In the case that either of the two actions
are local-only, this is trivial. If both contain communication,
we can rely on the barrier-like behavior of the communication
operations as well as the path condition restriction; it can never
be the case that two communication operations belonging to
two different statements are being executed at the same time.
The transformation outlined above allows us to turn a synthesis
problem involving parallelism into a semantically-equivalent
serial synthesis problem.

IV. CONSTRAINT-BASED SYNTHESIS

After the transformations from Section III are applied, what
is left is a synthesis problem over sequential programs. At a
high level, the synthesis problem is solved in two phases. In
the first phase, the requirements that the program is equivalent
to its reference implementation, together with the requirement
of avoiding all assertion failures—including assertions added
implicitly to check for array-bounds violations and assertions
added during transformation—get encoded into a predicate
Q(in,c) that is true iff the execution of the program on
input ¢n will satisfy all requirements when all unknowns in
the implementation are completed as described by a control
parameter c. In the second phase, the synthesizer searches for
a control parameter ¢® such that ¥in.Q(in, c®). In practice, the
equation is usually checked only on a bounded set of inputs in;
the set is bounded by restricting the number of bits for values
in. The approach used for both of these problems builds on
previous work on constraint-based synthesis [1, 7], so we only
describe the algorithm at a high level here.

A. Constraint generation

We generate the predicate Q(in, c) by performing symbolic
execution over the sequentialized program, and transform
it into a large DAG (Directed Acyclic Graph) where each
node is a symbolic representation of an intermediate value
in a computation. The source nodes of the DAG (without
incoming edges) are input values, including program inputs
(corresponding to in) and control parameters (c, the unknowns
in the sketch); the sink nodes of the DAG (without outgoing
edges) are all the asserted conditions; all other nodes are
intermediate states that pass dependencies from sources to
sinks. Straight line code maps to its representation directly, but
loop iterations and function calls do not.

Like other automated bug-finding tools based on bounded
model-checking [2], we handle loops and function calls by

unrolling and inlining respectively. Our system will unroll a loop
of the form while(c) stmt into a series of conditionals and an
assertion {if (c) stmty; if (c) stmt,;..; if (c) stmtyp ; assert(! c)},
where stmt, represents the k-th unrolled instance. The loop
is unrolled up to LB levels, a configurable parameter to the
synthesizer; asserting the negation of the loop condition at
the end guarantees that insufficient unrolling is reported as an
error and a larger LB must be tried. This restriction makes
the transformed DAG finite and only works for finite input
space programs. Similarly, function calls are all inlined, with a
configurable bound on recursive call depth; when a generator
function is inlined, the unknowns inside it are cloned to different
copies under different calling contexts.

The equivalence of the program and the reference imple-
mentation is checked by adding extra assertions that their
outputs are equal. Then the DAG is turned into a boolean
circuit by representing each node with a number of bits, and
each edge with a number of constraints that describes the
corresponding dependency between the incoming and outgoing
nodes (bits). The final predicate ()(in, c) is obtained by building
a conjunction of all assertion nodes in the boolean circuit.

Like previous synthesis work [1], we represent floating point
values as elements in a small finite field— this allows us to
separate issues of floating point accuracy from programming
errors and provides high confidence in the result while keeping
the analysis tractable by reducing the number of bits required
to reason about arithmetic operations. A consequence of this
is that the equivalence check assumes algebraic properties like
commutativity and associativity. This allows the programmer
to leverage the synthesis and automated bug-finding features
even with implementations that will produce different outputs
on IEEE 754 floats.

B. Solving for control parameters

Our system searches for control parameters ¢® such that
Vin.Q(in, c®). The counterexample guided inductive synthesis
(CEGIS) approach is to avoid the universal quantifier when
searching for ¢® by instead solving a simpler problem: given
a small set of representative inputs Fj, the system finds a ¢;
such that Aipeg, Q(in, ¢).

The CEGIS algorithm starts with a set Ey containing a single
random input. A constraint solver solves the problem above
for a cg which is then passed to a checking procedure to check
if the resulting program is indeed correct. If it is not, then a
counterexample input ¢n; is found, and the process is repeated
with a new set Ej+ ¢ = E;j Uin;. In this manner, the algorithm
discovers the solution to the synthesis problem. By gradually
building the representative input sets E;’s, the CEGIS algorithm
avoids the costly V quantifier when searching for ¢°.

C. Correctness checking procedure

The synthesizer uses a correctness checking procedure sim-
ilar to SAT-based bounded model checking: for any candidate
control parameter ¢;, Q(in, ¢;) is a boolean predicate with only
in as its input vector. To check whether the resulting program is
indeed correct, a constraint solver tries to find a counterexample
in; such that 7Q(in;, ¢;). If no in; can be found, the program
is correct for the input space in.

