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The goal of the project was to develop a programming model that would significantly improve productivity 
in the high-performance computing domain by bringing together three components: a) Automated 
equivalence checking, b) Sketch-based program synthesis, and c) Autotuning. In more detail, we are 
pursuing the following efforts:  

 Bringing into HPC programming the recent results from automated model-checking, specifically 
program equivalence checking, which we use to ascertain the semantic equivalence of an 
executable specification and a high-performance implementation, eliminating bugs due to 
performance optimizations.  

 We are advancing the power of our synthesizer that works outside domains amendable to classical 
synthesis such as FFTW.  The Sketch synthesizer, which can be guided by programmers without 
formal training, is used to implement high-performance implementations.   

 We are developing a refinement programming methodology, wherein a high-performance 
implementation is obtained by successive optimizations of a specification.  These refinements are 
checked for correctness with equivalence checking and parts of these optimizations are 
synthesized.   

 
The report provides an executive summary of the research accomplished through this project. At the 
end of the report is appended a paper that describes in more detail the key technical accomplishments 
from this project, and which was published in SC 2014 [1]. 
 
 
 
 



 
Summary 
Over the three years of our project, we accomplished the following milestones: 

 We developed a set of algorithm to support synthesizing SPMD implementations on top of the 
Sketch synthesis system.  

 We developed a set of high-level programming constructs that are easier to analyze compared to 
low-level MPI, but are still sufficiently expressive to support implementation of efficient and 
scalable implementations of distributed algorithms. 

 We developed a new set of synthesis constructs to make it easier to reuse insights from one problem 
in implementing similar problems.  

 We implemented a set of kernels from the NAS parallel benchmarks and showed that we could use 
high-level sketches to synthesize implementation details necessary to achieve performance 
comparable to Fortran implementations. 

 We have developed a new algorithm for solving synthesis problems much more efficiently by 
parallelizing the search for a solution. 

 
 
  



Sketch based Synthesis of MPI code 
 
As part of this project, we developed a set of constructs to support synthesis of SPMD implementations. 
The new constructs enforce a bulk-synchronous programming model that is determinate by construction 
and that eliminates the need to match sends and receives. In this model, all communication happens through 
a set of primitives that must be called synchronously by all threads and which have barrier-like behavior. 
Reductions naturally have this property, but even point-to-point communication is expressed in this manner. 
The constraints on the communication primitives and the determinacy guarantees significantly simplify the 
analysis of programs written in terms of these constructs and make it possible to perform the deep semantic 
analysis necessary for synthesis. Our synthesizer exploits determinacy through a novel reduction that 
converts the SPMD synthesis problem into a sequential synthesis problem which can be solved by our off-
the-shelf Sketch synthesis system.  
One of our major accomplishments is to show that the new programming constructs together with the new 
reduction can allow us to scale synthesis to realistic computational kernels. Specifically, we have 
demonstrated our synthesis-based methodology through case studies implementing non-trivial distributed 
kernels---both regular and irregular---from the NAS parallel benchmarks. We show that our approach can 
automatically infer many challenging details from these benchmarks and can enable high-level 
implementation ideas to be reused between similar kernels. We also demonstrate that these high-level 
notations map easily to low-level C code and show that the performance of this generated code matches 
that of hand-written Fortran. 
With regard to performance, we were able to show scalability up to 16384 cores on SpMV, MG and 3D 
transpose with 2D partitioning. In all cases, the performance matched the performance of hand-written 
Fortran. This showed that the higher level programming model and the resulting simplification of the 
analysis did not come at the expense of performance. 

 



Improvements to the Solver Infrastructure 
The Sketch synthesizer relies on a counterexample guided inductive synthesis solver (cegis) that takes 
synthesis problems in an intermediate representation and solves for their unknowns. Over the course of the 
project we made a number of changes to the underlying solver to improve its scalability and its ability to 
handle complex synthesis problems. Some of these changes are summarized below: 
Support for arrays in the solver. The solver relies on bounded reasoning, so in order to reason about 
arrays, the frontend would put a bound on the maximum size of an array and treat it as a set of scalar 
variables. This caused a very significant blow-up on the size of the intermediate representation which would 
cause the solver to run out of memory on some benchmarks. By introducing arrays into the intermediate 
representation and adding algorithms for the solver to reason about them directly, we are able to get order 
of magnitude reductions in memory consumption from the cegis solver.  
Abstraction refinement for recursive functions. The sketch compiler reasons about most array 
manipulation codes using an algorithm that translates them into systems of mutually recursive functions. In 
previous versions of the solver these were handled by inlining the functions a fixed number of times as 
directed by a compiler flag. We have implemented a new scheme that relies on abstraction refinement to 
automatically discover which functions need to be inlined and exactly by how much. This prevents the 
system from unnecessarily inlining those functions which do not require it. 
Support for max in the solver. The transformation that transforms array codes into mutually recursive 
functions relies on solving for the maximum value ݅ that satisfies a predicate ݌(݅) (i.e.  max (݅,  A .(((݅)݌
previous version of the algorithm used a simple algebraic manipulation routine to solve for the value of ݅ 
whenever possible. When the algebraic manipulation failed, the system would fall back on an explicit search 
for ݅ using a while loop. The huge performance difference between the algebraic solver and the explicit 
search meant that small changes in the sketch could lead to huge performance differences in the solver if 
the changes caused the algebraic solver to fail. Our new algorithm relies on the solver to find values of ݅ by 
relying on a combination of algebraic reasoning and abstraction refinement.  
Parallel synthesis. We have been able to significantly improve the scalability of the solver by parallelizing 
the search for a correct solution using a combination of solver-based synthesis and randomized search.  
 
 
 [1]  "MSL: a Synthesis Enabled Language for Distributed Implementations", Zhilei Xu, Shoaib Kamil, 
Armando Solar-Lezama, Published in SC 2014 
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