

Evaluation of Solid Sorbents as a Retrofit Technology for CO₂ Capture

Final Technical Report

DOE Award DE-FE004343

Reporting Period Start Date: October 1, 2010

Reporting Period End Date: September 30, 2015

ADA-ES, Inc.
9135 South Ridgeline Boulevard, Suite #200
Highlands Ranch, Colorado 80129

ADA Document No. RP-15-0136 R0

ADA-ES Project No. 7013-10

Principal Investigator: Sharon Sjostrom
Report Co-Authors: Jayson Denney, Connie Senior, William Morris

Report Date: 12/29/2015

Rev. 6/2/2016

Disclaimer

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

Acknowledgements

This report is based upon work supported by the U.S. Department of Energy, National Energy Technology Laboratory. Award DE-FE004343, with cost share from ADA-ES, Inc. EPRI, Southern Company, and Luminant. The authors gratefully acknowledge the support of our NETL Project Manager, Bruce Lani and our EPRI project manager, Richard Rhudy. Southern Company provided the host site and we acknowledge the support of Jerrad Thomas and Curtis Smith with site activities. In addition to the co-authors, several staff members from ADA were critical to successful project completion and operations, including Travis Starns, Cody Wilson, Charles Lindsey, Omar Syed, Mariam Sayyah, Austin Vaillancourt, and Martin Dillon. Key subcontractors included Mike Richard and Bhurisa Thitakamol from Stantec, Jeremy Wood and James Teeter from McAbee, Kevin Fisher and Richard Tonkin from Element 1 Engineering, John Cover and Mark Berry from Southern Research Institute, Brent Beatty and Katherine Dombrowski from URS, David Adam and Roy Silverman from Technip Stone and Webster, Walter Leake Consulting, and Montrose Environmental.

Abstract

ADA completed a DOE-sponsored program titled Evaluation of Solid Sorbents as a Retrofit Technology for CO₂ Capture under program DE-FE0004343. During this program, sorbents were analyzed for use in a post-combustion CO₂ capture process.

A supported amine sorbent was selected based upon superior performance to adsorb a greater amount of CO₂ than the activated carbon sorbents tested. When the most ideal sorbent at the time was selected, it was characterized and used to create a preliminary techno-economic analysis (TEA). A preliminary 550 MW coal-fired power plant using Illinois #6 bituminous coal was designed with a solid sorbent CO₂ capture system using the selected supported amine sorbent to both facilitate the TEA and to create the necessary framework to scale down the design to a 1 MWe equivalent slipstream pilot facility.

The preliminary techno-economic analysis showed promising results and potential for improved performance for CO₂ capture compared to conventional MEA systems. As a result, a 1 MWe equivalent solid sorbent system was designed, constructed, and then installed at a coal-fired power plant in Alabama.

The pilot was designed to capture 90% of the CO₂ from the incoming flue gas at 1 MWe net electrical generating equivalent. Testing was not possible at the design conditions due to changes in sorbent handling characteristics at post-regenerator temperatures that were not properly incorporated into the pilot design. Thus, severe pluggage occurred at nominally 60% of the design sorbent circulation rate with heated sorbent, although no handling issues were noted when the system was operated prior to bringing the regenerator to operating temperature. Testing within the constraints of the pilot plant resulted in 90% capture of the incoming CO₂ at a flow rate equivalent of 0.2 to 0.25 MWe net electrical generating equivalent. The reduction in equivalent flow rate at 90% capture was primarily the result of sorbent circulation limitations at operating temperatures combined with pre-loading of the sorbent with CO₂ prior to entering the adsorber. Specifically, CO₂-rich gas was utilized to convey sorbent from the regenerator to the adsorber. This gas was nominally 45°C below the regenerator temperature during testing.

ADA's post-combustion capture system with modifications to overcome pilot constraints, in conjunction with incorporating a sorbent with CO₂ working capacity of 15 g CO₂/100 g sorbent and a contact time of 10 to 15 minutes or less with flue gas could provide significant cost and performance benefits when compared to an MEA system.

Table of Contents

Executive Summary.....	x
1. Introduction	11
1.1 Overview of the Project.....	12
1.1.1 Background and History of the Technology	12
1.1.2 Project Organization.....	15
1.1.3 Project Description.....	16
1.1.4 Project Location	17
1.1.5 Project Schedule.....	18
1.2 Objectives of the Project	19
1.3 Significance of the Project	19
1.4 DOE's Role in the Project.....	19
2. Project Management	20
2.1 Project Management Deliverables	20
2.1.1 Briefings/Technical Presentations.....	22
2.2 Risk Management.....	22
2.3 Project Success Criteria and Decision Points.....	22
2.3.1 Decision Points BP1 to BP2	23
2.3.2 Decision Point BP2 to BP3	23
2.3.3 Project Success.....	25
3. Preliminary Design Activities: Process Technology and Sorbent Selection.....	25
3.1 Process and Sorbent Selection	25
3.1.1 Reactor Design: Viability Assessment	25
3.1.2 Sorbent Selection and Characterization.....	30
3.2 Key Sorbent Selection Criteria.....	31
3.2.1 CO ₂ Delta Loading.....	31
3.2.2 Cyclic Stability.....	31
3.2.3 Reaction Kinetics	32
3.2.4 Effect of Flue Gas Constituents including SO ₂ and Moisture	34
3.2.5 Heat of Reaction.....	35

3.2.6	Resistance to Attrition.....	35
3.2.7	Physical Characteristics: Particle Size Distribution and Density.....	36
3.2.8	Sorbent Cost.....	36
3.2.9	Sorbent Fluidization and Handling Properties	36
3.2.10	Heat Transfer Coefficient	36
3.3	Experimental Methods	36
3.3.1	Trickle Down Reactor	36
3.3.2	Thermogravimetric Analyzer.....	38
3.3.3	Fixed Bed Reactors	40
3.3.4	Laboratory-Scale Fluidized Bed Reactors	41
3.4	Selection of Sorbent Type.....	43
3.5	Specific Sorbent Selection	50
3.6	Sorbent Characterization and Analysis.....	51
3.6.1	CO ₂ Delta Loading.....	51
3.6.2	Cyclic Stability.....	52
3.6.3	Reaction Kinetics	55
3.6.4	Effect of Flue Gas Constituents	60
3.6.5	Heat of Reaction.....	63
3.6.6	Physical Strength and Attrition	64
3.6.7	Cold Flow Modeling.....	67
3.6.8	Summary of Sorbent Physical and Thermal Properties	74
3.6.9	Sorbent Cost.....	74
3.7	Process Calculations and Computational Modeling.....	74
4.	Process Design	76
4.1	Conceptual Design - 550 MW	76
4.1.1	EPC Review of Commercial Scale Process Economics.....	81
4.2	Pilot Design – 1 MWe	84
4.2.1	Polishing Scrubber.....	86
4.2.2	Blower and Flue Gas Cooler	87
4.2.3	Adsorber and Adsorber Particulate Control.....	88
4.2.4	Cooling Water System	90
4.2.5	Regenerator and Regenerator Particulate Control	91

4.2.6	Future Use	94
4.2.7	Additional Design Factors.....	95
5.	Procurement and Construction Activities.....	96
5.1	Procure & Manufacture Sorbents	96
5.2	Procure and Construct Pilot-Scale Equipment	96
5.2.1	Procure Pilot Scale Equipment	97
5.2.2	Finalize Fabrication and Construction Work Packages	97
5.2.3	Fabrication and Construction of Pilot Scale Equipment	98
5.2.4	Pilot Installation	99
6.	Pilot-Scale Operation and Evaluation	101
6.1	Pilot Testing Plan	101
6.1.1	Parametric Testing Plan	102
6.1.2	Continuous Performance Testing Plan.....	103
6.1.3	Test Methods	103
6.2	Commissioning and Start-up	105
6.3	Pilot Testing Periods	105
6.3.1	Round 1: Parametric Testing.....	105
6.3.2	Round 2: Parametric and Continuous Testing	111
6.3.3	Continuous, 90% CO ₂ Removal Testing.....	115
6.4	Analysis and Discussion of Pilot Results	116
6.4.1	First Round of Parametric Testing.....	116
6.4.2	Second Round of Parametric Testing	116
6.4.3	Review of Potential Factors Impacting Performance during Parametric Testing	125
6.4.4	Review of Pilot Key Performance Parameters	141
6.4.5	Energy Balance During 20-Hour, 90% Removal Test.....	144
6.4.6	Measurement Uncertainties	146
6.4.7	Define and Collect Compression and Sequestration-Specific Information.....	147
6.5	Environmental Considerations	149
6.6	General Observations and Lessons Learned from Pilot Operations.....	150
7.	Techno-Economic Analysis	152
8.	Market Analysis	157
8.1	Market Drivers.....	157

8.2	Applicability of the ADAsorb Technology	157
8.3	Market Potential.....	158
9.	Conclusions	158
10.	References.....	161
11.	Appendix: Techno-Economic Analyses.....	164

List of Figures

Figure 1: Generic Post-Combustion Temperature-swing Adsorption Process.	12
Figure 2: Project Milestone Schedule.	18
Figure 3. Experimentally Measured Overall Heat Transfer Coefficient. The lowest pressures (open squares) are primarily of interest. Specifically the purpose of this figure is to illustrate the step change in the overall heat transfer coefficient when a material is fluidized. Xavier et al., ^{29,30}	28
Figure 4. Relative cost for heat exchanger based on surface area from Peters and Timmerhaus. ³¹	29
Figure 5. Counter Current Contactor (Trickle Down Reactor) Testing Schematic.	38
Figure 6. Laboratory Experimental Equipment: TGA (Right) and Mass Spectroscopy (Left).	40
Figure 7. Sketch of the Fixed Bed Sorbent Screening Test Unit Configured for the Laboratory (Left) and Field (Right).	40
Figure 8. Example of Fixed Bed Adsorption (left) and Desorption (right) Breakthrough Profiles.	41
Figure 9. Photo of ADA Cold Flow Process Model.	42
Figure 10. Sorbent AM (Activated Carbon) CO ₂ Capacity at Various Temperatures and CO ₂ Partial Pressures.....	45
Figure 11. Sorbent AN (Activated Carbon) CO ₂ Capacity at Various Temperatures and CO ₂ Partial Pressures.....	45
Figure 12. Sorbent F (Supported Amine) CO ₂ Capacity at Various Temperatures and CO ₂ Partial Pressures.....	47
Figure 13. Sorbent CE (Supported Amine) CO ₂ Capacity at Various Temperatures and CO ₂ Partial Pressures.....	48
Figure 14. Sorbent BN (Supported Amine) CO ₂ Capacity at Various Temperatures and CO ₂ Partial Pressures.....	49
Figure 15. CO ₂ Loading at Different Temperatures for Selected Sorbent (BN).	52
Figure 16. CO ₂ Delta Loading Under Pure CO ₂ Atmosphere for Selected Sorbent (BN).	53
Figure 17. CO ₂ Delta Loading Measured Cycling Between 50°C and 130°C with 100% CO ₂ for Selected Sorbent (BN).	54
Figure 18. Sorbent BN Isotherms through 1 bar.....	55
Figure 19. Summary of Gas Velocity Compared to Particle Velocity in the Trickle-Down Reactor.	56
Figure 20. Sample Weight and Temperature during Rapid Heating and Cooling for Sorbent BN in 100% CO ₂ atmosphere.....	58
Figure 21. Sample Weight and Temperature When Cycling Sorbent BN between 40°C/0.15 bar CO ₂ and 120°C/0.8 bar CO ₂	59
Figure 22. Moisture Uptake Data for Sorbent BN.....	61
Figure 23. Moisture Uptake on Sorbent BN (N ₂ with 5.7 vol% H ₂ O in Gas)	62
Figure 24. Impact of exposure to oxygen at elevated temperatures on BN performance.....	63
Figure 25. Particle Size Analysis of Two Sorbent Materials.	65
Figure 26. Attrition Characteristics of "Sorbent Beads" at 300 ft/s.....	65
Figure 27. Attrition Characteristics of crushed sorbent at 300 ft/s.	66
Figure 28. Particle Size Distribution	72
Figure 29. ADA Cold Flow Model	73

Figure 30. Process Flow Diagram of ADAsorb System Integrated into a Power Plant.....	77
Figure 31. Process Flow Diagram of the ADAsorb Capture Process.	78
Figure 32. Plot Plan of the ADAsorb system at a Full-Scale Coal-Fired Power Plant	81
Figure 33. Process Diagram Illustrating Main Vessels Used in the ADAsorb Process.....	85
Figure 34. SO ₂ Scrubber Skid.....	87
Figure 35. Flue Gas Temperature Increase as a Function of Adsorber Blower Back Pressure.	88
Figure 36. Three Stage Adsorber Design.....	89
Figure 37. Temperature of River Water Used for Pilot Plant Cooling Water.....	91
Figure 38. Regenerator Design.....	93
Figure 39. Gas Temperature Increase as a Function of Blower Back Pressure in the Regenerator.	94
Figure 40. Sample 3-D Rendering of the Pilot.....	98
Figure 41. Photo of Pilot Modules under Construction.	99
Figure 42. Pilot during Barge Transport.	99
Figure 43. Pilot Erection at Host Site.	100
Figure 44. 1 MWe Pilot Gas Sampling Locations.....	105
Figure 45. Round 1 Parametric Testing Data Example.....	107
Figure 46. Flue gas blower (Blower-101) Inlet Pressure from 10/3/2014 to 11/11/2014.....	109
Figure 47. Fouled Demister Pad.	110
Figure 48. Adsorber and Regenerator Connection Components.....	112
Figure 49. CO ₂ Capture Before and After Fluidizing N ₂ and CO ₂ Valve Adjustments.....	113
Figure 50. Fouled Water Pump Pre-screen.....	115
Figure 51. Overview of Data Collected after 6/6/2015.....	118
Figure 52. CO ₂ Removal versus Sorbent Flow Rate.....	121
Figure 53. Pareto Chart Associated with Figure 52 CO ₂ Removal Contour Plot.	122
Figure 54. Plot of Sorbent Flow rate vs. Sorbent Residence Time in Adsorber.	123
Figure 55. Plot of CO ₂ % Removed versus Mass Ratio of Sorbent / CO ₂ into Adsorber.....	124
Figure 56. TGA Results for New and Used Sorbent Samples.	125
Figure 57. TGA Results for Sorbent Sampled from the Pilot on 6/26/15.....	126
Figure 58. Plot of Sorbent Working Capacity versus Sorbent Residence Time in the Adsorber.....	127
Figure 59. Sorbent Working Capacity versus Residence Time within the Adsorber.....	128
Figure 60. CO ₂ flow during ADAsorb Pilot Testing.	130
Figure 61. Plot of CO ₂ Removal versus Sorbent Flow Rate	131
Figure 62. Plot of CO ₂ Removal versus Sorbent/CO ₂ Weight Ratio; colors indicate sorbent flow rate as shown in Figure 61.....	131
Figure 63. Pilot Model Overview.....	133
Figure 64. Model Results Compared to Pilot Results, with and without CO ₂ Adsorption in the Transport Line.....	135
Figure 65. Model Results: Fraction of CO ₂ removed in Each Stage, with and without CO ₂ Adsorption in the Transport Line.	135
Figure 66. Model Results of Sorbent Capacity as a Function of Sorbent Residence Time in Adsorber and Sorbent/CO ₂ Flow Rate.....	136
Figure 67. Variation in Regenerator Temperature During Testing.	137

Figure 68. Temperature of Top Adsorber Bed during Parametric Testing.	138
Figure 69. Plot of Sorbent Working Capacity versus Regenerator Temperature.	139
Figure 70. Plot of CO ₂ Removal versus Regenerator Temperature.	139
Figure 71. Effects of Regeneration Temperature and Sorbent Circulation Rate on CO ₂ Removal.	140

List of Tables

Table 1. Project Task List and Budget Period.....	17
Table 2. List of Project Management Deliverables.....	21
Table 3. Project Decision Points and Success Criteria.....	24
Table 4. Flue Gas and Sorbent Characteristics for Sorbent Used as Basis for 1 MWe Pilot.....	27
Table 5. Typical TGA Operating Conditions.....	39
Table 6. Key Sorbent Selection Properties.....	51
Table 7. Adsorber Height and Reaction Kinetics Test Data Summary from the Trickle Down Reactor.....	57
Table 8. Multiple Cycle TGA Test of Sorbent BN.....	60
Table 9. Summary of Attrition Testing Results.....	67
Table 10. Sorbent BN Properties Derived through Cold Flow Modeling	68
Table 11. PSRI Cold Flow Testing of 95 μm Sorbent	69
Table 12. Entrainment Flux	70
Table 13. Recommended Particle Size Distribution.....	71
Table 14. Predicted CO_2 Partial Pressure and Sorbent Loading in the Adsorber.....	79
Table 15. Technology Comparison Results for Solid Sorbent and MEA.....	83
Table 16. Pilot Design Basis.....	86
Table 17. Gas Sampling Locations.....	104
Table 18. CO_2 Measurements Before and After Fluidizing N_2 and CO_2 Valve Adjustments.....	114
Table 19. Pilot Design and Operating Conditions.	119
Table 20. Pilot Model Output.....	134
Table 21. Effect of Regenerator Temperature on Adsorber CO_2 Removal.	138
Table 22. CO_2 Product Purity.....	141
Table 23. Recommended Limits for CO_2 -Rich Gas Streams ⁴²	148
Table 24. Results of RCRA 8 Testing of Used Sorbent.....	149
Table 25. Results from Environmental Testing of Total Liquid Discharge.	150
Table 26. Heat Rate, COE, and LCOE Changes Resulting from Thermal Optimization.....	154
Table 27. Performance and Economic Comparison, 2015 Dollars.....	156

List of Acronyms and Abbreviations

APTES	3-(aminopropyl)triethoxysilane
°C	degree Celsius
cm	centimeter
CO	Colorado
CO ₂	carbon dioxide
DOE	United States Department of Energy
DSC	differential scanning calorimeter
EOR	enhanced oil recovery
ESP	electrostatic precipitator
°F	degree Fahrenheit
FAI	FAI Materials Testing Laboratory
FCC	fluidized catalytic cracking
FF	fabric filter
FGD	flue-gas desulfurization
ft	feet
g	gram
H ₂ O	water
HHV	higher heating value
hr	hour
ID	inner diameter
KJ	Kilojoule
KW	kilowatt
L	liter
lb	pound
m	meter
MEA	monoethanolamine
mg	milligram
min	minute
mL	milliliter
mm	millimeter
MOF	metal organic frameworks
mol	mole
MS	mass spectrometer
MW	megawatt
NETL	National Energy Technology Laboratory
N ₂	nitrogen
PC	post-combustion
PCO ₂	partial pressure of carbon dioxide
PEI	polyethlyeneimine
sec	second
SO ₂	sulfur dioxide
TGA	thermogravimetric analysis
TSA	temperature-swing adsorption

1. Executive Summary

Carbon dioxide capture and storage (CCS) is anticipated to be an important component of reducing worldwide CO₂ emissions from stationary point sources, such as coal-fired power plants. One of the most important challenges to the widespread implementation of CCS is the cost and energy associated with the separation of CO₂ from flue gas. Aqueous amines and ammonia are being demonstrated by several groups for CO₂ capture in a temperature-swing cyclic process. Solid sorbents can also be used in a similar temperature-swing process, but have the potential to reduce the overall costs related to CO₂ capture by reducing the energy required to release the CO₂ during material regeneration due to less evaporation of water and lower specific heat capacity. From 4th quarter 2010 through 3rd quarter 2015, ADA completed a DOE-sponsored project titled Evaluation of Solid Sorbents as a Retrofit Technology for CO₂ Capture under program DE-FE0004343. The objective of the project was to validate solid sorbent-based post-combustion CO₂ capture through slipstream pilot testing. During the project, sorbents were analyzed to select a sorbent for testing, a process design was finalized, and a pilot was designed, fabricated, and used for testing.