For our analysis to be tractable, we only use finite bits to
represent ¢n, thus provide only bounded correctness guarantee,

317

which is useful to prevent many bugs like out-of-bound array
access, wrong loop iteration bounds, and wrong indexing expres-
sions. This complements normal random testing mechanisms
because the constraint solver exhaustively checks the input
space and covers all corner cases.

V. CoODE GENERATION

After the synthesizer discovers the details of the imple-
mentation, the last step is to generate an efficient C++/MPI
implementation from the high level program. As discussed
earlier, code generation relies heavily on inlining and partial
evaluation of generators in order to produce code specialized to
each individual use of a generator. The compiler also performs
a set of standard optimizations such as unboxing of temporary
structures and copy propagation.

The arrays in MSL have copy semantics, which means that
when arrays are passed in as a parameter, semantically the
callee gets a copy of the original array. To prevent excessive
copying, arrrays are copied lazily: the compiler will only
generate the code that copies the input array if the array is
modified by the callee. If an array is used as a reference
parameter, the callee is free to modify the array without copying
it. These optimizations, together with aggressive inlining and
copy propagation, eliminate most unnecessary array copying.

Another important aspect of code generation is generating
MPI code to implement the programming model. Most com-
munication mechanisms in MSL can be translated to their MPI
counterparts in a straightforward way, such as All_to_all and
reduce. The function transfer is more interesting because the
semantics require it to have barrier-like behavior, but that would
make the resulting code too inefficient. Instead, we implement
transfer using only the asynchronous MPI communications to
do pairwise synchronization. Recall that the key reason for
barrier-like behavior was to ensure that messages transmitted
by statement s4 could only be received by the same statement s4
in another process, which ensured that program semantics would
be unchanged as long as execution of s4 on all process were
scheduled before the execution of some subsequent statement
so on all processes (see Section III-B). We achieve the same
goal by using a sequential tag for each message and ensuring
each transfer receives only messages with the correct tag; this
strategy is similar to that used in prior work on phasers [17].
Thus, transfer(scond, len, sendbuf, rid, rcond, recvbuf) translates to:

/ msgtag is a global counter

int tag = +-+msgtag;
MPI_%?equest re(%; €
MPI_Status sta;
if (rcond) {
MPI_lrecv(recvbuf, len, MPI_DOUBLE,
MPI_ANY_SOURCE, tag, MPI_WORLD, &req);

if (scond) {
MPI_Send(sendbuf, len, MPI_DOUBLE,
MPI_ANY_SOURCE, tag, MPI_WORLD);
}

if (rcond) {
) MPI_Wait(&req, &sta);

The compiler also does automatic re-arrangement of the
communication to gain some overlapping of computation and
communication. To demonstrate this optimization, consider
the example below, which is a simplified version of the
communication in MG benchmark of NAS:

/ double[n,m] grid;
/ double[m] sbufl, rbufl, sbuf2, rbuf2;

sbufl = packl(grid); // read grid, write sbufl

sbuf2 = pack2Egrid§; // read grid, write sbuf2

transfer(sbufl, rbufl); // we omit other parameters for simplicity
transfer(sbuf2, rbuf2); and assuming scond, rcond are both true
unpack(grid, rbufl); // read rbufl, write grid

unpack(grid, rbuf2); // read rbuf2, write grid

A straightforward translation will separate the computation
(packing/unpacking) completely from the two stages of com-
munication. The optimization tries to move MPI_Ilrecv and
MPI_Send to as early as possible, and move MPI_Wait to as late
as possible, while respecting the data dependencies: MPI_lrecv
writes to recvbuf, so it cannot swap with any pre-communication
read/write access to the receiving buffer, MPI_Send reads from
sendbuf, so it cannot occur before any pre-communication write
to the sending buffer, and MPI_Wait cannot swap with any
post-communication read/write access to the receiving buffer.
Using these simple rules, the above example is translated to:

mt ta 1, tag2;

equest reql, req2;
MPI —_Status stal, sta2;
tagl = ++msgtag
MPI Irecv(rbufl tagl &reql); |
tag2 = ++m
MPI Irecv(rbuf2 tag2 &req2);
sbufl = packl(grid); read grid, write sbufl
MPI_Send(sbufi, tagl);
sbuf2 = pack2(grid);
MPI_Send(sbuf2, tag2);
MPI_Wait(&reql, &stal);
unpack(grid, rbufl); // read rbufl, write grid
MPI_Wait(&req2, &sta2);
unpack(grid, rbuf2); // read rbuf2, write grid

/ omit other parameters for simplicity

read grid, write sbuf2

Thus, for some sequences of communications, we can take
advantage of overlapping communication with computation by
moving the generated calls while still respecting dependencies.

