
Final Report on XStack: Software Synthesis for High Productivity ExaScale Computing
Principal Investigator:
Prof. Armando Solar-Lezama
Postal Address: The Stata Center, Building 32-G840, 32 Vassar Street, Cambridge, MA 02139
Telephone Number: (617) 258-9727
Email: asolar@csail.mit.edu
Partnering Institution: University of California at Berkeley (UCB)

The goal of the project was to develop a programming model that would significantly improve productivity
in the high-performance computing domain by bringing together three components: a) Automated
equivalence checking, b) Sketch-based program synthesis, and c) Autotuning. In more detail, we are
pursuing the following efforts:

 Bringing into HPC programming the recent results from automated model-checking, specifically
program equivalence checking, which we use to ascertain the semantic equivalence of an
executable specification and a high-performance implementation, eliminating bugs due to
performance optimizations.

 We are advancing the power of our synthesizer that works outside domains amendable to classical
synthesis such as FFTW. The Sketch synthesizer, which can be guided by programmers without
formal training, is used to implement high-performance implementations.

 We are developing a refinement programming methodology, wherein a high-performance
implementation is obtained by successive optimizations of a specification. These refinements are
checked for correctness with equivalence checking and parts of these optimizations are
synthesized.

The report provides an executive summary of the research accomplished through this project. At the
end of the report is appended a paper that describes in more detail the key technical accomplishments
from this project, and which was published in SC 2014 [1].

Summary
Over the three years of our project, we accomplished the following milestones:

 We developed a set of algorithm to support synthesizing SPMD implementations on top of the
Sketch synthesis system.

 We developed a set of high-level programming constructs that are easier to analyze compared to
low-level MPI, but are still sufficiently expressive to support implementation of efficient and
scalable implementations of distributed algorithms.

 We developed a new set of synthesis constructs to make it easier to reuse insights from one problem
in implementing similar problems.

 We implemented a set of kernels from the NAS parallel benchmarks and showed that we could use
high-level sketches to synthesize implementation details necessary to achieve performance
comparable to Fortran implementations.

 We have developed a new algorithm for solving synthesis problems much more efficiently by
parallelizing the search for a solution.

Sketch based Synthesis of MPI code

As part of this project, we developed a set of constructs to support synthesis of SPMD implementations.
The new constructs enforce a bulk-synchronous programming model that is determinate by construction
and that eliminates the need to match sends and receives. In this model, all communication happens through
a set of primitives that must be called synchronously by all threads and which have barrier-like behavior.
Reductions naturally have this property, but even point-to-point communication is expressed in this manner.
The constraints on the communication primitives and the determinacy guarantees significantly simplify the
analysis of programs written in terms of these constructs and make it possible to perform the deep semantic
analysis necessary for synthesis. Our synthesizer exploits determinacy through a novel reduction that
converts the SPMD synthesis problem into a sequential synthesis problem which can be solved by our off-
the-shelf Sketch synthesis system.
One of our major accomplishments is to show that the new programming constructs together with the new
reduction can allow us to scale synthesis to realistic computational kernels. Specifically, we have
demonstrated our synthesis-based methodology through case studies implementing non-trivial distributed
kernels---both regular and irregular---from the NAS parallel benchmarks. We show that our approach can
automatically infer many challenging details from these benchmarks and can enable high-level
implementation ideas to be reused between similar kernels. We also demonstrate that these high-level
notations map easily to low-level C code and show that the performance of this generated code matches
that of hand-written Fortran.
With regard to performance, we were able to show scalability up to 16384 cores on SpMV, MG and 3D
transpose with 2D partitioning. In all cases, the performance matched the performance of hand-written
Fortran. This showed that the higher level programming model and the resulting simplification of the
analysis did not come at the expense of performance.