Both supported amines and activated carbon sorbents were considered and evaluated during this project. A supported amine sorbent was selected based upon superior performance to adsorb a greater amount of CO₂ than the activated carbon sorbents tested. When the most ideal sorbent at the time was selected, it was characterized and used to create a preliminary techno-economic analysis (TEA). A preliminary 550 MW coal-fired power plant using Illinois #6 bituminous coal was designed with a solid sorbent CO₂ capture system using the selected supported amine sorbent to both facilitate the TEA and to create the necessary framework to scale down the design to a 1 MWe equivalent slipstream pilot facility.

The preliminary techno-economic analysis showed promising results and potential for improved performance for CO₂ capture compared to conventional MEA systems. As a result, a 1 MWe equivalent solid sorbent system was designed, constructed, and then installed at a coal-fired power plant in Alabama.

The pilot was designed to capture 90% of the CO₂ from the incoming flue gas at 1 MWe net electrical generating equivalent. Testing was not possible at the design conditions due to changes in sorbent handling characteristics at post-regenerator temperatures that were not properly incorporated into the pilot design. Thus, severe pluggage occurred at nominally 60% of the design sorbent circulation rate with heated sorbent, although no handling issues were noted when the system was operated prior to bringing the regenerator to operating temperature. Testing within the constraints of the pilot plant resulted in 90% capture of the incoming CO₂ at a flow rate equivalent of 0.2 to 0.25 MWe net electrical generating equivalent. The reduction in equivalent flow rate at 90% capture was primarily the result of sorbent circulation limitations at operating temperatures combined with pre-loading of the sorbent with CO₂ prior to entering the adsorber. Specifically, CO₂-rich gas was utilized to convey sorbent from the regenerator to the adsorber. This gas was nominally 45°C below the regenerator temperature during testing.

A second TEA was performed to account for current limitations of the pilot. As expected, unless modifications are made to accommodate changes in sorbent handling characteristics at regeneration temperature and to limit pre-loading of the sorbent with CO₂ prior to the adsorber, the levelized cost of electricity (LCOE) will be significantly impacted. Furthermore, utilizing the system with modifications to overcome pilot constraints, in conjunction with incorporating a sorbent with CO₂ working capacity of 15 g CO₂/100 g sorbent and a contact time of 10 to 15 minutes or less with flue gas could provide significant cost and performance benefits when compared to an MEA system.

1. Introduction

Capturing and geologically storing the carbon dioxide (CO₂) from point source emitters may be one of the best options for controlling anthropogenic CO₂ emissions. More specifically, post-combustion CO₂ capture and sequestration is one of the only feasible means to significantly reduce CO₂ emissions from existing fossil fuel power plants. Although no post-combustion capture technology had been demonstrated at full-scale applications (greater than 25 MW) for coal-fired utilities at the time of project initiation, the most developed process utilized an aqueous amine solvent, often monoethanolamine (MEA), to react with the CO₂ at low temperature and then release it in a purified form at a higher temperature. The energy penalty associated with solvent-based temperature-swing processes is relatively high. For example, studies have shown that aqueous MEA for 90% CO₂ capture from a retrofit coal-fired power plant can reduce the thermal efficiency from approximately 35% (HHV basis) to 24.4% and cost \$80 per ton CO₂ removed.¹ Much of this cost is associated with the energy penalty, primarily heating and cooling the solvent, that is incurred when releasing the purified CO₂ in the heating/regeneration step.

The US Department of Energy National Energy Technology Laboratory has supported the development of alternative CO₂ capture technologies to reduce the overall costs and energy penalty associated with CO₂ mitigation from power generated using coal as the fuel source. With cost estimates of CO₂ capture technology as high as \$80 per ton CO₂ removed for first and second-generation systems, widespread post-combustion CO₂ capture would be extremely unlikely without advances to reduce costs.

Solid sorbents can also be used in a process that utilizes a temperature swing, referred to as temperature-swing adsorption (TSA). A temperature-swing process that utilizes solids has the potential to reduce the energy penalty associated with post-combustion CO₂ capture process. A simplified schematic of a TSA process is provided in Figure 1. The project reported on herein was designed to investigate whether solid sorbents used in a temperature-swing process for CO₂ capture could significantly reduce costs associated with post-combustion CO₂ capture. Under cooperative agreement with the Department of Energy (DE-FE0004343), ADA-ES, Inc. (ADA) led the development and testing of a sorbent-based CO₂ capture technology through process evaluation, 1 MWe pilot testing, and a techno-economic assessment during the project period of October 2010 through September 2015.

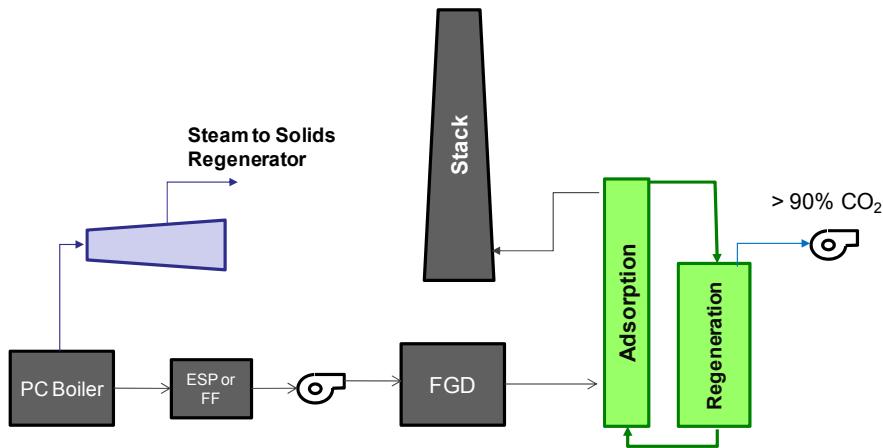


Figure 1: Generic Post-Combustion Temperature-swing Adsorption Process.

1.1 Overview of the Project

The overall objective of this project was to validate solid sorbent-based post-combustion CO₂ capture through slipstream pilot testing. Results from pilot testing were used to develop a preliminary full-scale commercial design. The DOE Program Goals, and the project goals at the outset of the program, were to achieve 90 percent CO₂ capture while limiting the increase in LCOE to 35 percent for an nth-of-a-kind full scale commercial system, with initial commercial deployment beginning in 2020.

1.1.1 Background and History of the Technology

While most solid sorbents offer the benefit of a lower specific heat compared to aqueous solutions, the mechanism in which such materials remove CO₂ from flue gas can vary significantly. Sorbents can be classified into two general families: those that chemically react with the CO₂, called supported reactants, and those that adsorb or use their molecular structure or Van der Waals forces to screen CO₂ from other gases, called non-reacting adsorbents. Chemically reacting sorbents usually include an inert, high surface area support, with an immobilized amine or other reactant on the surface. The surface area provides numerous sites for the desired reaction to occur. Many different types of solid materials for CO₂ capture have been or are currently being investigated including: supported amines²⁻⁸, carbon-based sorbents⁹⁻¹², supported carbonates^{13,14}, zeolites¹⁵, metal organic frameworks (MOFs)¹⁶⁻²⁰, etc. These materials are being developed and tested at universities, government laboratories, and private institutions worldwide. A great deal of research related to sorbent development and evaluation has occurred to date, but for the most part these promising materials had yet to be paired with a feasible process and demonstrated at the pilot scale.

Solid sorbent technology at the time of the award was in the early stages of development and required further research and demonstration before being considered a commercially viable option. One of the first steps in investigating CO₂ capture using solid sorbents was to determine which sorbent would be used for process design efforts. An extensive sorbent screening program was previously completed

under cooperative agreement DE-NT0005649 as well as several other funding mechanisms including internal research. Based on the 140 sorbents evaluated during that program and more than 100 additional sorbents that were evaluated, it was determined that supported amine and carbon-based sorbents presented the best potential to significantly reduce the energy penalty associated with post-combustion CO₂ capture. However, such sorbents must be paired with a system/process that can take advantage of their beneficial properties.

Several process technology options were assessed during this program, including an entrained flow reactor, trickle-down reactor, moving-bed reactor, and fluidized bed reactor. In the absence of large scale (i.e. pilot-scale) testing, it was necessary to use laboratory results or make assumptions regarding the equipment and sorbent performance under the expected operating conditions. A fluidized-bed reactor was determined to be the most optimal for the sorbent chosen for the pilot program due to the optimal heat and mass transfer characteristics between gases and solids, and because very large fluidized beds were in use commercially in the petrochemical industry. A unique TSA process was developed during this project that incorporated a three-stage fluidized bed adsorber integrated with a single-stage fluidized bed regenerator.

Prior to this program, an initial techno-economic analysis was completed using a generic TSA process design to determine the potential of solid sorbents to reduce the costs associated with post-combustion CO₂ capture relative to a solvent-based process. The results of this preliminary assessment concluded:

- Projected capital costs, fuel costs and CO₂ transport, storage, and monitoring costs of the sorbent-based process were lower than those of the MEA case, respectively. Specifically, to generate 550 MW_{net} with 90% CO₂ capture, the gross power plant was smaller when sorbent-based CO₂ capture was used compared to MEA due to the lower thermal input required to operate the CO₂ capture facility.
- The projected operating and maintenance costs of the sorbent-based CO₂ capture were higher than those of the MEA process, mostly as a result of a high sorbent cost, the amount of sorbent required to initially fill the system, and sorbent replacement.
- The projected electric requirement for the compression of CO₂ was significant for both aqueous amine and sorbent-based CO₂ capture. However, because the gross power plant with sorbent-based capture was smaller, less CO₂ must be compressed and the related costs were accordingly less.
- The projected cost of electricity (COE) and levelized cost of electricity (LCOE) with sorbent-based CO₂ capture were calculated to be 113.3 and 143.6 mills/kWh, respectively. The projected COE and LCOE of the sorbent-based process were lower than those of the aqueous MEA system due to a lower capital costs, fuel costs, and CO₂ TS&M costs, offsetting higher O&M costs.

Although initial estimates of the costs of the sorbent-based CO₂ capture process resulted in a lower projected energy penalty and lower projected overall increase in the COE compared to a solvent-based process, the improvements with respect to an aqueous MEA process were not enough to meet the DOE's cost of CO₂ captured and cost of electricity goals. Therefore, this project was designed to make progress towards the overall DOE goals. Further improvements outside the scope of this project could provide additional progress towards the DOE goals. Potential areas of further improvement include:

- Heat integration
 - Heat recovery between the rich and lean sorbent – this must be accomplished in such a way that the energy recovery is significant enough to offset the added capital costs for the heat exchangers
 - Integration within the power plant – using heat from the power plant or the CO₂ compression system to reduce the overall energy penalty
- Reduce capital costs
- Improve sorbent performance and characteristics
 - Working CO₂ capacity
 - Faster kinetics
 - Attrition resistance
 - Cost
 - Thermal conductivity
 - Moisture loading
 - Etc.
- Optimize steam condition at IP/LP crossover to eliminate a need for the BP turbine and to integrate into the steam cycle in a more efficient manner.

In addition to potential cost savings, interest in solid sorbents was enhanced by environmental concern for competing solvent technology. In particular, a significant concern is the volatile emissions of amines. At the expected regeneration temperature the vapor pressure of 3.5 M aqueous MEA is approximately 0.0725 psi; emissions of amines could be a significant environmental concern for aqueous CO₂ capture systems. The sorbent selected for pilot-scale evaluation under this project consists of an ion exchange resin that incorporates amines that are covalently bonded to the substrate. Although it is possible to degrade the selected sorbent using excessively high temperatures, no measurable volatile emissions

were recorded using a mass spectrometer. It is possible that the amine on the sorbent remains covalently attached to the surface of the substrate even when being converted to urea, heat stable salts, or being otherwise degraded. This is a beneficial characteristic for a sorbent used in a full-scale system.

Another environmental consideration is related to potential spills. If the sorbent used in a solid-sorbent-based process were to spill either in transport or at the power plant, neither the sorbent nor the amine will leach into the soil and the sorbent can be readily be cleaned up without serious environmental consequences. Environmental impacts due to inadvertent leaks are a concern for systems using aqueous solutions. The sorbent identified for pilot testing under this project is not considered hazardous by the OSHA Hazard Communication Standard, thus waste disposal should be in accordance with the plants locale environmental controls.

Finally, concerns exist that recycled aqueous solutions may concentrate heavy metals such as selenium or mercury leading to a potential hazardous waste issue. By using a solid sorbent rather than water-based solvents, water soluble contamination concentration may potentially be avoided.

1.1.2 Project Organization

ADA-ES was the prime recipient of award DE-FE0004343 and coordinated the efforts of multiple subcontractors. Project participants were selected based upon their qualifications and expertise as it relates to the scope of work assigned to them. ADA was responsible for oversight of pilot engineering design and construction. ADA led efforts of pilot operation, sorbent selection and scale up management, and quality assurance oversight. The project utilized project management procedures which required each subcontractor to submit monthly update reports. This information was used to monitor various project areas for each subcontractor: e.g., scope of work progress, cost, and schedule.

The project participants included:

Stantec Consulting Ltd.

ADA, along with Stantec, combined empirical data collected from prior field testing and laboratory experiments and used an iterative modeling approach to enhance the conceptual design effort. Stantec used the results from the modeling effort to evaluate a 500 MWe conceptual design which was used as the basis for the 1 MWe pilot design.

At the conclusion of testing, Stantec incorporated key findings from the testing of the pilot facility and conducted a techno-economic assessment of the commercial carbon capture system. Project costs were broken into four categories, as suggested through the DOE EPEC program.

Technip Stone and Webster Process Technology

Technip (formerly Shaw Energy & Chemicals, Inc.) conducted a technical review of the conceptual designs presented by ADA. ADA shared this information with Technip who further developed conceptual and final engineering and design details. Upon completion of the conceptual design efforts, preliminary cost projections for the 500 MWe commercial system were prepared by Stantec Consulting and reviewed.

Technip provided the technical engineering and design services for preparing the initial 1 MW pilot plant design. The pilot plant design was based upon the full-scale conceptual design developed for the 500 MWe retrofit application.

At the beginning of Budget Period 2, procurement activities commenced and detailed information for select equipment was developed to finalize fabrication and construction work packages. Technip used information from various equipment suppliers to finalize various connection and sizing details contained in the work packages. Technip had also been contracted to provide a fluidized bed expert to support commissioning and startup activities.

Electric Power Research Institute (EPRI)

EPRI is an independent membership-based non-profit company comprised primarily of electric power owners and operators that performs research, development and design in the electricity sector.

Southern Company

Southern company provided a host site for the 1 MWe pilot plant at one of its coal fired boilers located in Alabama. In addition, Southern Company provided cost share assistance to the project.

Luminant

Luminant provided cost share support for technology development.

1.1.3 Project Description

The overall objective of this program was to validate solid sorbent-based post-combustion CO₂ capture through slipstream pilot testing. Results from pilot testing were used to develop a preliminary full-scale commercial design. The work was completed in nine tasks and three phases, as shown in Table 1.

Table 1. Project Task List and Budget Period.

Task	Phase I: Design Budget Period 1	Phase II: Build Budget Period 2	Phase III: Test Budget Period 3
Task 1: Project Management and Planning	X	X	X
Task 2: Refine Full-Scale Conceptual Design and Sorbent Selection	X		
Task 3: Design Pilot Equipment	X		
Task 4: Procure & Manufacture Sorbents		X	
Task 5: Procure and Construct Pilot-Scale Equipment		X	
Task 6: Install/Start-Up Pilot-Scale Equipment		X	
Task 7: Pilot-Scale Operation and Evaluation			X
Task 8: Define and Collect Compression and Sequestration-Specific Information			X
Task 9: Prepare Commercial Conceptual Design and Economics			X

1.1.4 Project Location

The project took place in various locations throughout North America. ADA's primary laboratory, project management, and engineering work was performed at ADA's headquarters in Highlands Ranch, CO. The ADA-led field testing and pilot commissioning occurred just north of Birmingham, AL at a power plant site.

Engineering and commercial design work was performed in Boston, MA. Techno-economic evaluations and support work were conducted in Regina, Saskatchewan Canada. Fabrication and Installation was conducted in multiple locations in Alabama.

1.1.5 Project Schedule

The project schedule seen in Figure 2: Project Milestone Schedule, was developed and managed by ADA.

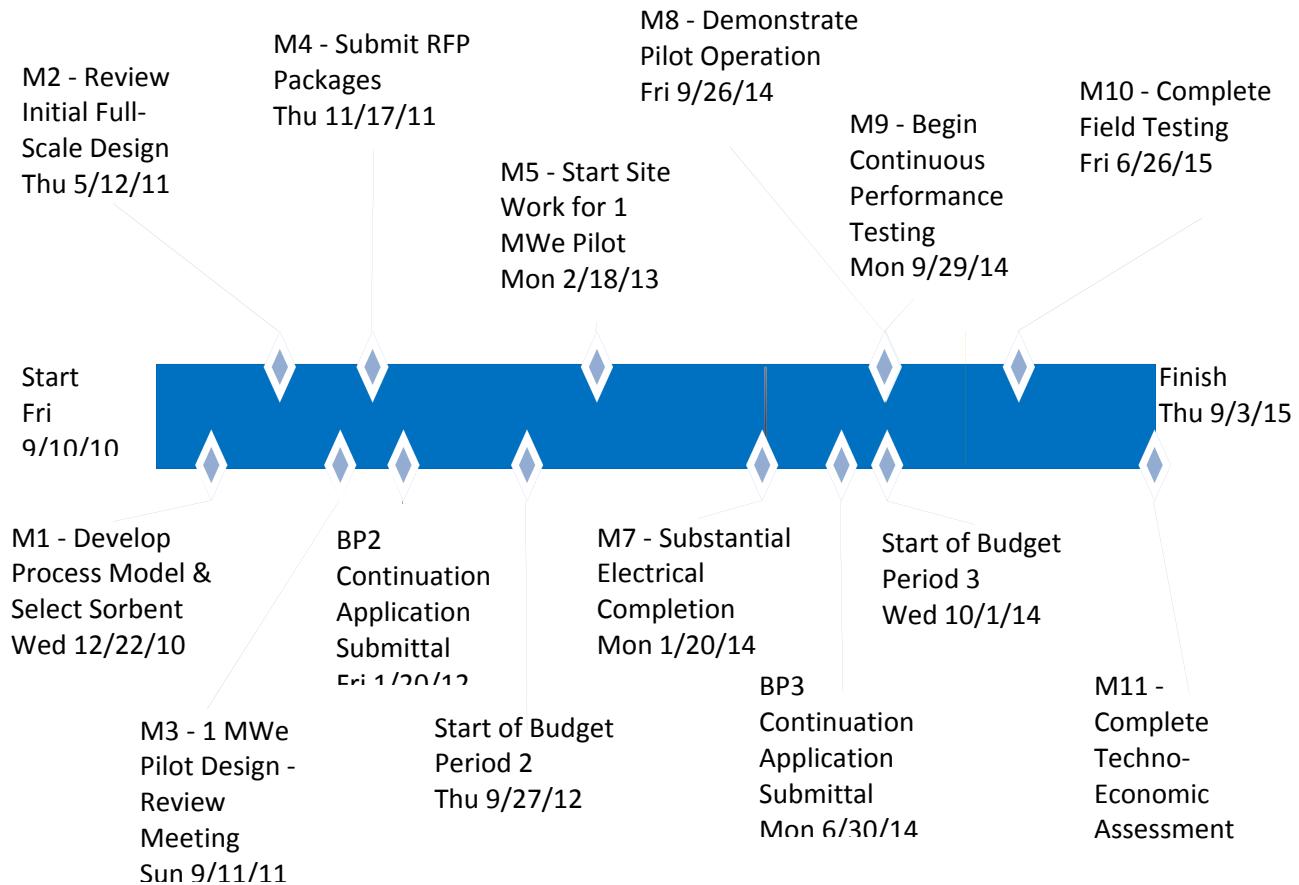


Figure 2: Project Milestone Schedule.