VI. CASE STUDIES

We have implemented three distributed kernels from the
NAS parallel benchmarks using MSL: NAS MG (multigrid),
which exercises both short and long distance regular communi-
cation, a 3D matrix transpose library which uses all-to-all com-
munication, and a Sparse Matrix-Vector multiplication (SPMV)
kernel which uses irregular long distance communication and
reductions; the latter two are essential components of the FT
and CG benchmarks.

In all three kernels, to make the time spent in synthesis
tractable (as discussed in Section IV-C), the synthesizer restricts
all integer inputs to be 5 bits, and all floats (both input and
intermediate float values) to be simulated by elements from a
finite field of size 7. While these may seem small, checking
even a simple algorithm that takes a single 1-dimensional array
as input under this setting involves exhaustively checking about
10%® distinct inputs, which is much more than one can test
with traditional mechanisms, leading to high confidence in the
correctness of the synthesized code. The generated C++ code
does not restrict integers to be 5 bits. Note that one effect of this
approach is that the problem sizes and numbers of processes
are not hard-coded at compile time, unlike the Fortran reference
implementations.

In this section, we describe how MSL makes implementing
these benchmarks easier, by assisting the programmer in writing
difficult code and by enabling that code to be reused easily
without performance loss.

318

A. 3D Transpose from FT

The NAS FT kernel finds the solution to a partial differential
equation using Fast Fourier Transforms (FFTs), and much of
the time is spent redistributing data among the processes using
transposes of different kinds. In Section I we demonstrated
how MSL allows us to write a generic distributed transpose
kernel that adapts itself to different specifications. Suppose
that we want to implement transpose under a 2D process grid
partitioning: there are N X M processes and the matrix is
partitioned along its slowest growing dimension into /N portions
and then partitioned along its second slowest growing dimension
into M portions. To implement a distributed transpose kernel
under this new partitioning scheme, we only need to change
dtrans slightly, and pack and unpack need not change at all. The
modified code is below.

void dtrans(int nx, int ny, int nz, int N, int M,
double[nz/N ny/M, nx] LA,
ref double[nx/N, ny/M, nz] LB) {
int bufsz = (nx/N)x(ny/M)x(nz/N);
view LA as double[N, bufsz] abuf;
view LB as double[N, bufsz] bbuf;

CommSplit c(mypid/N, mypid%N);
in_group(c)
pack(LA, bbuf);
All_to_all(bbuf, abuf); // re—distribute
unpack(nx, ny, nz, abuf, LB);

}

The main change is that now processes are partitioned to differ-
ent groups and transpose is independently done by each group.
There are some minor changes to tester and distribute/collect, all
very natural and not shown here. pack and unpack need not be
changed at all, and the generators inside them adapt to match
the new specification.

B. The MG Benchmark

The NAS MG benchmark performs a V-cycle multigrid to
solve a discrete Poisson problem on a 3D grid with periodic
boundary conditions using several 27-point stencils. The 3D
grid is partitioned in all three dimensions over the processes,
and, during the communication phase, each process must
communicate with its logical neighbors in the grid to exchange
data. Each neighbor is sent a different portion of the local grid,
and therefore up to 12 functions are used in the exchange (6
for packing and sending in each direction, and 6 for unpacking).
MSL simplifies this by enabling us to write a single packing
function and a single unpacking function that can automatically
be specialized for each case with no performance degradation:
gen void pack(int nx, int ny, int nz, double[nx, ny, nz] u,

ref int len, ref double[MAXLEN] buf) {

gen int p()
return {| 77 | ({| nx | ny | nz |} =?7) |}

en = 0;

f i= Vi

°'fo(f)"(t-fnln 3(3]»0 Ry
. LII[{I i |J | P()I} {|:\J | P() AT eOBE

/

—X: 0, nz; +Z: 0, ny
-X: 0, ny; +Z: 0, nx

pack uses generators and choice expressions to give the
synthesizer freedom to instantiate the correct combination for
each communication, resulting in different instatiations for each.
The comment shows two such concretizations, one for the
neighbor along the X axis in the negative direction, and one
for the neighbor along the Z axis in the positive direction.

Thus, we can reduce six functions spanning 50 lines of Fortran
into 9 lines of MSL expressing a single function.

MSL also helps implement optimizations that are tedious or
fragile to implement by hand. Prior work on 27-point stencils
has shown that compilers do not effectively apply common
subexpression elimination (CSE) to these kernels [18], and
by-hand CSE is necessary for obtaining optimal performance.
Though the result lacks bit-level accuracy with the original
implementation, the CSE-enabled code generally does not
drastically alter numerics.