Improvements to the Solver Infrastructure
The Sketch synthesizer relies on a counterexample guided inductive synthesis solver (cegis) that takes
synthesis problems in an intermediate representation and solves for their unknowns. Over the course of the
project we made a number of changes to the underlying solver to improve its scalability and its ability to
handle complex synthesis problems. Some of these changes are summarized below:
Support for arrays in the solver. The solver relies on bounded reasoning, so in order to reason about
arrays, the frontend would put a bound on the maximum size of an array and treat it as a set of scalar
variables. This caused a very significant blow-up on the size of the intermediate representation which would
cause the solver to run out of memory on some benchmarks. By introducing arrays into the intermediate
representation and adding algorithms for the solver to reason about them directly, we are able to get order
of magnitude reductions in memory consumption from the cegis solver.
Abstraction refinement for recursive functions. The sketch compiler reasons about most array
manipulation codes using an algorithm that translates them into systems of mutually recursive functions. In
previous versions of the solver these were handled by inlining the functions a fixed number of times as
directed by a compiler flag. We have implemented a new scheme that relies on abstraction refinement to
automatically discover which functions need to be inlined and exactly by how much. This prevents the
system from unnecessarily inlining those functions which do not require it.
Support for max in the solver. The transformation that transforms array codes into mutually recursive
functions relies on solving for the maximum value ݅ that satisfies a predicate ݌(݅) (i.e. max (݅, A .(((݅)݌
previous version of the algorithm used a simple algebraic manipulation routine to solve for the value of ݅
whenever possible. When the algebraic manipulation failed, the system would fall back on an explicit search
for ݅ using a while loop. The huge performance difference between the algebraic solver and the explicit
search meant that small changes in the sketch could lead to huge performance differences in the solver if
the changes caused the algebraic solver to fail. Our new algorithm relies on the solver to find values of ݅ by
relying on a combination of algebraic reasoning and abstraction refinement.
Parallel synthesis. We have been able to significantly improve the scalability of the solver by parallelizing
the search for a correct solution using a combination of solver-based synthesis and randomized search.

 [1] "MSL: a Synthesis Enabled Language for Distributed Implementations", Zhilei Xu, Shoaib Kamil,
Armando Solar-Lezama, Published in SC 2014

•

•

•

•

v := x |L [t].x|G.x
e := t id | v | n | e1 op e2
s := v = e |asser t e | s1; s2 | i f (v) s1 else s2 |
whi le(v){ s1} | r educe(e, y) | tr ansf er (sc, e, r i d, r c, x)

P := sd i s t ; f or k{ s} ; sco l l e c t
L s m a l l

s eq
s pm d

s eq

sm a ll

s eqsm a ll
sm a l l
sm a ll

sm a l l

[]

sm a l l

[]

1
2

2 1 1
1 2 2

2 1 1 2

()

s ∀ (s)

()

1 2 ... L B
k

()

s
∀ (s)

s
i i∧i n E i (i)

0

0

i
i+ 1 = i ∪ i

i∀ s

i (i)

i ¬ (i i) i

1 1

1

2

1028

×

x ,y ,z[3]
x ,y ,z =

d= x x + y y + z z < 3
[] ∗ x ,y ,z

= ×

log2

25616384

7

 0
 10
 20
 30
 40
 50
 60
 70
 80
 90

 256 512 1024 2048

Ex
ecu

tion
 Tim

e (
sec

ond
s)

Processes

SpMV (Class E)
MSLFortran

 30
 35
 40
 45
 50
 55
 60
 65
 70
 75

 4096 8192 16384
Processes

SpMV (Large)
MSLFortran

 0 20 40 60 80 100 120 140 160 180 200 220

 256 512 1024 2048 4096 8192 16384
Processes

MG Benchmark
MSLFortran

 20 40 60 80 100 120 140 160 180 200 220 240

 256 512 1024 2048

Ex
ecu

tion
 Tim

e (
sec

ond
s)

Processes

Transpose (1D Decomp)
MSLFortran

 0
 20
 40
 60
 80

 100
 120
 140
 160

 256 512 1024 2048 4096 8192 16384
Processes

Transpose (2D Decomp)
MSLFortran

P = 4096 4e7 × 4e7

= 2048
= 2048

± 5%

	FinalDOEReport2014
	FinalDOEReport2014b