1.2 Objectives of the Project

The overall project objective was to demonstrate the process of solid sorbent CO₂ capture at a pilot scale using real coal-fired power plant flue gas. Specific objectives for the project included:

1. Demonstrate the technical, economic, and energy benefits of a promising CO₂ capture technology.
2. Develop performance data through the operation of a 1 MW_e pilot system on flue gas, including thermal management of sorbent and optimized system heat recovery.
3. Perform parametric testing to measure process conditions, including sorbent heat of reaction, sorbent working capacity, system pressure drop, and CO₂ capture.
4. Assess sorbent performance sensitivity to flue gas constituents.
5. Operate continuously for a target of 2 months to identify operating and maintenance issues and system reliability.
6. Remove at least 90% of the incoming CO₂ from the flue gas.
7. Produce high purity CO₂ that will be capable of meeting pipeline standards.
8. Conduct a techno-economic analysis of the commercial design, as developed by the commercial EPC.

1.3 Significance of the Project

This project was very significant in that it represented the first attempt to test solid sorbents in a continuous loop process at a “large” scale in North America. The project utilized a multistage fluidized bed adsorber with a single stage regenerator, and demonstrated for the first time that a supported amine sorbent could be used to remove 90% of the CO₂ from actual coal derived flue gas in a continuous process.

The project also highlighted some of the challenges associated with solids handling and sorbent performance and provided the necessary data to better understand fluidized bed processes in the CO₂ capture context. Finally, this project elucidated the requirements for future sorbent development necessary for solid sorbent CO₂ capture technology to be cost competitive.

1.4 DOE’s Role in the Project

The U.S. Department of Energy generously supported ADA and its partners through award DE-FE0004343 by providing 72.8% of the total funding required for the project. In addition, DOE provided administrative and technical guidance. Finally, DOE facilitated development of solid sorbent post-combustion CO₂ capture which broadens the U.S. technology portfolio for low carbon and CO₂ capture energy options.

2. Project Management

Project management and planning were managed under Task 1 of the project. This task provided time for overall project management, subcontractor and vendor management, technology transfer, and preparation of financial and administrative reports. Activities performed under this task were used to provide oversight and control throughout execution of the project, and communicate project progress with appropriate project stakeholders. Efforts within this task included:

- Generation of a Project Management Plan (PMP) per NETL guidelines and update, as necessary, to accurately reflect current status of the project as it was recognized by the award. Updates occurred to the Project Management Plan when changes occurred to:
 - The project management policies and procedures;
 - The technical, cost, and/or schedule baseline for the project;
 - Scope, methods, or approaches;
 - As otherwise required to ensure that the plan was the appropriate governing document for the work required to accomplish the project objectives.
- Planning the tests with DOE/NETL, contributing team members, and the host site.
 - Finalize host site and negotiate host site agreement.
 - Meet with plant personnel at host site and corporate and environmental personnel from the host utilities to communicate plans and coordinate all required permitting.
 - Develop a detailed test plan.
 - Develop quality assurance criteria plan and identify critical processes and metrics.
- Periodic meetings with industry representatives, cost-share participants, and DOE personnel. Meetings were scheduled to discuss progress, obtain overall direction of the program from the DOE project manager, and conduct technology transfer functions.
- Oversight and control throughout execution of the project
 - Manage and direct the project in accordance with the Project Management Plan to meet all technical, schedule, and budget objectives and requirements.
 - Manage, coordinate and report on the technical scope, budget, and schedule basis consistent with a task-oriented work breakdown structure.
 - Ensure that project plans, results, and decisions are appropriately documented to satisfy project reporting and briefing requirements.
 - Update the Project Management Plan as necessary
- Manage project risks in accordance with the risk management methodology delineated in the Project Management Plan. This included identifying, assessing, monitoring and mitigating technical uncertainties and schedule, budgetary and environmental risks. The results and status of the risk management process were presented during project reviews and in Progress Reports with emphasis placed on the medium- and high-risk items.

2.1 Project Management Deliverables

A number of reports were prepared throughout the project and submitted in accordance with the “Federal Assistance Reporting Checklist”. In addition to reports other deliverables such as technical

presentations and briefings were prepared, including those to support the briefings and technical presentations indicated in Table 2 below.

Table 2. List of Project Management Deliverables.

Deliverable	Date
Project Management Plan	
Revision 1 - Initial Submittal to DOE	10/29/2010
Revision 2 - DOE Revisions	11/29/2010
Revision 3 - Revisions to Technip Scope of Work	4/4/2011
Revision 4 - Updated Resource Loaded Schedule	5/6/2011
Revision 5 - Updated Technip Scope of Work	6/6/2011
Revision 6 - Updated for BP2 CA	1/17/2012
Revision 7 - New Budget Forecast Justification	8/19/2013
Revision 7B – Included Technip CNs	8/26/2013
Revision 8 - Update for BP3 CA	6/30/2014
Revision 9 - Update for BP3 Change of Scope	3/16/2015
Monthly Progress Reports	Monthly
Quarterly ARRA Reports	Quarterly
Topical Reports	
Utility Techno Economic Assessment	3/28/2011
Industrial Techno Economic Assessment	4/15/2011
Sorbent Analysis and Selection	12/7/2011
Full Scale Costs and Energy Requirements	12/13/2011
As Built Pilot Capabilities	6/27/2014
Host Site Agreement	11/1/2013
Environmental and Construction Permits	None req'd
Preliminary Test Plan	9/27/2013
Final Test Plan	9/29/2014
Continuation Application including all supporting documentation for initiating BP2 and BP3	
Budget Period 2	1/20/2012
Budget Period 3	6/30/2014
Commercial Design and Economics Report	12/28/2014
Resource Loaded Schedule Updates	Quarterly with quarterly report

ADA provided electronic updates to the Resource Loaded Schedule on a quarterly basis to the DOE Project Officer.

Each month, a status report was prepared by ADA for the project and submitted to DOE. The report focused on the project cost and schedule status, as well as an update on project risk. Project costing and schedule performance was evaluated using earned value data and reported each month. Project performance metrics included the following.

- AC (Actual Costs Incurred)

- Cost Performance Index (CPI)
- Schedule Performance Index (SPI)
- Project Complete (based on labor projections)
- Estimated Cost to Complete (ETC)
- Variance Analysis

2.1.1 Briefings/Technical Presentations

ADA prepared detailed briefings for presentation to the NETL Project Manager. Briefings explained the plans, progress, and results of the technical effort. ADA made presentations to the NETL Project Officer/Manager at a project kick-off meeting and annual briefings.

ADA provided and presented a technical presentation and or paper at the DOE/NETL Annual Contractor's Review Meeting and at least one other technical conference each year, as approved by the NETL Project Manager.

2.2 Risk Management

There are several risks that were considered with the overall process of using solid sorbents for post-combustion CO₂ capture. The risks include the long-term stability of sorbents when exposed to flue gas, the availability of sorbents (including the number of potential suppliers), and sorbent manufacturing scale-up without impacting sorbent performance, process design to control sorbent temperatures and counteract the heat of reaction, and potential erosion and/or corrosion of process equipment. There are risks associated with CO₂ sequestration, but are considered outside the scope of the current project.

A detailed installation and start-up plan was developed between ADA and subcontractors to identify as many risks and critical path items as possible during various field activities. Objectives for this document were to quickly identify which items and tasks were on the critical path so that cost and schedule overruns could be minimized during field activities, and to set benchmark operational goals to determine when the system was ready for continual operation.

During the risk identification process, several high-level risks were acknowledged and discussed. A risk register was prepared for the project and was updated throughout the project lifecycle. High level risks for this project are provided in the appendix.

2.3 Project Success Criteria and Decision Points

The scope of work for the proposed 60-month effort covered three budget periods which corresponded to three distinct phases. Each phase has specific decision points. The decision points are described below and summarized in Table 3.

Phase I (Design Phase) = Budget Period 1 (10/1/2010 – 6/31/2012)

Phase II (Fabrication & Installation) = Budget Period 2 (7/1/2012 – 9/30/2014)

Phase III (Testing & Analysis) = Budget Period 3 (10/1/2014 – 9/30/2015)

2.3.1 Decision Points BP1 to BP2

- Full-scale design economics support technology advancement towards reducing cost of electricity increases compared to other CCS technologies. This was determined after full-scale conceptual design was complete and preliminary cost projections were developed.
- Pilot design was completed and is an appropriate scaled version of full-scale concept design.

2.3.2 Decision Point BP2 to BP3

- Pilot construction is complete
- System has been installed at field site.
- Pilot operation has been demonstrated.

Table 3. Project Decision Points and Success Criteria.

Decision Point	Date	Success Criteria
Proceed with Pilot Design Engineering	5/23/2011	Full-scale design economics support technology advancement towards reducing COE compared to other CCS technologies. This was determined after completion of preliminary cost projections developed in Task 2.
Go/No-go Decision Point (BP1 to BP2)	1/20/2012	Pilot design is complete and all necessary cost were gathered and submitted to DOE. A continuation application was submitted to DOE showing information on pilot design and cost projections for subsequent Budget Periods 2 & 3. Design was capable of removing 90% CO ₂ and showed advancement towards meeting DOE's objectives as outlined in the EPEC goals.
Go/No-go Decision Point (BP2 to BP3)	10/01/2014	A continuation application was submitted to DOE prior to start of BP3. Cost and schedule information for the subsequent Budget Period was included. A detailed test plan was developed and submitted to DOE for review.
Begin commissioning and startup activities at the host site	9/1/2014	When to begin startup activities was a decision point in BP2. Criteria used to determine start date were completion of pilot installation (mechanical and electrical), loop checks and wiring checks are complete, and all interconnecting piping and auxiliary equipment has been installed. The start-up was delayed due to unavailability of flue gas from Plant Miller and water temperature from 1/1/2014 thru 9/01/2014.)
Completion of field testing during BP3	6/26/2015	The project team determined when to terminate field testing during BP3. Success criteria were met when continuous operation for at least 1 month had been completed and sufficient field testing information had been collected which were used to prepare a techno-economic assessment for the technology. The goal was to remove at least 90% of the incoming CO ₂ from flue gas stream.
Project Completion	9/30/2015	Project was complete upon issuance of Project Final Report and completion of techno-economic assessment of technology. A goal of the pilot facility was to assess sorbent performance sensitivity to key flue gas constituents.

2.3.3 Project Success

- Demonstrate the technical, economic, and energy benefits of a promising CO₂ capture technology.
- Develop performance data through the operation of the system on flue gas, including thermal management of sorbent
- Assess sorbent performance sensitivity to key flue gas constituents
- Operate continuously for a target of two months to identify operating and maintenance issues and system reliability
- Remove at least 90% of the incoming CO₂ from the flue gas
- Produce high purity CO₂
- Conduct a techno-economic analysis of the commercial design

3. Preliminary Design Activities: Process Technology and Sorbent Selection

The fundamental process design and final sorbent selection were conducted during Task 2 of the project through the preliminary design activities outlined by the subtasks listed below.

- Subtask 2.1: Review Sorbent Characteristics, Field Test Data, and Viability Design Assessment
- Subtask 2.2: Process Calculations and Modeling

An optimized post-combustion process is strongly dependent on both process and sorbent characteristics. Thus, these activities were considered simultaneously during the preliminary design activities. This was an iterative effort because the sorbent characteristics strongly influence the process design details.

The following sections provide a summary of the process design considerations and sorbent evaluation efforts, followed by a description of the conceptual process design.

3.1 Process and Sorbent Selection

3.1.1 Reactor Design: Viability Assessment

There are several key considerations when selecting a reactor design, including:

- Capital cost
- Footprint
- Pressure drop
- Gas solids contacting
- Operability (i.e., maintenance frequency and annual cost)
- Constructability

It is worth noting that effective heat transfer and effective gas solids mixing are not decoupled; a well-mixed system should accomplish both if designed correctly. Reactor types considered during the conceptual design effort included:

- Fixed beds – stationary systems with internal heat transfer
- Entrained reactors – sorbent simultaneously reacts and is conveyed using the flue gas in the adsorber and (most likely) by a mixture of CO₂ and H₂O in the regenerator
- Moving beds – densely packed sorbent moves in the opposite direction as the gas while the gas can flow either countercurrent or across the sorbent
- Staged fluidized beds – a series of fluidized beds in the bubbling regime where the gas moves upwards while the sorbent enters at the top bed and leaves the adsorber in the bottom bed
- Trickle down reactor – sorbent with significant mobility (i.e., not packed) flows counter current to gas

Some reactors were quickly and easily removed from consideration. For example, an entrained reactor cannot be effectively used to attain acceptable CO₂ loadings. Because the gas entrains the sorbent and 90% CO₂ capture is required, the sorbent will, at best, reach an equilibrium loading dictated by a CO₂ partial pressure of 0.015 bar. Assuming an adsorption temperature of 40°C and a regeneration temperature of 120°C and a PCO₂ = 0.81 bar, the working capacity in an entrained reactor would be approximately 1.5 g CO₂/100 g fresh sorbent, which is significantly lower than the reported working capacity of aqueous MEA.²⁰

True counter-current flow, such as a trickle-down reactor where solids are introduced at the top of a column and gas is introduced at the bottom, was considered but was eliminated as an option when considering the complexities associated with scale-up to a full-scale power plant. Novel packing structures would be required to maintain good sorbent distribution and effective gas/solids mixing. In the midst of the packing for distribution, heat transfer surface area would be required, which would further crowd the space in the reactor. Optimally the system would become a fluidized bed or moving bed system, which were already under consideration, so the trickle-down reactor concept was abandoned.

Significant heat transfer surface area is required to operate a TSA-based CO₂ capture process, but the exact amount of heat transfer surface area depends on the reactor type. Widely known empirical correlations were utilized to estimate the heat transfer coefficients for moving beds and fluidized beds. Because this is an order-of-magnitude estimate, it is assumed that it applies to both fixed beds and tightly packed moving beds because the mechanisms of heat transfer are largely similar.

For fixed beds, Li and Finlayson²¹ provided the following empirical correlation:

$$\frac{h_w D_p}{k_p} = 0.17 Re_p^{0.79} \quad (1)$$

Where h_w is the heat transfer coefficient, D_p is the particle diameter, and k_p is the thermal conductivity of the particle. Equation 1 is applicable as long as the particle Reynolds number (Re_p) is in the range of 20 < Re_p < 7600, where:

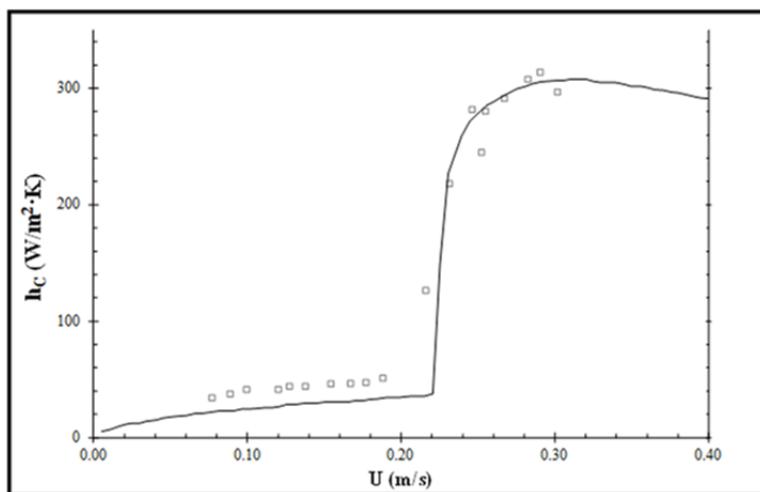
$$Re_p = \frac{\rho_f v D_p}{\mu_f} \quad (2)$$

The properties of the flue gas are known from the composition, temperature, and pressure while the properties of the sorbent can be estimated for illustrative purposes only and are collected from several sources.²²⁻²⁵ These values are provided in Table 4. Different particle sizes were used for the fixed/moving bed analysis and fluidized bed analysis. For the purpose of these calculations, the sorbent properties remain constant with the exception of particle size. For the sorbent particle size it is unreasonable to propose a fixed bed and a fluidized bed with the same particle size, so the particle size was reduced by a factor of ten for the fluidized bed.

Table 4. Flue Gas and Sorbent Characteristics for Sorbent Used as Basis for 1 MWe Pilot.

Property	Units	Value
ρ_f	kg/m ³	1.04
v	m/s	1.2
μ_f	Pa·s	1.9e-5
k_f	W/m·K	0.025
D_{AB}	m ² /s	2.6e-5
D_p -fixed	m	0.001
D_p -fluidized	m	0.0001
k_p	W/m·K	0.08

The Re_p can be calculated using Equation (2) and the values in Table 4. Under the proposed conditions, Re_p is approximately 67, so the correlation shown in Equation (1) is valid. Solving for the heat transfer coefficient, h_w , in Equation (1) yields a value of 350 W/m²·K, which can be used as an order-of-magnitude estimate for the fixed bed and moving-bed systems under evaluation.


There are also many correlations available for estimating the overall heat transfer coefficient in fluidized beds. Often, such correlations or data compilations link the Nusselt number to the Re_p defined in Equation (2). The Nusselt number of interest can be defined by:

$$Nu = \frac{h_c D_p}{k_f} \quad (3)$$

Again the Re_p can be calculated using Equation (2). Everything in the calculation is the same except the particle diameter, which has been assumed to be an order of magnitude smaller than that which would be used in a fixed bed (i.e., 100 μ m versus 1 mm). An integrated plot of several heat transfer correlations compiled by Zenz and Othmer²⁶⁻²⁸ can be used to estimate Nu based on Re_p . Assuming a fluidized bed in the bubbling fluidized bed regime with a void space of approximately 0.7, the Nu is estimated to be three, which results in an overall heat transfer coefficient, h_c , of 743 W/m²·K.