The psinv kernel in MG, for the input 3D array ry , , and
a kernel smoother ¢[3], computes a 3D array
0
ux,y,z = C[d] *Tx Yz

d= |x"=x |+ |y' =y [+ [z"—z|< 3

For the psinv kernel, instead of performing CSE ourselves, we
can implement the sketch of an idea that MSL can synthesize
based on finding equivalence to the original kernel. The basic
idea is that the programmer has some intuition about which
points are repeated, and decides to try precomputing some of
them into a temporary array. With the assistance of the MSL
synthesizer, the difficult index calculations are taken care of:

1 nz-1
/1, ny-1
+{\??|—??|} }

nx—0

for (int k=77; k < nz=??; k++) //
for (int J—77 j< ny—77 j++)
gen int jk() { return {|j | k|

for (inti =77, i < nx=?7; i++ 0,

r1[i] = 0; minrepeat { ri[i] += r[|k() JkO, 115}

rlfil = r[k =L ik, j 1 i]rlk=1, i k+1 jo il

r2[i] = 0; minrepeat { r2[i] += r[jk(), Jk), i

// r2li] = r[k—l J=1, i]4r[k=1, j+1, i]4+r[k+1, j= 1, i]+rlk+1, j+1, i

for (int i = 7?7, i < nx=77; i++4 1, nx-1

)L/
Son f g 1 1k

mmrepeat {tl+= {I rle() Jk() "()] | r1[iO1 | r20OT 13}
// L = rlk, j, i=1]4rlk,], i41]4r1fi]
fbk() Jk() GOT [L[] | r2[iO7 135 3

mmrepeat {t2 e |
/) t2 = r2[]+r1 —1]+rifi+
ulk, j, i] = c[0]xr[k, j, i] + c[l]*tl + c[2]#t2;

} // comments above show synthesized code, inferred by synthesizer

The comments illustrate the difficult tedious calculations
that the programmer would otherwise need to do by hand, if
not for MSL.

For the MG benchmark, MSL assists in writing difficult
code, but also helps reduce the overall complexity by abstracting
multiple functions into a single function. Thanks to the synthesis
occurring on a call-site-dependent basis, there is no loss of
performance due to this abstraction.

C. Specialized Reduction for SpMV from CG

The NAS CG benchmark implements the conjugate gradient
algorithm on a symmetric sparse matrix that is distributed across
the processes using a 2D distribution. The computation at the
heart of the algorithm is a sparse matrix-vector multiply, or
SpMV: given a sparse matrix M and a vector v, compute the
vector u = M x v. The dense sequential implementation of this
is quite trivial, but adding a 2D partitioning as well as using a
sparse format introduces complications to the algorithm.

The algorithm can understood as operating in three phases
after the input vector has been divided per-column (i.e. processes
with the same column id have the same portion of v):

1. A local submatrix-subvector multiplication: each process
calculates some local portion of w.

319

2. Allreduce-like reduction: processes in the same row add
their local portion of u together and the point-wise sum is
distributed to all processes in the same row.

3. Replicated vector transpose: processes exchange their portion
of u with peers so that the per-column partitioning is recovered
for u.

All three stages are tricky and MSL eases development:
for local multiplication, MSL helps check that SpMV behaves
equivalently to dense matrix-vector multiplication by using
the dense version as a specification for the sparse version,
and for the latter two phases, MSL assists in implementing
customized exchange plans consisting of individual point-
to-point communications, which outperform standard MPI
collective routines by taking advantage of characteristics of
the partitioning [19]. In the case of CG, these point-to-point
communications build a tree to perform the all-to-all operation.
Below is a portion of the code that synthesizes the custom
reduction plan:
vond setup_reduce_ plan(mt log2m, int[log2m] reduce_peer) {

/ log2m = log_2(m), m is the number of processes in a row
int d = 1;
for (int i=0; i<log2m; i++, dx=2)
reduce peer[] = expr({d, mypid, m}, {PLUS, TIMES, DIV, MOD});
/ (mypid+d)%(d+2)+mypid/(d+2)*(d*2)+mypid/m=+m

}

In the above code, expr() is a library generator in MSL that takes
some operands and some operators and generates an expression
constructed from those building blocks. The programmer knows
that there should be l0g, m phases and that m is always divisible
by two due to the partitioning. She knows that during each
phase of the exchange, each process should exchange with
a different process, and that at each phase, the level of the
communication tree increases. Putting these insights into an
MSL program allows her to rely on the synthesizer to find the
exact details of the addressing.