Based on the calculations completed, the heat transfer coefficients of fixed and moving beds can be projected to be only half that of a fluidized bed. To understand whether such a large difference in the

ratio of heat transfer coefficients is expected, experimental work for a different system can also be reviewed. Figure 3 was collected by Xavier et al.,^{29,30} to measure the effect of pressure on heat transfer between a flat surface and glass spheres in an N₂ atmosphere. Although this system differed significantly from the conditions that would be present during post-combustion CO₂ capture, the ratio of the overall heat transfer coefficient for fixed/moving beds and fluidized beds can be observed from the data. As the gas velocity increases, the heat transfer coefficient in the fixed bed slowly increases. Then, as the bed achieves the minimum fluidization velocity (in the lowest pressure case this occurs at about 0.23 m/s) the overall heat transfer coefficient increases as a step change from approximately 30 to 270 W/m²·K. This large step change clearly demonstrates the advantage of using a fluidized bed for CO₂ capture that will require significant heating and cooling; based on either the data shown in Figure 3 or the correlations used above, the heat transfer surface area for a fluidized bed would be significantly less than that required for a moving bed or fixed bed.

Figure 3. Experimentally Measured Overall Heat Transfer Coefficient. The lowest pressures (open squares) are primarily of interest. Specifically the purpose of this figure is to illustrate the step change in the overall heat transfer coefficient when a material is fluidized. Xavier et al.,^{29,30}

The overall objective for the design of a CO₂ capture process is not maximizing the heat transfer coefficient, but rather to minimize the overall increase in the levelized cost of electricity. The overall increase in the cost of electricity can be attributed to two factors: 1) capital costs and 2) operating costs (primarily due to the energy penalty).²⁰ It was revealed within this project's initial TEA that the installed capital costs and the energy penalty were similar in magnitude. Therefore, neither should be neglected during technology development. The operating costs were largely the same for different reactor types as long as the sorbent loading was maximized, excluding the impact of pressure drop on operating costs. To assess the capital costs, order-of-magnitude quotes from vendors were obtained for moving and fluidized beds using the supported amine sorbent. It quickly became clear that the amount of required heat transfer surface area had a dramatic impact on the capital costs. For staged fluidized beds, the total adsorber height as well as the height of each stage was dependent on the heat transfer surface area. In the initial TEA, the height of the vessel was primarily determined by the heat transfer surface area rather than by the kinetics of the primary amine functionalized adsorbent. This is a typical design

outcome for fluidized bed reactors used for decades in the chemical, petrochemical and energy industries.

Regarding overall height, the moving beds did exhibit a few advantages. There was no need for headspace as was the case above each bed in the fluidized reactor. Rather, the sorbent would be packed relatively densely as it moved past the heat transfer surfaces. However, due to the lower heat transfer coefficients, the heat transfer surface area required was significantly greater than that of the staged fluidized beds, so the total number of reactors was significantly greater, as were the capital costs.

It is well known that the required heat transfer surface area has an impact on reactor cost. In fact, Peters and Timmerhaus³¹ recommend using correlations for heat exchangers to estimate relative costs for reactors that are also responsible for large amounts of heat transfer. The data extracted for Figure 4 is from Peters and Timmerhaus³¹ and shows the relative cost for heat exchangers. Note that the surface area and costs are plotted on a logarithmic axis; the costs increase significantly as the heat exchange surface increases. ADA and project partners actually obtained vendor quotes when comparing moving bed and fluidized bed heat exchangers. While these quotes are considered confidential and cannot be included in this report, they support the conclusion that the significantly lower heat transfer surface area required for fluidized beds results in lower overall capital costs.

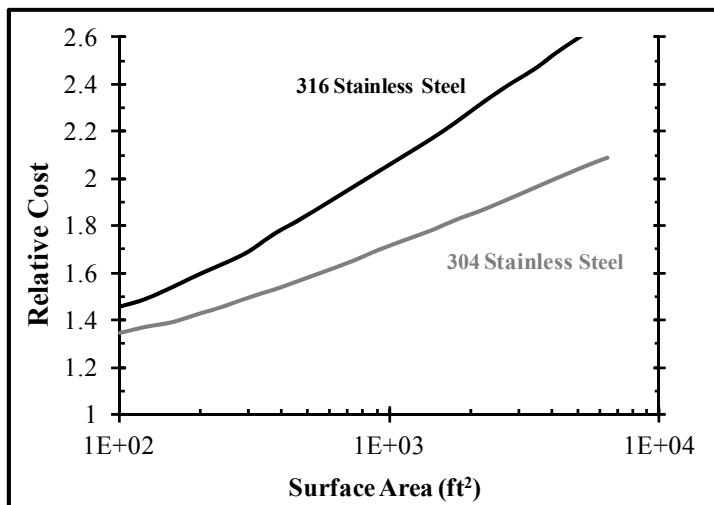


Figure 4. Relative cost for heat exchanger based on surface area from Peters and Timmerhaus.³¹

It has clearly been shown that the overall heat transfer coefficient in a bubbling fluidized bed is superior to that of other reactor types and that translates into lower surface area. For this reason, a bubbling fluidized bed was selected as the optimal reactor type. However, a single fluidized bed is not optimal for adsorption. Rather, multiple stages of fluidized beds must be used to approach a counter current flow and increase the loading on the sorbent.

3.1.2 Sorbent Selection and Characterization

Selecting the optimal sorbent characteristics for successful implementation across the coal-fired power sector requires consideration of several factors. Furthermore, it is not a simple task to quantitatively compare different adsorbents using laboratory tests in a manner that can be extrapolated to inform long-term, full-scale decisions. Criteria for comparison can be developed, based on fundamental considerations.

More than 250 sorbents were screened in ADA's laboratory, either in a fixed bed or in a thermogravimetric analyzer (TGA), prior to initiation of this project and this data was used to identify appropriate candidate sorbents for scale-up in a TSA process. Limited sorbent screening followed by extensive laboratory characterization was completed during this program to select a sorbent type appropriate that would be optimal in a TSA process, and to characterize that sorbent in the detail required to provide required information to estimate full scale economics and design specifications for the 1 MWe pilot system. The key sorbent characteristics identified for process design consideration are listed below.

- CO₂ working capacity
- Cyclic stability
- Reaction kinetics
- Effect of flue gas constituents including SO₂ and moisture
- Heat of Reaction
- Resistance to attrition
- Physical characteristics: particle size distribution and density
- Sorbent cost
- Sorbent fluidization and handling properties
- Heat transfer coefficient

At the onset of this project, two types of sorbents were under consideration: activated carbons and supported amine sorbents. Supported amine sorbents were ultimately selected because they were able to capture more CO₂ by weight in a temperature-swing process between adsorption and regeneration conditions. Using this type of sorbent in a fluidized-bed process resulted in lower sorbent circulation rates in a fluidized-bed process design and expected lower total regeneration heat duty. If activated carbon were selected, a different process design, such as a fixed monolithic design operating in a TSA environment with a slight pressure swing, may have provided advantages.

Once the sorbent type was selected, a specific sorbent was identified and characterized so that design specifications for the 1 MWe pilot could be finalized. Three promising supported amine sorbents were evaluated and compared. An ion exchange resin functionalized with a primary amine was selected due to its relatively high CO₂ capacity in a temperature-swing process, acceptable particle size, stability in the presence of moisture, stability at temperatures of 120°C or greater, and the ability to purchase and/or produce the material on the scale required for the 1 MWe pilot.

After the specific sorbent was selected, it was characterized using various experimental equipment and techniques including thermogravimetric analysis (TGA), mass spectrometry (MS), differential scanning calorimetry (DSC), and jet cup attrition tests.

3.2 Key Sorbent Selection Criteria

There are several key selection criteria that were used to compare different sorbents.

3.2.1 CO₂ Delta Loading

The CO₂ delta loading (or the working capacity) is considered the most important selection criteria for sorbents and is directly related to how much sorbent must be circulated, which affects the regeneration energy (sensible heat), the conveying requirements, and the sizes of the adsorber and regenerator vessels. The CO₂ delta loading (g CO₂/100 g fresh sorbent) is defined as follows:

$$CO_2 \text{ Delta Loading} = 100 * \frac{m_{CO_2\text{-adsorption}} - m_{CO_2\text{-regeneration}}}{m_s} \quad (4)$$

where;

$m_{CO_2\text{-adsorption}}$ is the CO₂ loading at the capture/adsorption conditions, g

$m_{CO_2\text{-regeneration}}$ is the CO₂ loading at regeneration conditions, g

m_s is the sorbent mass, g

Note that the terms delta loading and working capacity are often misused in the public literature. To determine a CO₂ delta loading, the adsorption and regeneration temperature and CO₂ partial pressure must be specified. For the purposes of the evaluations discussed in this report, the adsorption conditions are characterized by low temperature (40 to 60°C) and low CO₂ partial pressure (0.1 to 0.2 bar). The regeneration conditions are characterized by higher temperatures (greater than 90°C) and higher CO₂ partial pressure (0.8 to 1.0 bar). For the purposes of comparing different sorbents, the CO₂ delta loading is calculated using the equilibrium conditions at these temperatures and partial pressures. However, in an actual commercial system the sorbent will likely not achieve equilibrium loading due to factors such as limited residence time, slight variations in temperature, and varying partial pressure of CO₂ in a full-scale system. A qualitative assessment of laboratory results that can indicate changes in reaction time as a result of changes in temperature should be incorporated into a commercial design process. Any commercial system will then need to be optimized for cost and performance.

3.2.2 Cyclic Stability

The act of repeatedly heating and cooling some sorbents leads to the slow degradation of the material. For some supported amines, volatilization of the amine can occur due to only a temperature swing, which is considered unacceptable for a commercial process. Cyclic stability can be measured in the laboratory, but requires a significant time commitment and can therefore be easily overlooked. Under

DE-FE0004343 cyclic stability was considered a key selection criterion and was assessed at realistic regeneration conditions.

3.2.3 Reaction Kinetics

One important reason that a sorbent may not achieve equilibrium CO₂ loading in an operating system is due to kinetics. Unfortunately, measuring kinetics is not always straightforward. The rate of CO₂ uptake can be highly dependent on temperature, CO₂ partial pressure, sorbent particle size, gas/solids contacting, etc. For this reason, the sorbent kinetics must be determined under conditions that are relevant to the final process under consideration. If assessed properly, the kinetics can be used to determine many important process factors, such as required contacting time, equipment size, contacting scheme, etc.

Kinetic information was obtained from TGA data and from trickle down reactor data. The rate that a sorbent will remove CO₂ in a fluidized bed is governed by the mass transfer of the CO₂ in the gas to the sorbent, which is fairly efficient in a fluidized bed, the rate that the sorbent reaches the adsorption temperature, and the reaction kinetics of the sorbent.

The first test to assess kinetics was using the trickle-down reactor, a 2.29 m (7.5 ft) long, heated drop-tube reactor. Sorbent, at the adsorption temperature, was introduced at the top of the tube and a mix of nitrogen and CO₂ at the desired concentration was introduced at the bottom. The CO₂ concentration was measured at the top of the tube where the gas was exiting. The sorbent residence time in the tube was less than 2 seconds. Unlike the TGA tests where the temperature was changed to initiate a new test condition, for the drop tube tests, the sorbent was at the test temperature and both the CO₂ concentration and the flow conditions were changed. Although the reaction between the sorbent and CO₂ was exothermic in both cases, the base material was at the correct adsorption temperature at the beginning of the drop tube test.

The TGA is designed to measure equilibrium conditions, but some indications of reaction rate can be extrapolated from the rate of mass change over time as conditions are modified. In understanding how to interpret kinetic data, it is important to understand how long it takes sorbent particles to equilibrate with the gas. For a spherical particle with radius R_p , the characteristic time for relaxation³² of the temperature profiles in the gas phase around the particle is

$$\tau_h = \frac{R_p^2}{\alpha} \quad (5)$$

where $\alpha = k_f / (\rho_f C_p)$ and k_f is the thermal conductivity of the gas, ρ_f is the gas density, and C_p is the gas

heat capacity. For characteristic times approaching the relaxation time or shorter than it, the system cannot follow the imposed temporal changes. Similar to heat transfer, the characteristic time for relaxation of concentration profiles in the gas phase around the particle is

$$\tau_m = \frac{R_p^2}{D_{AB}} \quad (6)$$

where D_{AB} is the diffusivity of species A in a gas mixture of A and B. The characteristic time for heat transfer within the spherical particle is

$$\tau_{hp} = \frac{R_p^2}{\alpha_p} \quad (7)$$

Where $\alpha_p = k_p / \rho_p C_{pp}$ and k_p is the thermal conductivity of the particle, ρ_p is the particle density, and C_{pp} is the particle heat capacity. For a 100 micron spherical particle of Sorbent BN in a gas of CO₂ and N₂ at 120°C, the characteristic times are:

$$\tau_h = 1.57 \times 10^{-6} \text{ seconds}$$

$$\tau_m = 3.85 \times 10^{-6} \text{ seconds}$$

$$\tau_{hm} = 0.02 \text{ seconds}$$

The characteristic time for equilibration of the temperature *inside* the particle is much greater than the characteristic time for equilibration of temperature or concentrations profiles around the particle. Thus, if there is a release of heat on the particle surface, the heat will be largely conducted out into the gas.

The time scales of adsorption or desorption in the TGA are on the order of minutes. Therefore, the temperature BN particles in the TGA will have sufficient time to equilibrate as temperature is changed in the TGA.

In order to utilize TGA results, it is valuable to estimate the mass transfer coefficient and the kinetic rate coefficient to determine whether the process is kinetically or mass transfer limited in the test apparatus. As discussed by Fogler in *Elements of Chemical Reaction Engineering*, mass transfer uses similar relationships to heat transfer.³³ One of the most important relations is the Frossling correlation:

$$Sh = 2 + 0.6 Re^{\frac{1}{2}} Sc^{\frac{1}{3}} \quad (8)$$

Equation 4 yields the Sherwood number, which is dimensionless and is a function of the dimensionless Reynolds number and Schmidt number. The Sherwood number for a spherical particle may be expressed by:

$$Sh = \frac{K_c D_p}{D_{AB}} \quad (9)$$

in which K_c is the mass transfer coefficient, D_p is the particle diameter, and D_{AB} is the diffusivity. The Schmidt number is given by:

$$Sc = \nu / D_{AB} \quad (10)$$

whereby ν is the kinematic viscosity of the bulk gas and D_{AB} is the diffusivity of the gas.

Rearranging these equations it is possible to solve for K_c . Even at a lower limit of the Reynolds number equal to 0, which is the worst case for mass transfer, the value of K_c approaches a value of 0.5 m/s for a particle size of 100 microns, which is well within the pilot sorbent size distribution. The number is not as important as the order of magnitude, which will now be explained.

Fogler also provides a relation for a simple model of one reacting gas species on a spherical particle if the particle is kinetically limited:

$$-r_{As}'' = \frac{K_r C_A}{(1+K_r/K_c)} \approx K_r C_a \quad (11)$$

$-r_{As}''$ is the rate of disappearance of species A per unit area of particle surface in the units of mol A/m²s.³³ The value of $-r_{As}''$ may be calculated using TGA data whereby the number of moles of CO₂, in this case species A of interest, has adsorbed on sorbent particles' surfaces. Using the known sorbent density, an estimate of 100 micron size particles, and the mass of sorbent loaded in the TGA, it is possible to estimate a sorbent surface area. Since the duration of the TGA test is also known, it is possible to calculate the moles of CO₂ adsorbed per square meter each second to determine the value of $-r_{As}''$. Since the concentration of CO₂ is also known in the TGA, the value of C_a is also known, or in this case, C_{CO₂}.

Using this information, it is possible to solve for K_r. In this particular example, K_r = 10⁻⁶ m/s, which is five orders of magnitude smaller than the corresponding value for K_c in an artificial worst-case scenario with no flow, indicating that the sorbent in the TGA is clearly not mass-transfer limited and equation 11 is appropriate and valid.

It is important to note that in the TGA there is flow of gas past the pan of sorbent, promoting mass transfer of CO₂ from the bulk gas to the area around the pan. The models presented above indicate that mass transfer is not a limiting factor in any practical analysis of this sorbent, which is why working capacity of sorbent measured in the TGA was nearly equivalent regardless of whether the sorbent had been milled, was beaded into large 1 mm particles, had been used in the pilot, or was a manufactured sample investigated in the lab.

3.2.4 Effect of Flue Gas Constituents including SO₂ and Moisture

Through previous evaluations, it was determined that all sorbents that chemically react with CO₂ will also chemically react with SO₂. In the case of supported amine sorbents, the chemical bond between the SO₂ and the amine is considered a heat-stable salt because it will not decompose in a simple temperature swing. This is also a concern for aqueous amine capture processes. The effect of flue gas constituents must be considered when selecting sorbents, because the cost implications of replacing and/or treating sorbents for reclamation could be considerable.

During previous sorbent screening, it was determined that some sorbents, such as zeolites, preferentially adsorb moisture over CO₂. Such sorbents were not considered or evaluated under DE-FE0004343. Only materials that could effectively remove CO₂ in the presence of saturated conditions were considered feasible options. However, even such sorbents may adsorb and release H₂O under the adsorption and regeneration conditions of the CO₂ capture process. Because the uptake of H₂O during adsorption and release of H₂O during regeneration contribute additional energy requirements to the CO₂ capture process, it is important to quantify the uptake of H₂O on sorbents at realistic operating conditions.

3.2.5 Heat of Reaction

The reaction between amine functionalized sorbents and CO₂ is exothermic, thus heat is generated. Likewise, when the sorbent is heated to promote the release of CO₂ during regeneration, heat input is required because the release of CO₂ is endothermic. Understanding these requirements for heat input is crucial for designing the overall CO₂ capture process. An external laboratory was hired to measure the heat generated by reacting sorbent with CO₂ using calorimetry. Because the calorimeter was not integrated with a thermogravimetric analyzer, the isotherms generated separately with the TGA were used to estimate the CO₂ uptake at the different calorimeter test conditions.

3.2.6 Resistance to Attrition

Eventually some sorbents will be physically broken down due to the mechanical wear and tear of being circulated. Depending on the type of system utilized for the capture process, the attrition may be defined differently. In general, a sorbent has been unacceptably attrited when it is undesirably entrained by process gas streams (either during adsorption or regeneration). At this point it will no longer be useful to the CO₂ capture process and must be separated from the gas stream by a baghouse or other means. The rate of attrition is related to the physical strength of the sorbent and the process in which the sorbent is being used. The physical strength of the sorbent is considered a key selection criterion because high attrition levels would result in sorbent replacement rates that would negatively impact the overall process economics. Quantifying attrition can only be accomplished by operating for long periods of time in the actual CO₂ capture system. However, there are several different types of laboratory-scale tests that can provide qualitative comparisons of the physical durability of different potential sorbents, including jet-cup attrition and crush strength.

Jet-cup attrition testing is a common method for evaluating the friability of solids, such as catalysts, and evaluating particle attrition in fluidized beds.

Crush strength provides a quantitative measurement of particle hardness. However, it does not provide a means to directly predict attrition because this is a highly process-dependent quantity. For the most promising beaded material provided to the sorbent screening program, the crush strength was measured.

3.2.7 Physical Characteristics: Particle Size Distribution and Density

Particle densities were measured for two promising sorbents. The testing was conducted using a proprietary experimental method. The particle density is defined as the mass per unit particle. This quantity is necessary for determining fluidization and entrainment related properties.

To maintain proper fluidization within the adsorber, the sorbent particles are sized to retain a Geldart A distribution for fluidized beds at up to 1.4 m/s (4.6 ft/s) gas velocity.

3.2.8 Sorbent Cost

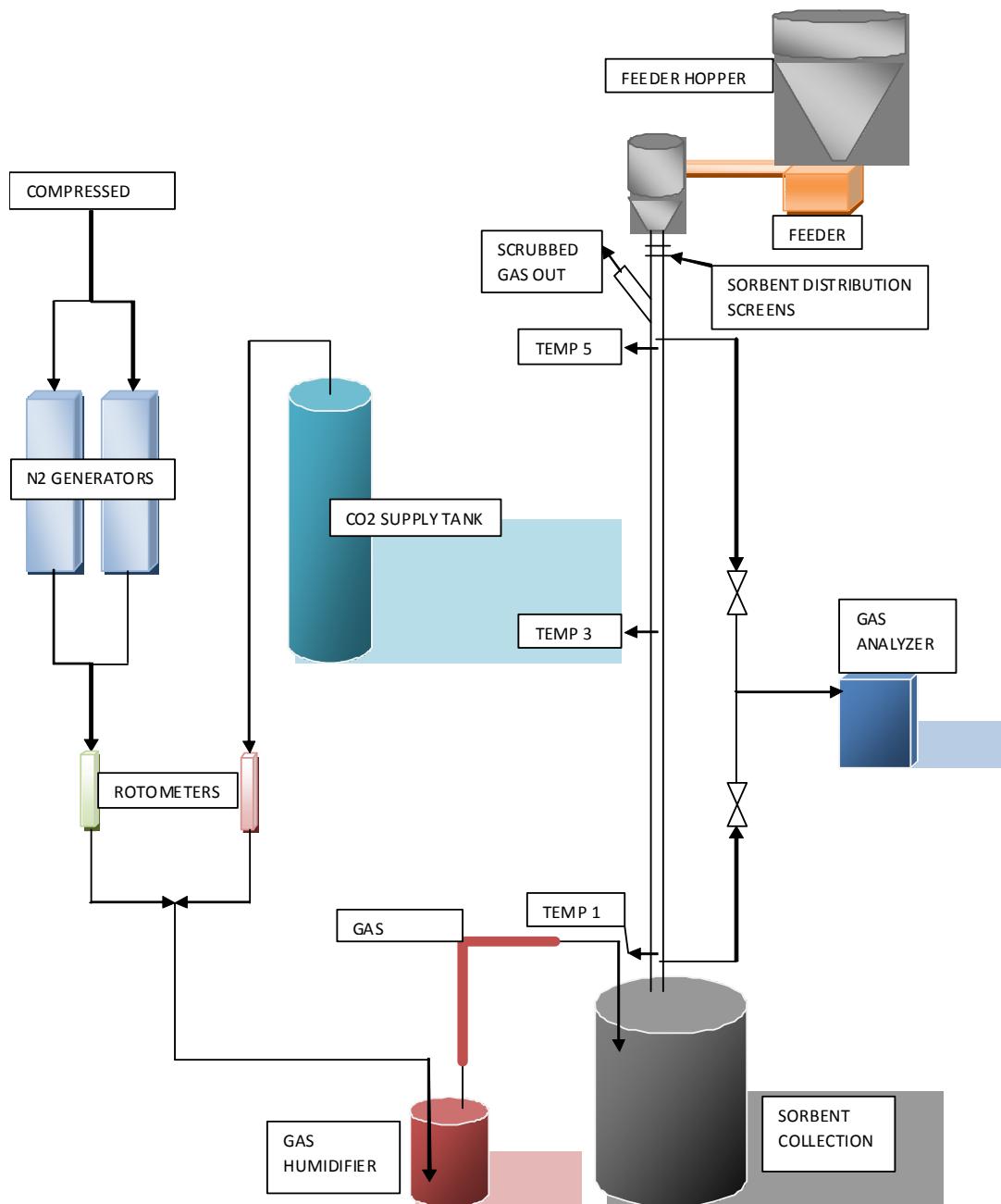
Sorbent cost is a key selection criterion due to the importance of this term on the overall process economics. Because no large-scale market exists today for many of the sorbents being evaluated for CO₂ capture, it is difficult to get an accurate assessment of commercial sorbent costs. However, it is possible to gain order of magnitude estimates based on raw materials and processing complexity. The base sorbent cost used for economic modeling was \$5/lb, based on raw material costs and aggressively limiting scale-up manufacturing costs.

3.2.9 Sorbent Fluidization and Handling Properties

Adequate sorbent fluidization and conveying are critical to success with a fluidized bed. For example, if particles agglomerate or demonstrate other characteristics that are unpredictable or not conducive to stable fluidization or handling, operation of the overall system will be affected.

3.2.10 Heat Transfer Coefficient

The heat transfer coefficient of a sorbent is a function of both the process and the sorbent. The heat transfer coefficient measured in a fixed bed of sorbent will differ from the heat transfer characteristics in a fluidized bed. The metric of interest is the behavior in the actual full-scale process.


3.3 Experimental Methods

3.3.1 Trickle Down Reactor

The isotherms developed using the TGA are useful to determine optimal process conditions (i.e., temperatures and CO₂ concentrations). However, these laboratory tests are insufficient to fully answer questions about kinetics, required contact times etc., in different types of solid/gas contact devices. One of the reactor configurations considered for this project was a counter current (i.e., trickle down) reactor for adsorption, where the flue gas velocity would be low enough so as not to entrain the sorbent particles. ADA constructed and operated a bench-scale counter current reactor to identify the required contact time for sorbent BN to remove 90% of CO₂ from simulated flue gas. The objectives of the test included the following:

- Determine the approximate height of the adsorber required for 90% CO₂ removal
- Qualitative assessment of sorbent kinetics of adsorption

A schematic of the test apparatus is provided in Figure 5. The adsorber section consists of an insulated 5 cm ID (2 inch ID), 2.29 m (7.5 ft) long section of polycarbonate tubing with temperature and gas sample ports at the top, middle, and bottom. Simulated “flue gas” was created by blending nitrogen and CO₂ and passing the gas stream through a humidifier. The gas was then heated to the required temperature in the heating section prior to entering the sorbent collection barrel. The gas then flowed up the adsorber section where it came in contact with the downward flowing sorbent. Sorbent was introduced to the adsorber section by a vibratory feeder at a controlled rate. The sorbent passed through two (2) distribution screens prior to entering the adsorber to distribute the sorbent evenly across the adsorber cross-section. The mean diameter of the sorbent was 0.9 mm and the particle density was approximately 385 kg/m³.

Figure 5. Counter Current Contactor (Trickle Down Reactor) Testing Schematic.

3.3.2 Thermogravimetric Analyzer

A thermogravimetric analyzer (TGA) was used to measure the CO₂ loading for select sorbents under different temperatures and CO₂ partial pressures. The TGA used during sorbent evaluation was a Perkin Elmer Pyris 1. The TGA was operated at less than standard atmospheric pressure, because the tests

were conducted at ADA's headquarters in Highlands Ranch, CO (elevation 1643 m); therefore, without additional pressurization of the apparatus, when 100% CO₂ gas was used, the CO₂ partial pressure was only 0.81 bar. Note that a small amount of moisture was added to the gas while using the TGA in order to introduce a humid environment, which the sorbent would experience in practice. Unless moisture uptake was specifically being evaluated, the moisture levels were approximately less than 1% by volume even though flue gas moisture content could be up to 10% moisture. One of the main reasons for this limitation is that in a TGA there are very small diameter tubes that convey gas streams. If there is a cold spot along the tubes, then water may condense and invalidate the test or cause damage to the tubes. For this reason, humidified testing was conducted below saturation. The test details are provided in Table 5.

Table 5. Typical TGA Operating Conditions.

TGA	Sample Size (mg)	Gas Flow Rate (mL/min)	Temperatures Evaluated (°C)	CO ₂ Partial Pressure (bar)	Dew Point (°C)
Perkin Elmer Pyris 1	1-5	100	40 to 170	0, 0.04, 0.081, 0.15, 0.5, 0.81	<22 to 45

A mass spectrometer (MS) was installed downstream of the TGA for certain experiments to measure the gas concentrations, including potential decomposition products of the amine, if applicable. The test setup is shown in Figure 6 with the TGA on the right hand side of the picture, the MS in the middle and the computer used for data acquisition on the left hand side of the picture.



Figure 6. Laboratory Experimental Equipment: TGA (Right) and Mass Spectroscopy (Left).

3.3.3 Fixed Bed Reactors

A specialized fixed bed reactor was designed to be used in the laboratory on simulated flue gas as well as in the field on actual flue gas. The system was fully temperature controlled and incorporated a series of automated valves to allow cycling between adsorption and regeneration conditions. A Programmable Logic Controller (PLC) was employed to completely automate the testing process. A sketch of the system configured for either simulated gas in the laboratory or actual flue gas in the field is presented in Figure 7.

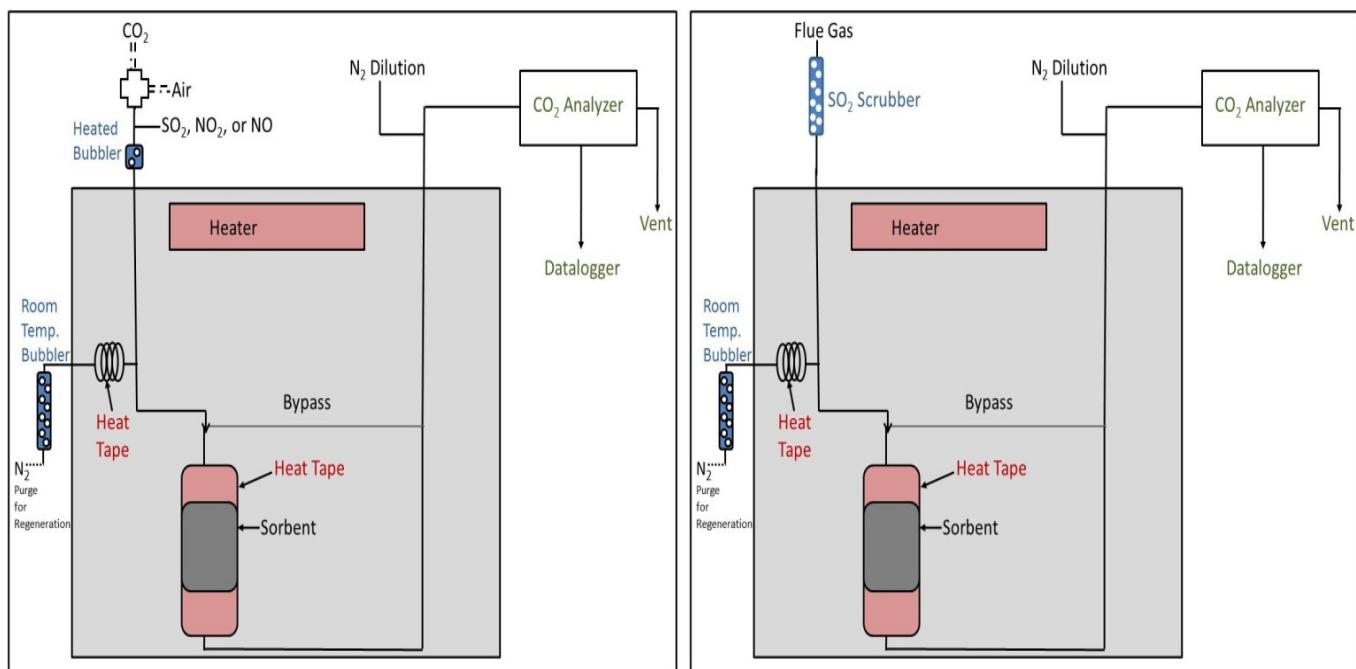


Figure 7. Sketch of the Fixed Bed Sorbent Screening Test Unit Configured for the Laboratory (Left) and Field (Right).

The flow rate of either simulated or actual flue gas was approximately 300 mL/min, and the amount of sorbent in the reactor was typically in the range of 0.4 to 2.5 g. The regeneration profile was measured while the sorbent was heated under a nitrogen (N_2) purge so that observation of the regeneration breakthrough curve could be monitored for degradation due to temperature cycling. An example of the breakthrough curve during adsorption, and the regeneration profile, are shown in Figure 8.

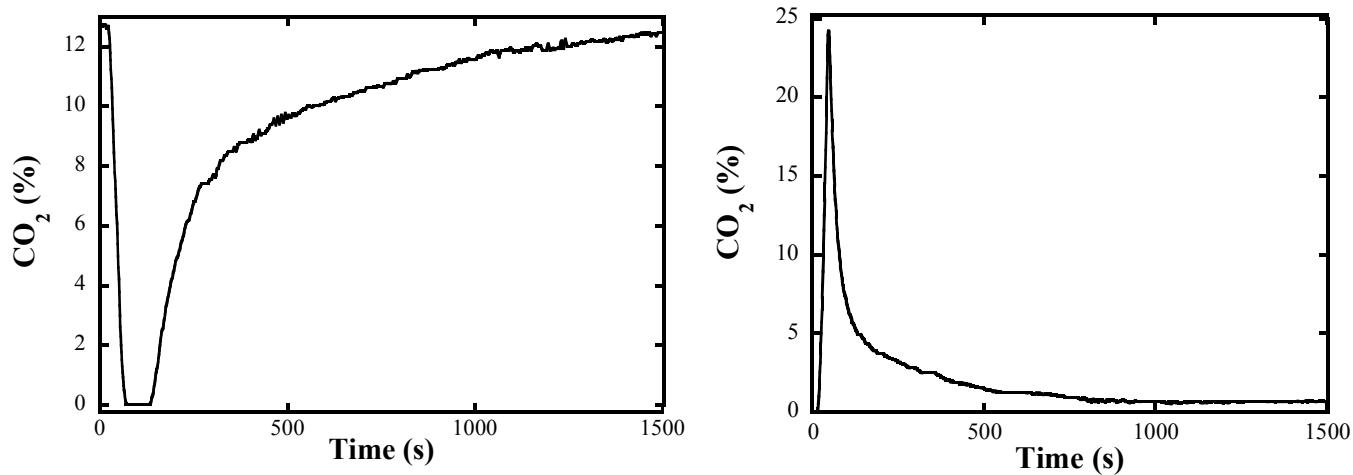


Figure 8. Example of Fixed Bed Adsorption (left) and Desorption (right) Breakthrough Profiles.

Tests conducted using the fixed-bed device are focused on measuring the cyclic stability of the materials when the same adsorption and regeneration conditions are used repeatedly over an extended test period (days or weeks).

3.3.4 Laboratory-Scale Fluidized Bed Reactors

Jet-cup attrition testing was conducted through an outside laboratory. For the test, a sample of solid particles is contained in a small cup and high velocity gas is introduced to the cup tangentially. For the tests reported herein, the 20°C (70°F) gas was introduced at 300 ft/sec for two hours. Particle size distribution was measured using a Sympatec Halos Particle Size Analyzer before and after the test.

Two cold flow models were used during this program. Initial testing was conducted by PSRI Inc. In one of their standard testing setups and provided information on solid handling characteristics and could be used to measure heat transfer in air.

A second cold flow model was designed to mimic some of the basic fluidization and conveying processes that were designed into the pilot scale unit. A photo of this model is shown in Figure 9. The second model was constructed with two stages and multiple cyclones to allow investigations into fluidization regimes expected in the pilot facility. The benefit of this model was that it allowed for systematic testing of sorbent material at a wide range of fluidization gas velocities, and was used for operator training.

Figure 9. Photo of ADA Cold Flow Process Model.

The key system characteristics that are affected by sorbent properties that can be evaluated using the cold-flow models include:

- Fluid bed density
- Gas velocity and particle size required to achieve the formation of small bubbles
- Entrainment rate
- Heat transfer coefficient
- Sorbent size distribution
- Geldart classification
- 90% size distribution
- Particle density
- Bulk density (fluffed)
- Minimum fluidization velocity
- Heat of reaction

3.4 Selection of Sorbent Type

Prior to the commencement of DE-FE0004343, extensive sorbent screening had already been completed and many different types of sorbents were characterized. Two sorbent types were under consideration for this project: supported amines and activated carbons. The high-level pros and cons for each sorbent type were as follows.

- Supported Amines
 - Advantages
 - Higher CO₂ delta loading
 - Demonstrated performance in high moisture environments
 - Concerns
 - Effect of flue gas constituents (SO₂ was specifically a concern, similar to aqueous amine CO₂ capture systems)
 - Some, although not all, supported amines were not cyclically stable
 - Sorbent cost
- Activated Carbons
 - Advantages
 - Demonstrated performance in high moisture environments – a small decrease in CO₂ capacity was observed due to moisture, but for many materials the effect was not dramatic
 - Not chemically affected by the presence of SO₂ and other flue gas contaminants
 - Consistent cyclic stability
 - Acceptable sorbent cost
 - Concerns
 - CO₂ delta loading
 - Selectivity and CO₂ purity

For the purposes of final sorbent selection, a CO₂ delta loading was required. This CO₂ delta loading dictates the amount of sorbent that would be required to capture 90% of CO₂ from flue gas. The actual conditions (i.e., temperature and CO₂ partial pressure) to which the sorbent will be exposed are determined by the capture/regeneration process.

Heat for regeneration can be provided indirectly through heating coils or directly through steam or other heated gas. Any H₂O mixed with CO₂ leaving the regenerator will necessitate the addition of condensers to separate the H₂O from the CO₂ exhaust.

It should be noted that if steam is used for direct heating during regeneration, lower CO₂ partial pressure in the regenerator will result in a larger CO₂ working capacity. However, indirect heating allows for better control of the system to prevent hot-spots and potential damage to the sorbent as a result of exposure to high temperatures. The thermal capacitance of the steel steam tubes acts as a buffer between high temperature steam excursions and the isothermal regeneration of the sorbent. If the sorbent is exposed to repeated or excessive incidental temperature excursions higher than 120 °C, the amines may be off-gassed and the sorbent base structure irreparably damaged.

Additionally, direct contact heating of the sorbent with steam could result in a greater percentage of water adsorption and absorption by the sorbent, especially during transient operating conditions. Any water vapor that condenses within the system would be absorbed by the sorbent in a liquid form and physisorbed in vapor form. The subsequent heating of the sorbent in the regenerator would include heating of the water, which has a higher specific heat than the dry sorbent. The regenerator would require greater amounts of heat transfer to reach the same temperatures due to the entrained water. The additional moisture in the sorbent would create an energy penalty contradictory to a key goal of dry sorbent technology – to reduce the energy penalty of liquid sorbents caused by the latent and sensible heat required by the water component of the sorbent.