D. Time cost of synthesis step

The table below shows the time spent on the synthesis step:

Benchmark | # generator instances Synthesis Time
Transpose 15 9 minutes 54 seconds
SPMV 9 14 minutes 31 seconds
MG 60 35 minutes 26 seconds

E. Performance of Case Studies

We evaluate the efficiency of the code generated from
MSL by comparing performance of a port to MSL against the
hand-written official Fortran+MPI implementations. The ported
code makes liberal use of synthesis to ease programming, as
described above. Note that our goal here is not to demonstrate
performance improvements, but rather to show that despite the
restricted programming model, using MSL results in code of
similar performance as well-written distributed code. For each
benchmark, we run both MSL and Fortran implementations
at different scales of parallelism (varying from 256, the min-
imum due to memory requirements, to 16384 cores), on the
NERSC Hopper machine (a Cray XE6 with 2 AMD 12-core
MagnyCours 2.1GHz processors per node). We use 16 cores per
node for our experiments, and compile the code using Intel’s
compiler suite because it has excellent performance for both
Fortran and C++ on this machine. For each configuration we
run 7 times and report the min, median, and max in Figure 2.

SpMV (Class E) SpMV (Large) MG Benchmark
—~ 90 T T T T 75 T T 220 T T T T T T
3 80| MSL - i 70 L = MSL - : 200 | & MSL @i
S = Fortran & Q Fortran & & 180 | Fortran @i
8 70 — 65 | ¢ —
Q * 160 B
» 60| B 60 B 140 _
g 50 B 55 B 120 | _
= 40 | ¥ B 50 — 100 | o B
§ 30 , E 45 L i 80 | i
5 20} N - 40 | a . or .]
2 10+ ¥ 35+ L 20 F i
L L I I I 30 L I I I I I I L] e |
256 512 1024 2048 4096 8192 16384 256 512 1024 2048 4096 8192 16384
Processes Processes Processes
Transpose (1D Decomp) Transpose (2D Decomp)
—~ 240 T T T 160 T T T T T T
S 220 - MSL #--@-s o 140 _g MSL :---@--2 |
& 200 | Fortran @ : Fortran @
® 180 -1 - 120 - .
S 160 e - 100 |- . i
140 i = . B @ i
E 10fi # i 80
c 100 i i — 60 ! 1
o H
= 80 |- B 40 L h .
3 60 " e i
¢ a0t 2 20 - . T
w 20 L I I I I I I I I s 9 |
256 512 10242048 256 512 1024 2048 4096 8192 16384
Processes Processes

Fig. 2: Performance of our three benchmarks from the case studies. For the transpose from FT, we show performance using both a 1D and a
2D domain decomposition. For SpMV, we increase the matrix size for P = 4096 and larger to 4e7 x 4e7 and 32 nonzeros per row, running for

100 iterations.

When possible, we use the standard NAS Class E problem
parameters; for the SpMV, the problem becomes too small to
run at larger concurrencies, so we scale up the matrix after
P = 2048, with the parameters described in Figure 2. For the
transpose in a 1D decomposition, we did not scale higher than
P = 2048 because of restrictions due to the problem size.

For all experiments, the performance of MSL-generated
code is within 5% of the official implementation, demon-
strating that programmers can take advantage of synthesis
features without giving up performance. Our code generation
strategy effectively eliminates possible sources for slowdown
due to the restricted memory model. Overall, we see that MSL
assists programmers by helping them write difficult code and
by enabling higher level generalizations of code that would
otherwise need to be replicated with slight modifications, and
that these features do not come with large performance costs.

VII. RELATED WORK

Generative Programming Expression templates [3] are a
metaprogramming technique in C++ which uses templates to
create domain specific embedded languages (DSELs). While
expression templates enhance the ability for C++ programmers
to include metaprogramming in libraries, they require substantial
effort and complexity, even when using systems such as Boost
Proto [4]. Modern efforts to provide fast scientific libraries
have incorporated C++ template metaprogramming to provide
reusable abstractions, including the Epetra and Tpetra packages
in Trilinos [20] and the Matrix Template Library [21]. Macro-
based metaprogramming such as that in Lisp, newer versions
of Scala [22] and Terra [23] are more powerful than the
mechanisms in C++; however, the metaprogramming support

320

in MSL is particularly powerful due to its integration with
synthesis mechanisms, which could also be used to enhance
Scala or C++ if it were integrated with those languages.

Domain-Specific Languages for HPC To ease development
of high performance parallel software, a number of domain-
specific languages have been developed, including for PDE
solvers [24] and stencil computations [25, 26]. Such packages
require large effort to build entire compiler toolchains and must
still retain interoperability with user programs written in general
purpose languages. As a result, recent work has concentrated on
building DSEL frameworks such as Asp [27] and Delite [28]
that leverage advanced metaprogramming infrastructure to re-
duce that effort. MSL, in contrast, combines metaprogramming
and synthesis to reduce the effort substantially; however, the
tradeoff is that it is more difficult to deploy efficient domain-
specific reasoning engines as the DSEL systems do.