Another attribute associated with larger amounts of water absorption by the sorbent is the flowability. As the sorbent absorbs water, the adhesion of the sorbent increases, causing greater flow and transport difficulties within and between the fluidized bed systems. Dry sorbent requires lower gas pressure to transport and fluidize due to lower density, and has a lower likelihood of clogging transport lines. Higher density, moist sorbent would result in a higher energy penalty and a greater safety risk during operation due to higher required duct pressures.

The physical equipment and real-world operations of CO₂ capture would include startup and transient operating regimes that could result in large quantities of water condensation in the sorbent. The theoretical benefit of direct contact heating is not great enough to warrant risking unsustainable operating characteristics or the safety of personnel.

For two of the most promising activated carbon samples, the CO₂ capacity was measured using the TGA at temperatures between 30 to 120°C at three different partial pressures of CO₂, 0.081, 0.5, and 0.81 bar. Note that the TGA was operated at atmospheric pressure at the testing location where the ambient pressure was only 0.81 bar. Therefore, the 0.81 bar CO₂ partial pressure corresponds to 100% CO₂ gas.

For the sorbent selected for the 1 MWe pilot it is important to note that the H₂O concentration in the regenerator exhaust was approximated to be 10 to 20 vol%. Thus, a CO₂ pressure of 0.8 to 0.9 bar was appropriate for regeneration. Therefore, for the purpose of comparing different sorbent types, the general conditions of 40°C, and 0.081 bar CO₂ for adsorption and 120°C and 0.81 bar CO₂ for regeneration were appropriate to calculate CO₂ delta loading.

Two different potential activated carbon sorbents were evaluated. The CO₂ loading versus CO₂ partial pressure for the two best activated carbons noted as Sorbent AM and Sorbent AN are provided in Figure 10 and Figure 11, respectively.

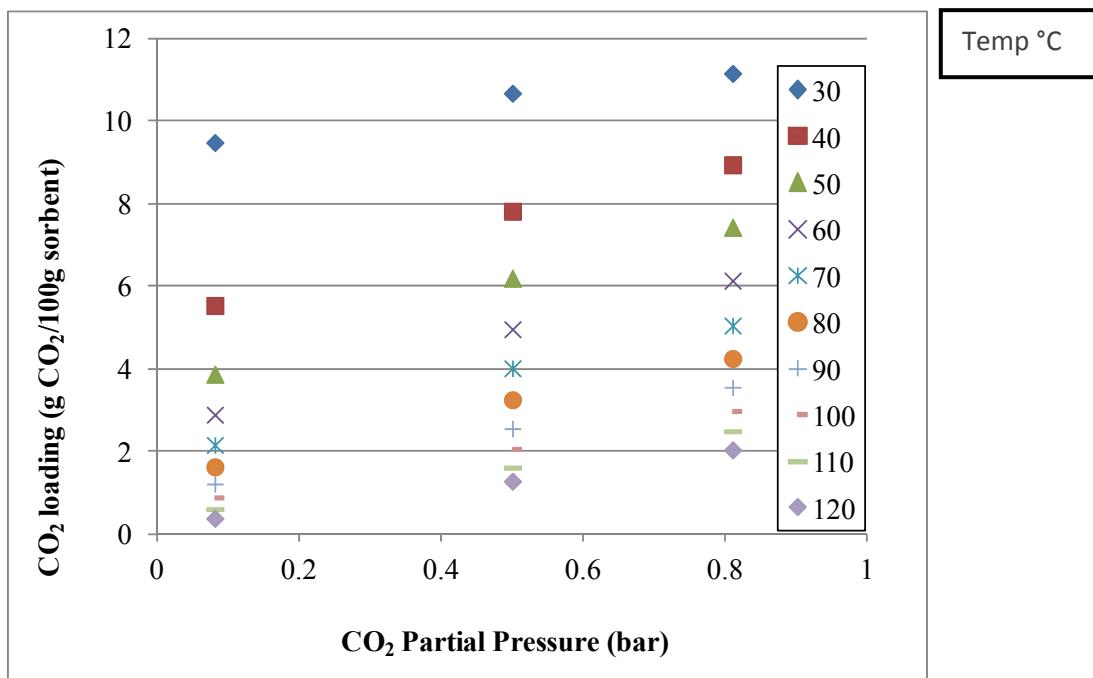


Figure 10. Sorbent AM (Activated Carbon) CO₂ Capacity at Various Temperatures and CO₂ Partial Pressures.

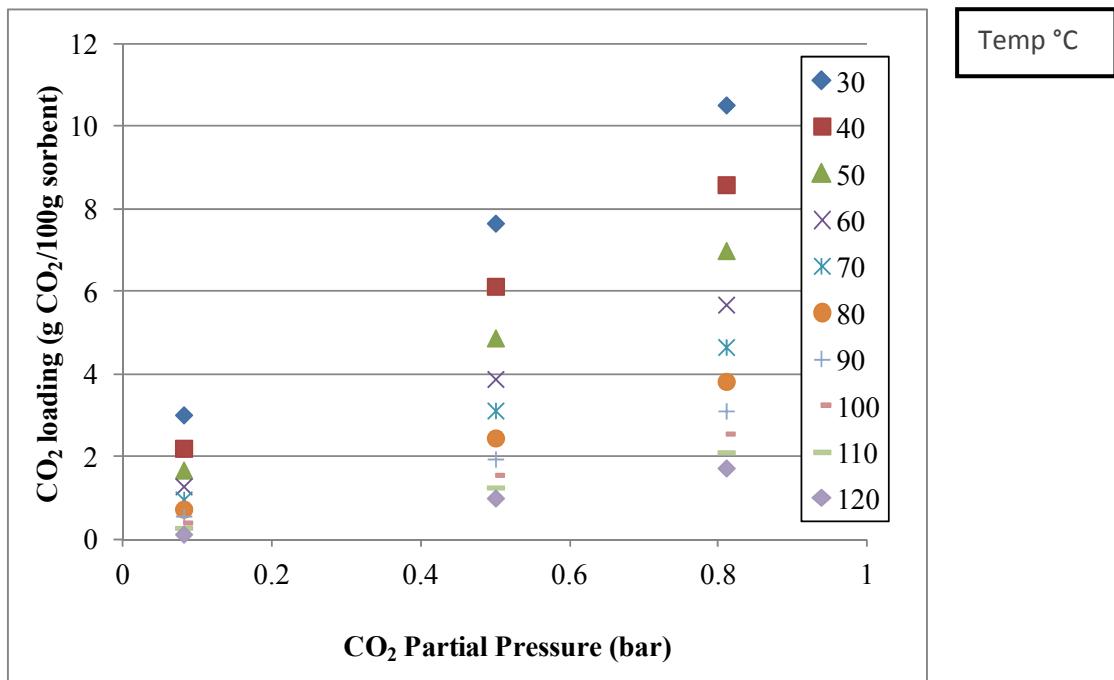
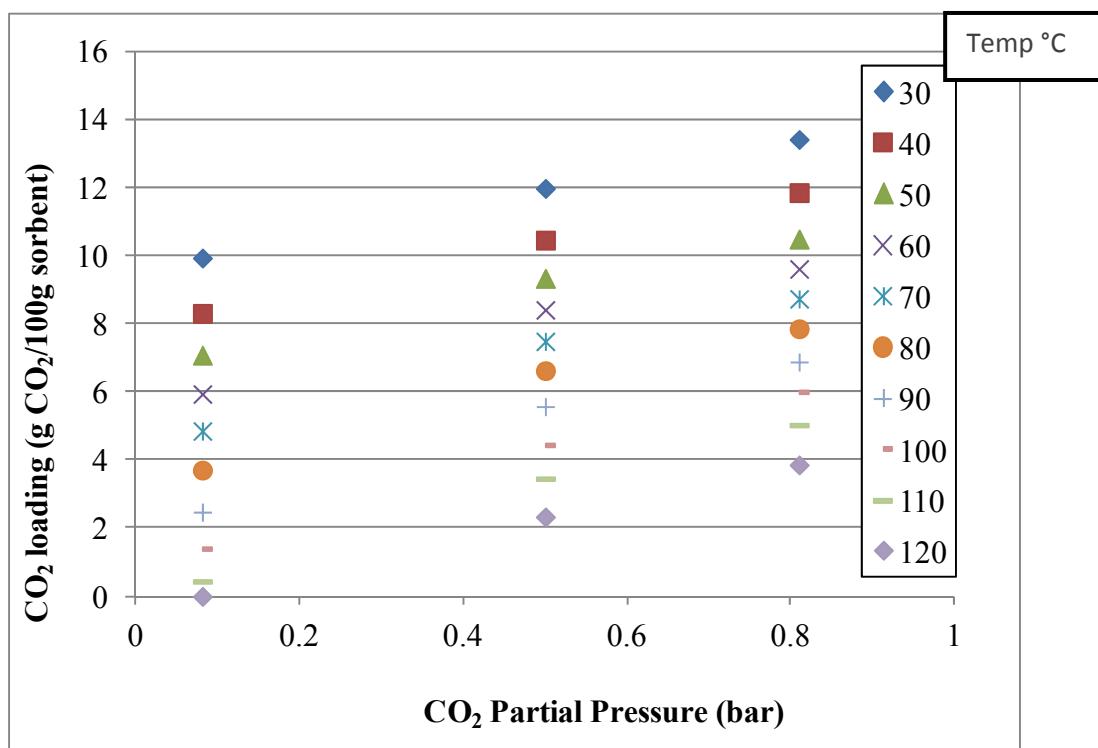



Figure 11. Sorbent AN (Activated Carbon) CO₂ Capacity at Various Temperatures and CO₂ Partial Pressures.

The relationship between the CO₂ loading and the CO₂ partial pressure for the activated carbon samples is indicative of what is often observed for physical adsorption samples. The CO₂ loading continues to increase with increasing CO₂ partial pressure, even at low temperatures. An important characteristic of the data shown in Figure 10 and Figure 11 is that the CO₂ loading can decrease dramatically when the sample temperature is increased.

Based on the loading values shown in Figure 10, the CO₂ delta loading of the first activated carbon sorbent, between the conditions of 40°C, and 0.081 bar CO₂ for adsorption and 120°C and 0.81 bar, was approximately 3.5 g CO₂/100 g fresh sorbent. Based on the loading values shown in Figure 11, the CO₂ delta loading of the second activated carbon sorbent, between the conditions of 40°C, and 0.081 bar CO₂ for adsorption and 120°C and 0.81 bar, was approximately 0.5 g CO₂/100 g fresh sorbent. Recall, the lower the CO₂ delta loading requires a higher sorbent circulation rate in the process in order to maintain CO₂ removal efficiencies. Higher circulation rates may result in larger equipment and higher capital costs which negatively impact the overall process economics.

The CO₂ loading at different temperatures and CO₂ partial pressures was also measured for three different supported amine sorbents. Sorbent F, the data for which is provided in Figure 12, is characterized by a tertiary amine grafted onto mesoporous silica. The total CO₂ uptake for the sorbent was higher than many other materials. However, for the process of CO₂ capture it is the CO₂ delta loading between adsorption conditions and desorption conditions that is more important. For the data shown in Figure 12, the delta loading, between the conditions of 40°C, and 0.081 bar CO₂ for adsorption and 120°C and 0.81 bar, is approximately 4.5 g CO₂/100 g fresh sorbent. The shape of the isotherms shown in Figure 12 indicated that the CO₂ uptake for this particular sorbent is due to both physical and chemical adsorption because there is a slight increase in the CO₂ loading at low temperature as the partial pressure is increased.

Figure 12. Sorbent F (Supported Amine) CO₂ Capacity at Various Temperatures and CO₂ Partial Pressures.

Sorbent CE, the supported amine sorbent used to generate the data shown in Figure 13, is characterized by a combination of polyethlyeneimine (PEI) and 3-(aminopropyl)triethoxysilane (APTES) immobilized on a porous silica support. For this material the CO₂ loading doesn't increase significantly between the 0.5 and 0.8 CO₂ partial pressure measurements at low temperature, which indicates that the CO₂ uptake is due primarily to chemical reaction, rather than physical adsorption. The delta CO₂ loading is calculated as approximately 4.0 g CO₂/100 g fresh sorbent.

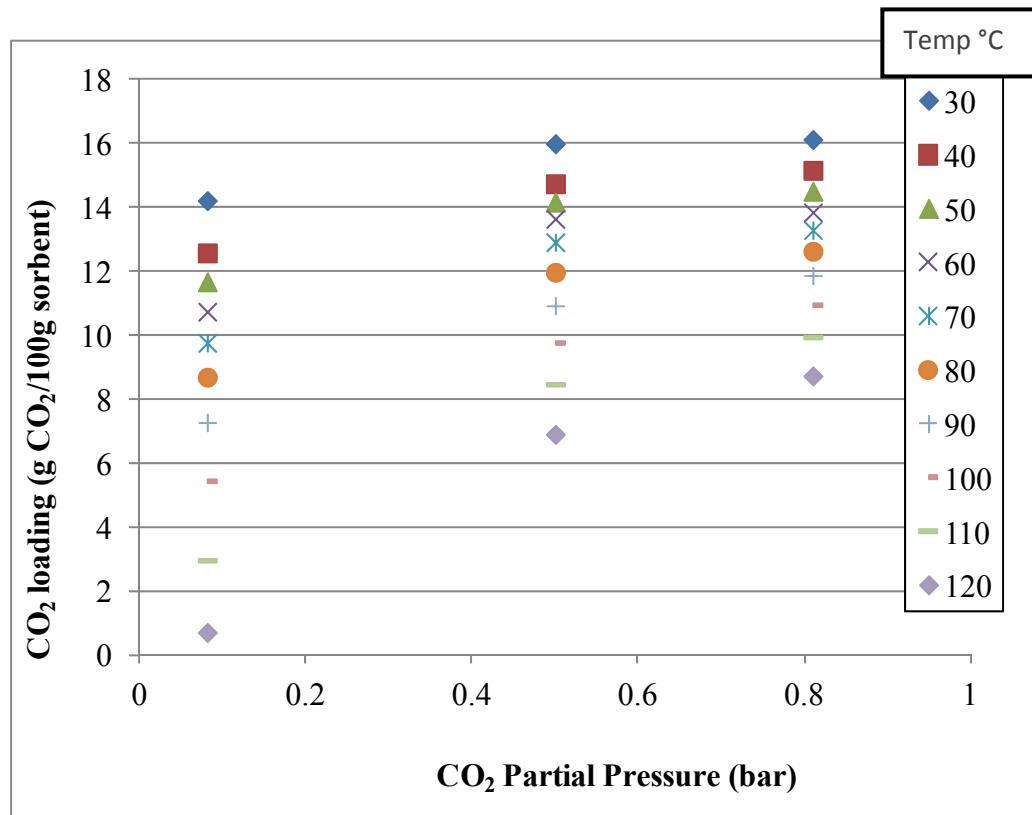


Figure 13. Sorbent CE (Supported Amine) CO₂ Capacity at Various Temperatures and CO₂ Partial Pressures.

Sorbent BN, the amine functionalized sorbent that was used to generate the CO₂ loading profiles provided in Figure 14, is characterized by a primary amine grafted onto the surface of an ion exchange resin. Similar to the loading data provided in Figure 13, the results shown in Figure 14 indicate a sorbent whose main CO₂ uptake can be attributed to a chemical reaction other than physical adsorption. For the data shown in Figure 14 the estimated delta CO₂ loading is approximately 6.0 g CO₂/100 g fresh sorbent under the aforementioned adsorption/regeneration conditions.

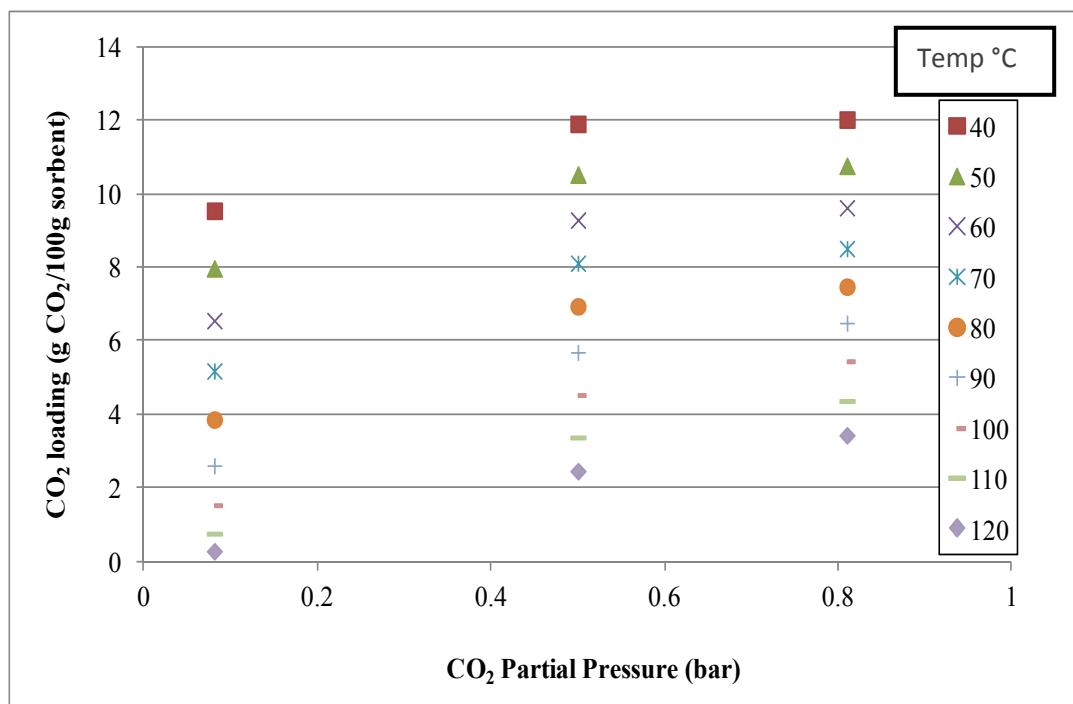


Figure 14. Sorbent BN (Supported Amine) CO₂ Capacity at Various Temperatures and CO₂ Partial Pressures.

One of the main reasons supported amine sorbents were under consideration is their greater working CO₂ capacity, which is a result of the highly exothermic reaction between CO₂ and the amine. When carrying out a TSA process, it is important to control the temperature during both adsorption and regeneration. Assuming an enthalpy of reaction of adsorption of -75 kJ/mol CO₂ the heat removal requirement can be easily calculated:

$$Q_{\text{ads}} = 0 = mC_p\Delta T + \Delta H \quad (12)$$

Solving for ΔT provides the increase in temperature due to the heat of reaction with CO₂. For an immobilized amine adsorbent with a working CO₂ capacity of 7 g CO₂/100 g fresh sorbent, an enthalpy of reaction of -75 kJ/mol, and a specific heat capacity of 1.0 J/g·K, the increase in temperature would be nearly 80°C. Assuming that the starting temperature was approximately 40°C, the adsorber would increase in temperature to over 120°C. However, the regeneration temperature for supported amine adsorbents is often in the range of 100 to 120°C (i.e., temperature swing of 60 to 80°C between adsorption and regeneration), so clearly this undesirable temperature increase resulting from the exothermic reaction with CO₂ would be prohibitive for a TSA process. Also, note that this temperature increase calculation is actually conservative because the heat generated by adsorbed H₂O was not included in this simplified calculation. Approximately the same magnitude of heat input would be required in the regenerator, where an endothermic reaction occurs. Therefore, it is equally important

to have effective heat transfer during adsorption and regeneration. Note that the sensible heat has not been included and will also increase the cooling (adsorption) and heating (regeneration) requirements.

At the simplest level, the minimum specific energy can serve as a criterion, as discussed by Berger and Bhowm³⁵ where the minimum specific theoretical energy for chemical and physical adsorbents was systematically modeled using Langmuir isotherms. They found that there was a minimum specific theoretical energy at a given regeneration temperature. This work reported that the minimum specific energy for adsorption-based CO₂ capture was attainable by an adsorbent with an enthalpy of adsorption of -64 kJ/mol CO₂ and a regeneration temperature of 160°C. Note that the minimum specific energy increased rapidly when the enthalpy of adsorption approached -25 kJ/mol CO₂ (approximately that for some physical adsorbents³⁶). Although the minimum specific energy identified could theoretically be attained by a supported amine material (based on the enthalpy of adsorption) a regeneration temperature of 160°C is too high because it will lead to amine decomposition.³⁷ Fortunately, the minimum specific energy was relatively flat within the enthalpy range of -50 to -75 kJ/mol CO₂.

A summary of the delta loading of two activated carbon sorbents and three potential supported amine sorbents are shown in Table 6. Although one of the activated carbon sorbents could potentially be competitive with the supported amine sorbents regarding the high delta loading and associated regeneration heat duty, the material handling requirements would be significantly more challenging because the mass of material that was circulated in the system would need to be higher to achieve the same overall CO₂ removal. The costs associated with the increase in sorbent circulation rates negatively impacted the process economics. Therefore, supported amine sorbents were selected as the sorbent family which would be further investigated under this project.

Table 6. Comparison of Activated Carbon and Amine Sorbents.

	Activated Carbon		Supported Amine		
	AM	AN	F	CE	BN
Delta CO ₂ Loading (g CO ₂ /100 g fresh sorbent)**	3.5	0.5	4.5	4.0	6.0

**Calculated using the data shown in Figures 9 through 11 with an adsorption condition of 40°C and 0.081 CO₂ partial pressure and regeneration conditions of 120°C and 0.81 CO₂ partial pressure.

3.5 Specific Sorbent Selection

When selecting a single supported amine sorbent to be characterized and used for the design basis of the 1 MWe pilot, several key properties were taken into consideration. The different sorbents and their properties are provided in Table 6. Note that some considerations, such as the ability to produce the material in appropriate quantities for the 1 MWe project, only apply to the current technical readiness, not to the future of the material to be produced in such quantities. Similarly, while it may be possible to utilize a sorbent with a mean particle diameter less than 50 µm in a commercial process, this was not

the case for the processes being considered under this project, therefore a minimum particle diameter was established.

Table 6. Key Sorbent Selection Properties.

	Sorbent F	Sorbent CE	Sorbent BN
Can Be Produced at Required Scales	No	Yes	Yes
Particle Size Greater than 50 μm	No	Yes	Yes
Stable Under High Moisture Conditions*	Yes	Questionable	Yes
Stable at 120°C	Yes	Questionable	Yes
Delta CO ₂ Loading (g CO ₂ /100 g fresh sorbent)**	4.5	4.0	6.0

*Based on the amine application technique and public literature

**Calculated using the data shown in Figure 12, Figure 13, and Figure 14 with an adsorption condition of 40°C and 0.081 CO₂ partial pressure and regeneration conditions of 120°C and 0.81 CO₂ partial pressure.

Comparing the three different amine functionalized sorbents listed in Table 6, the aminated ion exchange resin (sorbent BN) was selected as the sorbent that would be further characterized and used as the basis for the design of the 1 MWe pilot.

3.6 Sorbent Characterization and Analysis

3.6.1 CO₂ Delta Loading

Since one of the key selection criteria for the sorbents was the CO₂ delta loading, the CO₂ loading at different partial pressures was measured. However, after the aminated ion exchange resin was selected for the 1 MWe pilot design basis full isotherms were required. In addition to the CO₂ partial pressures of 0.081, 0.5, and 0.81 (gas blends of 10%, 61%, and 100% CO₂ by volume, respectively) previously measured, additional gas blends were used to measure the CO₂ uptake at several temperatures and 0.4 and 0.15 CO₂ partial pressure (gas blends with 4.9% CO₂ and 18.5% by volume, respectively). Full isotherms were developed using a Langmuir fit, which was acceptable based on the shape of the isotherms for this particular sorbent. Due to cooling water restrictions, it was determined that the sorbent would not be fully characterized at temperatures below 40°C. The measured and calculated loading at different partial pressures and temperatures are provided in Figure 15.



Figure 15. CO₂ Loading at Different Temperatures for Selected Sorbent (BN).

The CO₂ delta loading must be determined by considering the process in which the sorbent will be used. Based on the CO₂ capture process that was developed, the CO₂ capture occurred at approximately a CO₂ partial pressure of 0.15 bar and temperature of 40°C, which corresponds to a CO₂ loading of approximately 10.5 g CO₂/100 g fresh sorbent. The regeneration conditions were varied during the 1 MWe test, but as a general estimate during sorbent development the regeneration CO₂ partial pressure was assumed to be 0.8 bar and the temperature was assumed to be 120°C, which corresponds to a CO₂ loading of 3.5 g CO₂/100 g fresh sorbent. Therefore, for this sorbent under the assumed operating conditions, the delta CO₂ loading is 7.0 g CO₂/100 g sorbent. Increasing the delta loading will likely result in cost reductions for the overall CO₂ capture process. However, it is important to note that this delta CO₂ loading is superior to that currently exhibited in larger aqueous monoethanol amine CO₂ capture systems (estimated to be approximately 4.5 g CO₂/100 g fresh solvent)¹.

3.6.2 Cyclic Stability

Although the commercial-scale cost of most potential CO₂ sorbents has yet to be determined, it is realistic to believe that sorbent costs will be greater than that of aqueous solvent costs per unit mass. Therefore, it is important that any CO₂ sorbent can be reused for thousands of adsorption/regeneration cycles. The major concern regarding the cyclic stability is related to degradation of the amines due to high temperatures. To evaluate the temperature stability of the aminated ion exchange resins, five adsorption/regeneration cycles were completed at six different regeneration temperatures. The adsorption temperature was 50°C for all cycles (this test was completed before the adsorption temperature of 40°C had been selected for the process). Five adsorption/regeneration cycles were completed at each test condition, which was only enough to indicate significant issues with the

temperature stability. For all the tests, the CO₂ loading was measured with 100% CO₂ (i.e., PCO₂ = 0.81 bar). Therefore the delta loading provided in Figure 16 should not be considered the CO₂ delta loading under the actual process conditions.

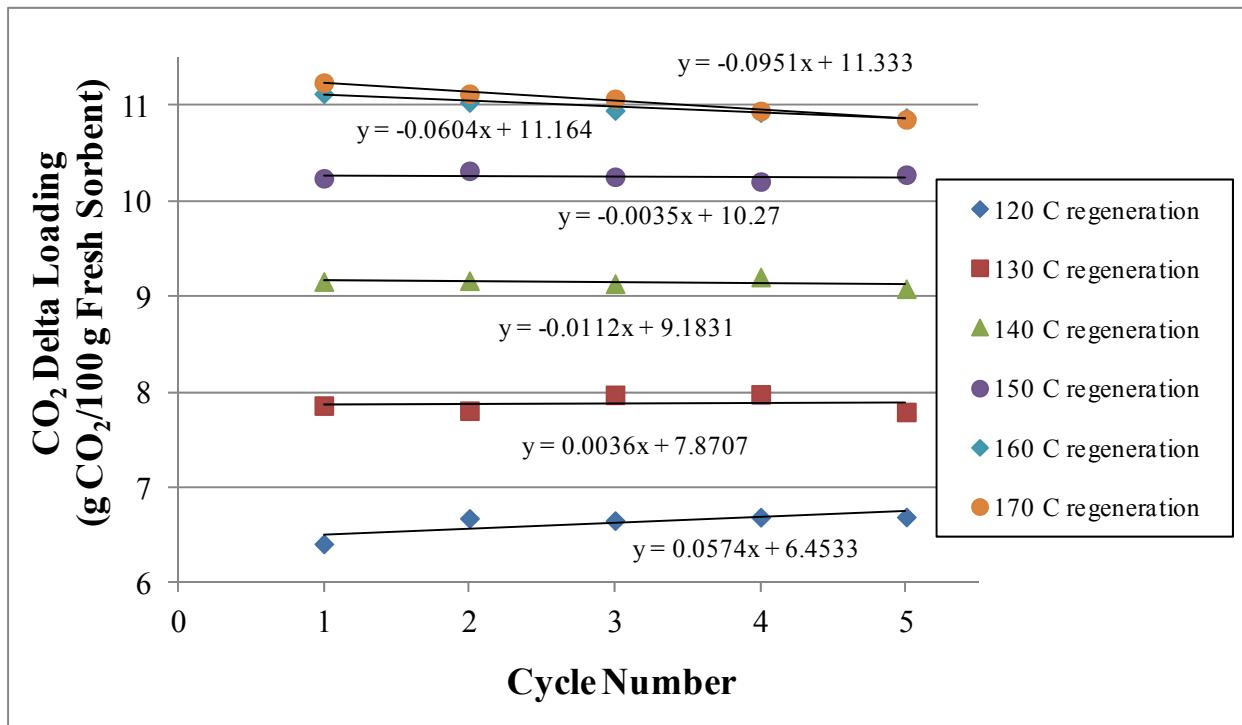


Figure 16. CO₂ Delta Loading Under Pure CO₂ Atmosphere for Selected Sorbent (BN).

The results from each test were fit with a linear curve and the equation for each curve is also provided on Figure 16. Every temperature above 130°C exhibited a negative slope, indicating a loss in CO₂ delta loading. The negative slope calculated when regenerating at temperatures less than 160°C was more severe than compared to lower regeneration temperatures. Based on the data shown in Figure 16, it was decided that a longer test would be completed cycling between temperatures of 50°C and 130°C under a pure CO₂ atmosphere was used to decrease the time required for gas switching if the actual adsorption partial pressure of CO₂ was used. The CO₂ delta loading recorded during this test is provided in Figure 17.

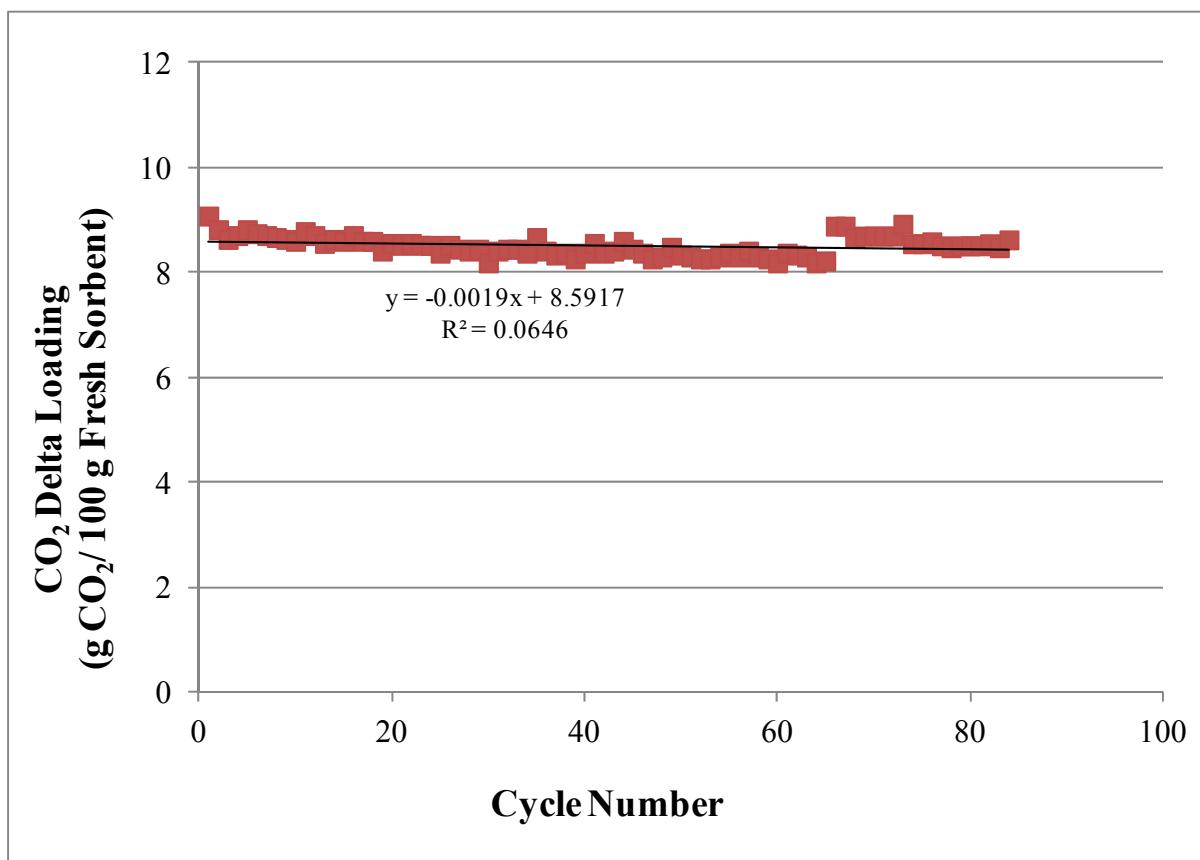


Figure 17. CO₂ Delta Loading Measured Cycling Between 50°C and 130°C with 100% CO₂ for Selected Sorbent (BN).

Note that the CO₂ delta loading is larger than the estimated delta loading previously discussed because the data shown in Figure 17 was collected under a pure CO₂ atmosphere (i.e., the partial pressure during the low temperature steps was 0.81 bar, but the CO₂ partial pressure during adsorption is closer to 0.15 bar). The CO₂ delta loading during this test decreased slowly as the cycle number increased until a jump in the CO₂ delta loading was observed at approximately the sixty-fifth cycle. At this cycle the TGA program had reached its maximum number of steps and was restarted. The nitrogen flush that is used at the beginning of every TGA test was inadvertently repeated when the program was restarted. When the nitrogen flush occurred the sorbent regained its original CO₂ delta loading. Therefore, it was determined that the pure CO₂ atmosphere (which was used to decrease the test duration, not because it is indicative of realistic process conditions) could be leading to a bias of the results.

Due to the altitude at ADA's laboratory in Colorado (~5,800 feet) and the use of an atmospheric pressure TGA instrument, the maximum CO₂ partial pressure used for investigating loading after regeneration was only 0.81 bar. However, in practice, the pilot was located at an elevation of approximately 430 feet above sea level and the regenerator was pressurized by a blower creating the

necessary motive force to fluidize the bed of sorbent particles. This resulted in a partial pressure of nearly 1 bar CO₂ as well as 0.1 bar moisture, oxygen, and nitrogen in the regenerator in the pilot plant. Additional tests were conducted with sorbent BN to assess performance through a partial pressure of 1 bar. These data are shown in Figure 18. The results at 1 bar are very similar to the results at 0.8 bar.

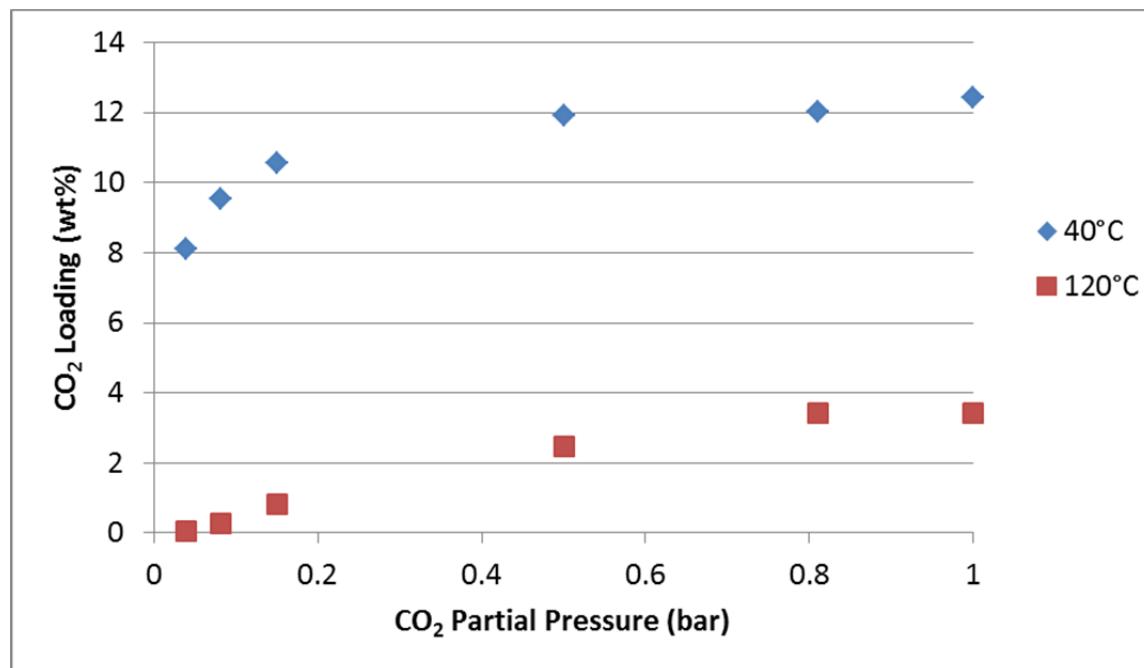
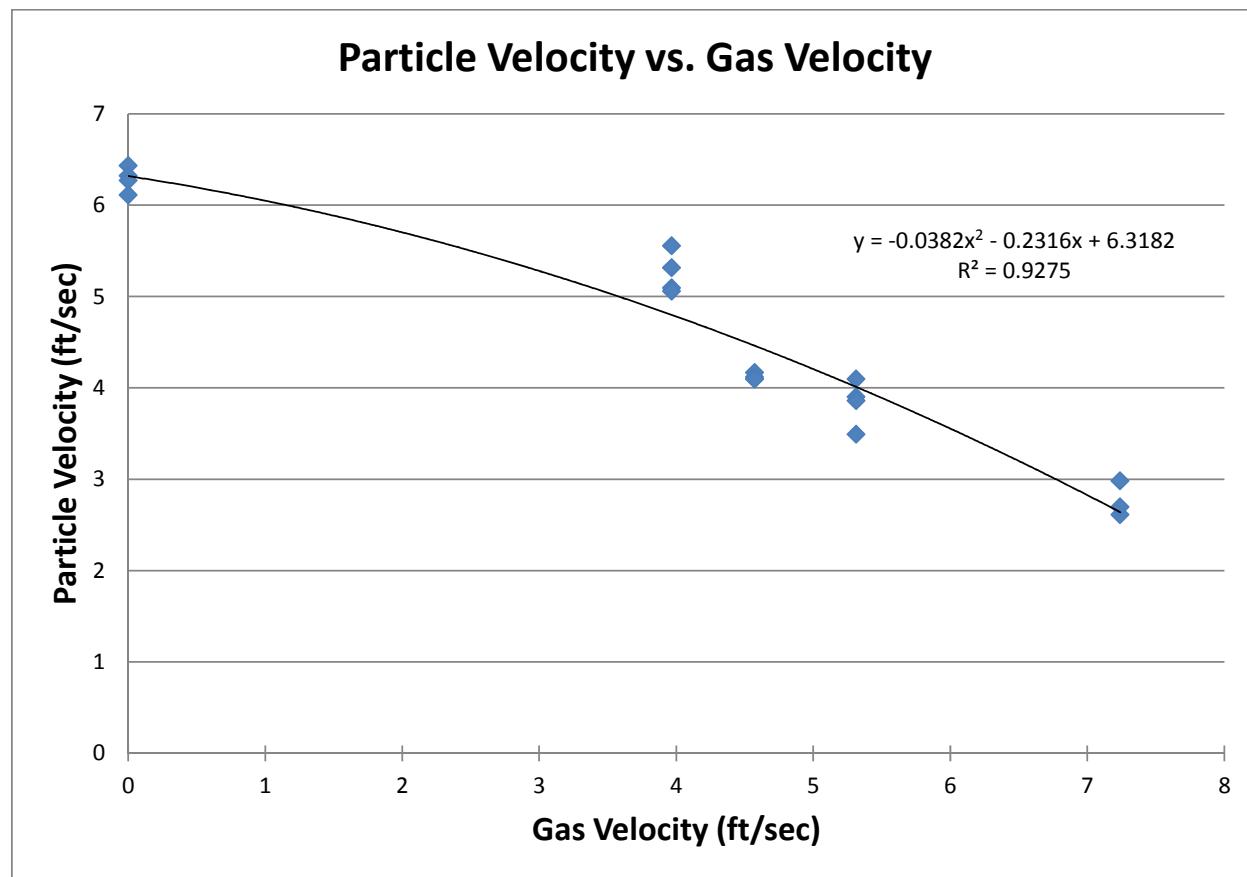


Figure 18. Sorbent BN Isotherms through 1 bar.