Software Synthesis In general, synthesis helps derive correct
and efficient programs from specifications or higher level
models. High-performance libraries such as Atlas [29] and
SPIRAL [30] use high level representations of computation,
combined with derivation rules, to synthesize optimized code for
particular classes of computation. In contrast, constraint-based
synthesis, which is used by SKETCH [1, 7] and MSL, relies
on generalized solvers and can deal with general programs,
but at a much higher cost of solving. Prior work has applied
constraint-based synthesis to to find function inverses [31], to
reverse engineer malware [32], and even to automatically grade
programming assignments [33]. There has even been recent
work on frameworks to make it easier to create synthesis-
enabled domain specific languages [8, 9]. To our knowledge,

however, this is the first work that uses constraint-based
synthesis in a general language that can be automatically
converted to practical MPI code.

There has also been much prior work synthesizing concurrent
data structures [34-38]. They differ significantly from this work
because the key problem they deal with is concurrency as well
as non-determinism introduced by concurrency, whereas we
assume determinism directly from our model.

General Purpose Languages for HPC Distributed-memory
languages for high performance computing include X10 [39],
a distributed language with a notion of places that correspond
to local state in our model; Titanium [13], a high level SPMD
language with Java syntax; and Universal Parallel C (UPC) [40],
an extension to C for SPMD programming on distributed
memory machines. These have generally similar execution
models to MSL, but lack the extensive metaprogramming
and synthesis capabilities of our language. Other efforts to
define future parallel languages include Chapel [41], High-
Performance Fortran (HPF), and ZPL [42].

Verification of Parallel Programs Automatic static ver-
ification approaches for parallel programs employ similar
simplifications to those we use. PUG [43] and GPU Verify [44]
both take advantage of barriers to limit the size of epochs over
which to verify and use two-thread reduction to turn execution
of multiple threads into just two threads. This reduced execution
can be sequentialized, enabling verification using traditional
methods. For MPI programs, considering only a subset of all
interleavings and state simplification are both necessary to make
verification tractable [45, 46].

Compiler-based Optimization There is a long history of
compiler optimizations to improve performance, including the
polyhedral model [47-49] for loops. Our approach explicitly
requires programmer guidance for optimization. This has the
advantage that it enables aggressive optimization strategies
that do not apply for all programs, but the tradeoff is that our
approach does not guarantee full correctness. In essence, MSL
provides mechanisms for aiding programming and optimization
while compilers strive for fully-automated and fully-general
optimization strategies.

Autotuning Due to the failure of general compilers to acheive
high percentages of peak performance, kernels that require
highest performance have begun relying on autotuning to obtain
efficient code. This empirical approach generates a large space
of implementations for a kernel and runs them to find the best-
performing variant on each platform. Atlas applies this approach
to dense linear algebra, but others [25, 50, 51] have extended
this to other important domains and to compilers [52, 53].
Variants are created either by applying compiler optimizations
with different parameters or through domain-specific scripts.
Our approach is somewhat orthogonal; programmers must create
their own MSL implementations for each variant, but these
could then be autotuned.

CONCLUSION

This paper presents MSL, a new language to aid in
the development of high-performance kernels on distributed
memory machines. Combining generative programming and
synthesis, MSL simplifies the development process and allows
programmers to package complex implementation strategies

321

behind clean high level reusable abstractions. We have shown
that MSL can automatically infer many challenging details
and allow for high level implementation ideas to be reused
easily, and the generated code obtains the same performance
as hand-written Fortran reference implementations.

ACKNOWLEDGEMENT

We would like to thank the anonymous reviewers and our
shepherd Milind Kulkarni for their insightful comments, and
our program manager Sonia Sachs for her guidance and support.
Saman Amarasinghe, Ras Bodik, Adam Chlipala, and Martin
Rinard have given invaluable advice to the authors. This work
is partially supported by DOE Office of Science awards #DE-
SC0008923 and #DE-SC0005372.

REFERENCES

[1] A. Solar-Lezama, “Program synthesis by sketching,” Ph.D.
dissertation, University of California, Berkeley, 2008.

[2] E. M. Clarke, D. Kroening, and F. Lerda, “A tool for
checking ANSI-C programs,” in TACAS, 2004.

[3] T. Veldhuizen, “C++ gems,” S. B. Lippman, Ed., 1996,
ch. Expression templates, pp. 475-487.

[4] E. Niebler, “Proto: A compiler construction toolkit for

dsels,” in Symposium on Library-Centric Software Design,

ser. LCSD ’07, 2007.

D. H. Bailey, E. Barszcz, J. T. Barton, D. S. Browning,

R. L. Carter, R. A. Fatoohi, P. O. Frederickson, T. A.

Lasinski, H. D. Simon, V. Venkatakrishnan, and S. K.

Weeratunga, “The nas parallel benchmarks,” in The Inter-

national Journal of Supercomputer Applications, 1991.

Z. Li, S. Lu, S. Myagmar, and Y. Zhou, “CP-Miner: A

tool for finding copy-paste and related bugs in operating

system code,” in OSDI, 2004.

A. Solar-Lezama, L. Tancau, R. Bodik, S. A. Seshia,

and V. A. Saraswat, “Combinatorial sketching for finite

programs,” in ASPLOS, 2006.

[8] E. Torlak and R. Bodik, “Growing solver-aided languages
with rosette,” in Onward, 2013.

, “A lightweight symbolic virtual machine for solver-

aided host languages,” in PLDI, 2014.

[10] K. Czarnecki and U. W. Eisenecker, Generative Program-

ming: Methods, Tools, and Applications. New York, NY,

USA: ACM Press/Addison-Wesley Publishing Co., 2000.

H. Richardson, “High performance fortran: history,

overview and current developments,” 1.4 TMC-261, Think-

ing Machines Corporation, Tech. Rep., 1996.

B. Carpenter, “Adlib: A distributed array library to support

hpf translation,” in CPC, 1995.

P. N. Hilfinger, D. O. Bonachea, K. Datta, D. Gay, S. L.

Graham, B. R. Liblit, G. Pike, J. Z. Su, and K. A. Yelick,

“Titanium language reference manual,” EECS Department,

University of California, Berkeley, Tech. Rep., 2005.

A. Kamil and K. Yelick, “Hierarchical computation in the

SPMD programming model,” in LCPC, 2013.

R. J. Lipton, “Reduction: A method of proving properties

of parallel programs,” Comm. ACM, 1975.

C. Flanagan and S. N. Freund, “Atomizer: a dynamic

atomicity checker for multithreaded programs,” in POPL,

2004.

J. Shirako, D. M. Peixotto, V. Sarkar, and W. N. Scherer,

“Phasers: A unified deadlock-free construct for collective

and point-to-point synchronization,” in ICS, 2008.

(5]

(6]

(7]

(9]

(1]

[12]

[13]

[14]
[15]

[16]

[17]

[18] K. Datta, S. Williams, V. Volkov, J. Carter, L. Oliker,
J. Shalf, and K. Yelick, “Auto-tuning the 27-point stencil
for multicore,” in iWAPT2009, 2009.

[19] S. J. Deitz, B. L. Chamberlain, S.-E. Choi, and L. Snyder,
“The design and implementation of a parallel array operator
for the arbitrary remapping of data,” in PPoPP, 2003.

[20] M. A. Heroux, R. A. Bartlett, V. E. Howle, R. J. Hoekstra,
J. J. Hu, T. G. Kolda, R. B. Lehoucq, K. R. Long, R. P.
Pawlowski, E. T. Phipps, A. G. Salinger, H. K. Thornquist,
R. S. Tuminaro, J. M. Willenbring, A. Williams, and K. S.
Stanley, “An overview of the trilinos project,” ACM Trans.
Math. Softw., vol. 31, no. 3, Sep. 2005.

[21] J. G. Siek and A. Lumsdaine, “The matrix template library:
A generic programming approach to high performance
numerical linear algebra,” in ISCOPE, 1998, pp. 59-70.

[22] E. Burmako, “Scala macros: let our powers combine!: on
how rich syntax and static types work with metaprogram-
ming,” ser. SCALA ’13, 2013.

[23] Z. DeVito, J. Hegarty, A. Aiken, P. Hanrahan, and J. Vitek,

“Terra: A multi-stage language for high-performance

computing,” in PLDI, 2013.

Z. DeVito, N. Joubert, F. Palacios, S. Oakley, M. Medina,

M. Barrientos, E. Elsen, F. Ham, A. Aiken, K. Duraisamy,

E. Darve, J. Alonso, and P. Hanrahan, “Liszt: a domain

specific language for building portable mesh-based pde

solvers,” SC Conference, 2011.

S. Kamil, C. Chan, L. Oliker, J. Shalf, and S. Williams,

“An auto-tuning framework for parallel multicore stencil

computations,” in IPDPS, 2010.

M. Christen, O. Schenk, and H. Burkhart, “Patus: A code

generation and autotuning framework for parallel iterative

stencil computations on modern microarchitectures.” in

IPDPS, 2011.

S. A. Kamil, “Productive high performance parallel

programming with auto-tuned domain-specific embedded

languages,” Ph.D. dissertation, EECS Department, Uni-

versity of California, Berkeley, Jan 2013.

K. J. Brown, A. K. Sujeeth, H. J. Lee, T. Rompf, H. Chafi,

M. Odersky, and K. Olukotun, “A heterogeneous parallel

framework for domain-specific languages,” in PACT, 2011.

[29] R. C. Whaley and J. J. Dongarra, “Automatically tuned
linear algebra software,” in Supercomputing, 1998.

[30] M. Piischel, J. M. F. Moura, B. Singer, J. Xiong, J. R.
Johnson, D. A. Padua, M. M. Veloso, and R. W. Johnson,
“Spiral: A generator for platform-adapted libraries of signal
processing alogorithms,” IJHPCA, vol. 18, no. 1, 2004.

[31] S. Srivastava, S. Gulwani, S. Chaudhuri, and J. S. Foster,
“Path-based inductive synthesis for program inversion,” in
PLDI, 2011.

[32] S. Jha, S. Gulwani, S. A. Seshia, and A. Tiwari, “Oracle-
guided component-based program synthesis,” in ICSE,
2010.

[33] R. Singh, S. Gulwani, and A. Solar-Lezama, “Automated
feedback generation for introductory programming assign-
ments,” in PLDI, 2013.

[34] A. Solar-Lezama, C. G. Jones, and R. Bodik, “Sketching
concurrent data structures,” in PLDI, 2008.

[35] M. T. Vechev and E. Yahav, “Deriving linearizable fine-
grained concurrent objects,” in PLDI, 2008.

[36] M. Kuperstein, M. T. Vechev, and E. Yahav, “Automatic
inference of memory fences,” in FMCAD, 2010.

[37] F. Liu, N. Nedev, N. Prisadnikov, M. T. Vechev, and

[24]

[25]

[26]

(27]

(28]

322

E. Yahav, “Dynamic synthesis for relaxed memory models,”

in PLDI, 2012.

P. Hawkins, A. Aiken, K. Fisher, M. C. Rinard, and

M. Sagiv, “Concurrent data representation synthesis,” in

PLDI, 2012.

P. Charles, C. Grothoff, V. Saraswat, C. Donawa, A. Kiel-

stra, K. Ebcioglu, C. von Praun, and V. Sarkar, “X10: an

object-oriented approach to non-uniform cluster comput-

ing,” SIGPLAN Not., 2005.

UPC Consortium, “Upc language specification, v1.2,”

Lawrence Berkeley National Lab, Tech. Rep. LBNL-

59208, 2005.

[41] B. Chamberlain, D. Callahan, and H. Zima, “Parallel
programmability and the chapel language,” IJHPCA,
vol. 21, no. 3, 2007.

[42] B. Chamberlain, “The design and implementation of
a region-based parallel language,” Ph.D. dissertation,
University of Washington, 2001.

[43] G. Li and G. Gopalakrishnan, “Scalable smt-based verifi-
cation of gpu kernel functions,” in FSE, 2010.

[44] E. Bardsley, A. Betts, N. Chong, P. Collingbourne, P. Deli-
giannis, A. F. Donaldson, J. Ketema, D. Liew, and
S. Qadeer, “Engineering a static verification tool for gpu
kernels,” in CAV, 2014.

[45] S. F. Siegel and T. K. Zirkel, “Automatic formal verifi-
cation of MPI-based parallel programs,” in PPoPP ’I1,
C. Cascaval and P-C. Yew, Eds. ACM, 2011.

[46] G. Gopalakrishnan, R. M. Kirby, S. Siegel, R. Thakur,
W. Gropp, E. Lusk, B. R. De Supinski, M. Schulz, and
G. Bronevetsky, “Formal analysis of mpi-based parallel
programs,” Commun. ACM.

[47] M. Griebl, C. Lengauer, and S. Wetzel, “Code generation
in the polytope model,” in PACT, 1998.

[48] U. Bondhugula, J. Ramanujam, and et al., “Pluto: A prac-

tical and fully automatic polyhedral program optimization

system,” in PLDI 08, 2008.

M. Kong, R. Veras, K. Stock, F. Franchetti, L.-N. Pouchet,

and P. Sadayappan, “When polyhedral transformations

meet simd code generation,” in PLDI, 2013.

M. Frigo and S. G. Johnson, “The design and imple-

mentation of FFTW3,” IEEE, vol. 93, no. 2, February

2005, invited paper, special issue on “Program Generation,

Optimization, and Platform Adaptation”.

R. Vuduc, J. W. Demmel, and K. A. Yelick, “OSKI:

A library of automatically tuned sparse matrix kernels,”

in Scientific Discovery through Advanced Computing

Conference, Journal of Physics: Conference Series, 2005.

J. Ansel, C. Chan, Y. L. Wong, M. Olszewski, Q. Zhao,

A. Edelman, and S. Amarasinghe, “PetaBricks: A language

and compiler for algorithmic choice,” in PLDI, 2009.

H. Jordan, P. Thoman, J. J. Durillo, S. Pellegrini,

P. Gschwandtner, T. Fahringer, and H. Moritsch, “A multi-

objective auto-tuning framework for parallel codes,” in

Supercomputing, 2012.

(38]

[39]

[40]

[49]

[50]

[51]

[52]

[53]

	FinalDOEReport2014
	FinalDOEReport2014b