3.6.3 Reaction Kinetics

Assessments of kinetics were evaluated in the laboratory using data from the counter-flow (trickle down) reactor tests and from TGA tests.

The trickle-down reactor data was used to determine the approximate height of the adsorber and the rate at which CO₂ was adsorbed within the height limitations of the process laboratory. A series of tests were conducted to simulate CO₂ loading on the sorbent as it passes through a counter-current adsorber of unknown height. This was done by simulating a flue gas stream at the bottom of the apparatus adsorber that would result in a CO₂ concentration of 1.2% at the top of the adsorber section while feeding sorbent (i.e., what would be observed at the top of a commercial system where 90% of the CO₂ had been removed). Following this test run, the sorbent collected at the bottom of the adsorber was moved back to the feeder hopper and the flue gas CO₂ concentration was increased so that the outlet concentration equaled the inlet concentration of the previous test run. This was repeated several times until the inlet concentration at the bottom of the adsorber reached a concentration of 10.3%. This approximated the adsorber height required to reduce the CO₂ concentration from 10.3% entering the

bottom of the adsorber to 1.2% exiting the top of the adsorber, if fresh sorbent was introduced at the top of the adsorber. In reality, the sorbent introduced at the top of the adsorber would already have some CO₂ adsorbed since it will not be fully regenerated.

A series of parametric tests were conducted initially to establish conditions for the kinetic evaluation test that represented good sorbent distribution throughout the reactor with minimal particle tracking. A summary of the particle velocity compared to the gas velocity from testing is shown in Figure 19. For the kinetic tests, the flue gas velocity was maintained at 1.68 m/s (5.5 ft/sec) and the sorbent feed rate was maintained at 0.45 kg/min (1 lbs/min). This combination was chosen since the sorbent was well distributed at this velocity and the feed rate was based on a nominal 5% working capacity of the sorbent, based on isotherms measured using the TGA at the process conditions of the trickle-down reactor.

Figure 19. Summary of Gas Velocity Compared to Particle Velocity in the Trickle-Down Reactor.

A summary of the data collected during kinetic testing is presented in Table 7, where run 1 conditions were indicative of the top of the adsorber where the regenerated sorbent enters and the CO₂-lean gas exits and run 10 conditions represented the bottom of the adsorber where loaded sorbent is removed,

and high-concentration flue gas enters. Between runs 7 and 8, the sorbent was heated in an oven under a CO₂ blanket overnight to bring the sorbent temperature back up. Unfortunately, it appears the sorbent was regenerated due to the high CO₂ removal experienced during run 8 and the high temperatures in the adsorber section. Thus, the total CO₂ loading after runs 8, 9, and 10 are not necessarily indicative of the total CO₂ loading on the sorbent expected at the outlet of a full-scale trickle-down reactor.

Although the data from run 8 was discounted as an indicator of cumulative CO₂ loading on the sorbent after repeated exposure to increasing concentrations of CO₂ (i.e., runs 1 through 7), the test run provided key insights into the reaction kinetics of a regenerated sorbent when exposed to CO₂ in a gas stream at a temperature and concentration representative of post-combustion capture. Based upon test conditions, the average velocity of particles in the system is expected to be approximately 1.2 m/s (4 ft/s). Recall that the adsorber section was 2.29 m (7.5 ft) long. Thus, the particles were exposed to CO₂-laden gas for nominally 1.9 seconds for each run. During run 8, the sorbent adsorbed 2.6g CO₂/100g sorbent. The implications of this result are discussed in more detail in Section 6.3.2.

Table 7. Adsorber Height and Reaction Kinetics Test Data Summary from the Trickle Down Reactor.

Test Run	Inlet CO ₂ Conc. (%)	Outlet CO ₂ Conc. (%)	Change in Sorbent Loading During Run (wt CO ₂ /sorbent, %)	Sorbent Loading at Outlet of Bed (wt CO ₂ /sorbent, %)	Sorbent Temp. (°C) [(°F)]
1	3.0	1.2	1.6%	1.6%	40 [105]
2	4.5	3.0	1.3%	2.9%	47 [117]
3	5.5	4.5	0.9%	3.8%	43 [109]
4	6.7	5.6	1.0%	4.8%	45 [113]
5	7.2	6.6	0.5%	5.3%	41 [106]
6	8.1	7.4	0.6%	5.9%	37 [99]
7	8.6	8.1	0.4%	6.4%	37 [99]
Heating and CO ₂ Treatment of Sorbent Overnight					
8	12.5	9.5	2.6%	NA	37 [99]
9	9.2	8.6	0.5%	NA	42 [107]
10	10.3	9.0	1.1%	NA	42 [107]

One of the key limitations of this test is maintaining the CO₂ loading on the sorbent between runs. For example, the sorbent may continue to adsorb CO₂ from the gas in the interstitial spaces while it is collected in bulk at the bottom of the reaction column, even if the temperature is maintained. Noting these limitations, extrapolating results from the applicable runs suggest that a total of 27 m (90 ft) of adsorption height should result in 90% CO₂ capture at a flue gas velocity of 1.68 m/s (5.5 ft/sec). Interstage cooling will also be required and is not taken into account in this projected height. Considering the velocity of particles in the system is expected to be approximately 1.2 m/s (4 ft/s), a 27m high adsorber represents less than 25 seconds of sorbent residence time to achieve 90% CO₂ capture at conditions representative of post-combustion capture (40°C and inlet CO₂ of 10.3%).

Results from TGA testing can provide more quantitative information on the kinetics of adsorption and desorption. Figure 20 displays the mass of beaded sorbent BN during experiments where the temperature (shown as a green line in the figures) was cycled. The weight of the sample (red line in the figures) is also shown. Note that the CO_2 concentration was not varied during these tests; the entire test was completed in a pure CO_2 atmosphere. Only the temperature was changed between 40°C and 120°C during each cycle. The temperature change from 40°C to 120°C or from 120°C to 40°C required about 10 minutes, due to limitations of the apparatus.

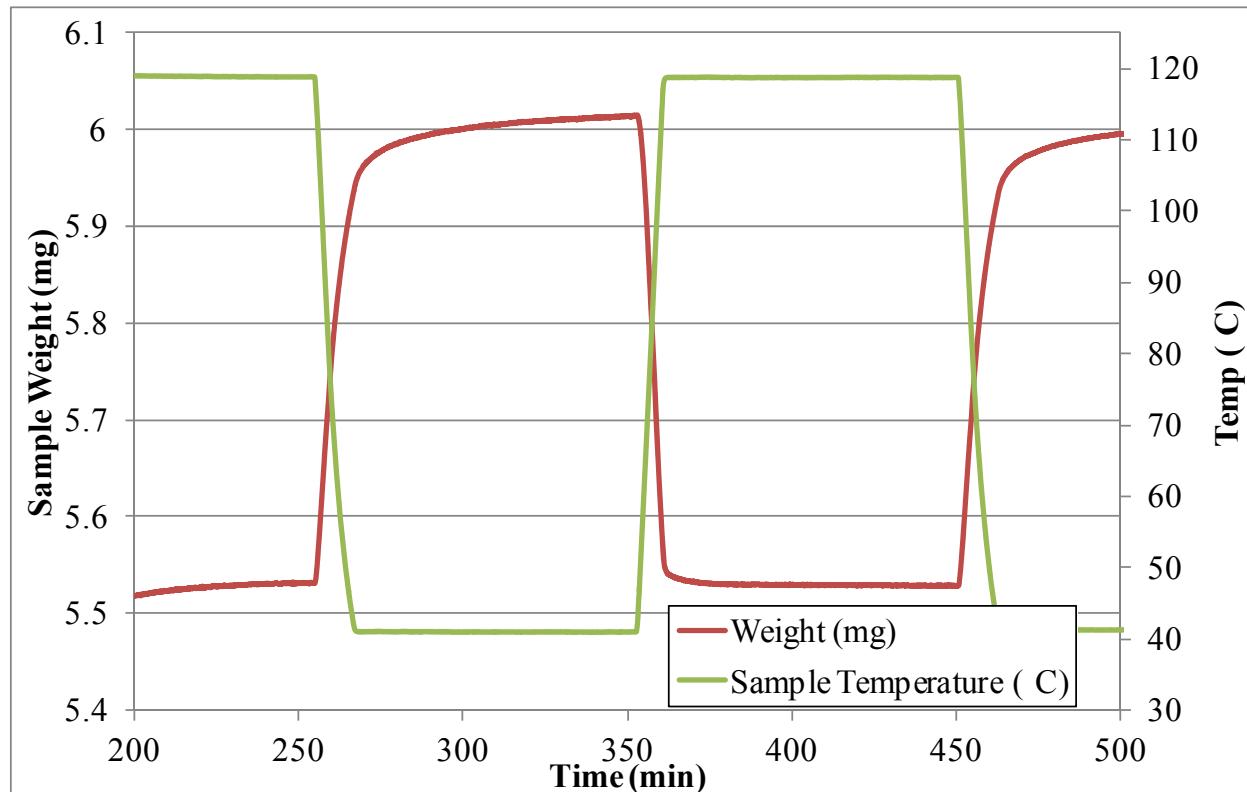
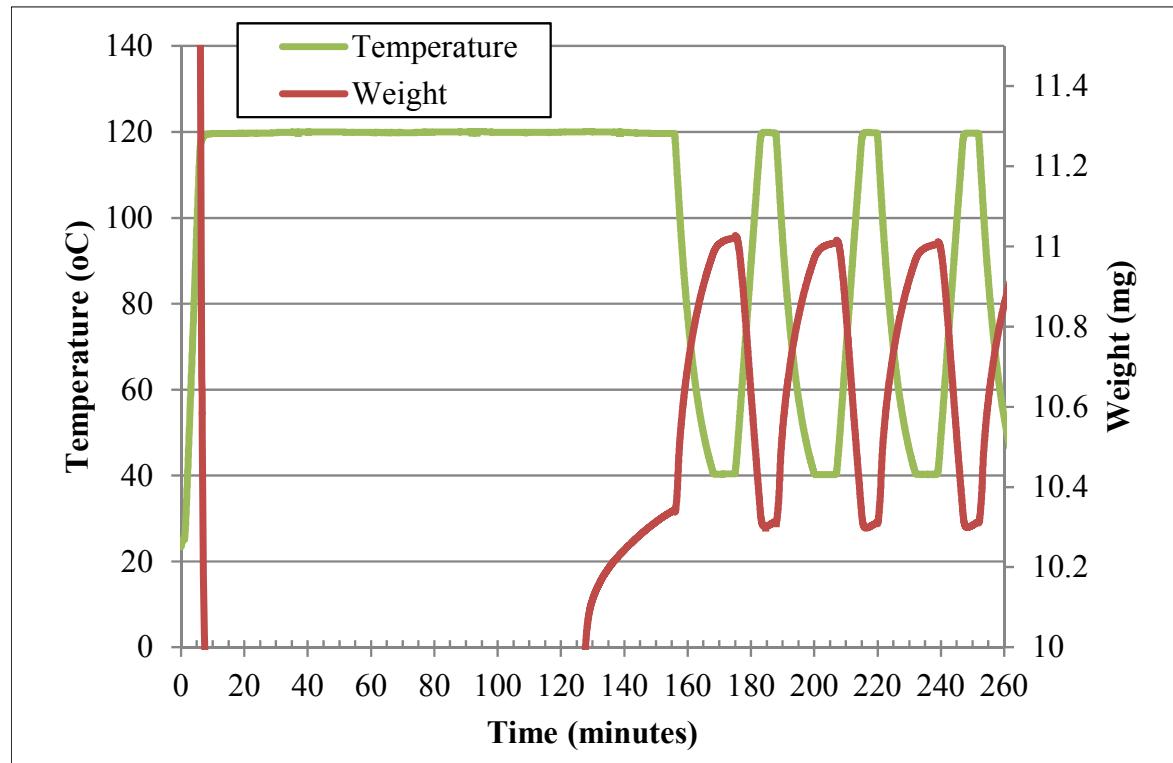



Figure 20. Sample Weight and Temperature during Rapid Heating and Cooling for Sorbent BN in 100% CO_2 atmosphere.

These results do not represent conditions expected in the pilot-scale fluidized beds, because of the relatively long time required to change temperature (circa 10 minutes) and the constant CO_2 partial pressure of 0.81 bar. Nevertheless, during adsorption in the pure CO_2 atmosphere of the TGA, the kinetics are fast initially with nominally 90% or more of the CO_2 loading occurring at nominally the same rate as the change in temperature. At a regeneration temperature of 120°C , the CO_2 release is fast. The weight of the sorbent stabilizes in less than 10 minutes as the TGA temperature reached the setpoint. This data indicates that the CO_2 release in the regenerator will be fairly rapid.

Additional TGA testing was conducted with Sorbent BN at cycle times between adsorption and desorption more representative of potential pilot conditions in both time at each temperature, and partial pressure of CO₂ at each condition, to provide a better indication of potential reaction kinetic limitations. The TGA was loaded with fresh sorbent and cycled between 120°C, 0.81 bar and 40°C, 0.15 bar for 74 cycles. Figure 21 shows the initial time period of the experiment. The initial desorption cycle was longer to “condition” the as-received sample. The temperature ramp from 120°C to 40°C required 12 minutes, and the temperature ramp from 40°C to 120°C required 8 minutes, which was a limitation of the apparatus.

Figure 21. Sample Weight and Temperature When Cycling Sorbent BN between 40°C/0.15 bar CO₂ and 120°C/0.8 bar CO₂.

Selected results from the initial and final cycles (Table 8) indicate that after the initial desorption cycle, the time required to reach 90% of equilibrium capacity was typically less than 11 minutes on the adsorption cycle and nominally 7 minutes on the desorption cycle. The delta CO₂ loading and kinetics of adsorption and desorption were consistent among the cycles (after the initial cycle). Although conditions during this test were more representative of the pilot-scale fluidized beds, the relatively long heating and cooling times in the TGA make it difficult to apply these results quantitatively to the pilot-scale reactor. The TGA results represent an upper bound on the expected time to reach equilibrium capacity, because temperature can be changed more quickly in the fluidized beds.

Table 8. Multiple Cycle TGA Test of Sorbent BN.

Condition	Cycles	Time to 80% Capacity Equilibrium (minutes)	Time to 90% Capacity Equilibrium (minutes)	CO ₂ Loading (g CO ₂ / 100g Fresh Sorbent)	Delta Loading (g CO ₂ / 100g Fresh Sorbent)
Desorption	1	17.46	22.78	5.22	
Adsorption		8.27	10.69	12.14	6.92
Desorption	2	6.26	6.98	4.96	
Adsorption		7.30	9.96	12.03	7.07
Desorption	3	5.77	6.74	4.89	
Adsorption		8.16	11.30	11.98	7.08
Desorption	72	7.08	7.83	5.08	
Adsorption		8.29	10.77	11.78	6.71
Desorption	73	6.91	7.08	5.06	
Adsorption		8.47	10.95	11.77	6.72
Desorption	74	7.10	7.79	5.06	
Adsorption		8.75	11.05	11.77	6.72

The results from the trickle-down reactor tests suggest that the adsorption kinetics are very fast, which is consistent with TGA results. This is a critical insight for sorbent-based capture systems. Specifically, if the system is designed to operate within the region of very fast kinetics, the residence time within the adsorber and the resulting size and capital costs of the adsorber can be optimized. Under typical cycling conditions, the rate of desorption, is faster than the rate of adsorption, which has implications for the design of the adsorber and desorber.

3.6.4 Effect of Flue Gas Constituents

Previous work indicated that SO₂ will form heat stable salts with the amine functional groups of any supported amine sorbent. As a result, potential process options to reclaim chemically fouled sorbent back to its original chemical makeup were investigated and led to patent US 2014-0079612 A1.

Prior to sorbent selection, all potential CO₂ sorbents were evaluated with moisture in simulated flue gas. Therefore, it was already known that sorbent BN could adsorb CO₂ in the presence of moisture. However, the moisture uptake had not been previously measured on this particular sorbent. The moisture uptake of a sorbent is important because it could affect the energy penalty and process design. If a sorbent adsorbs moisture during the adsorption step of the CO₂ capture process and then releases it

during the regeneration step, the sorbent will have an effective H₂O working capacity. For the H₂O to be released during the regeneration step, energy must be added equivalent to the enthalpy of vaporization, which will in turn become part of the regeneration energy. It is important to assess the moisture uptake so this added energy penalty can be quantified and minimized.

The TGA/MS setup shown previously was utilized to assess the moisture loading on the aminated ion exchange resin at different temperatures and moisture levels in the feed gas. First the sorbent was dried by sending dry N₂ from a compressed gas cylinder directly to the TGA. This drying step was necessary to achieve an initial weight of the sorbent. The moisture was introduced into the TGA by diverting 40% of the TGA feed gas through a temperature-controlled bubbler. The bubbler temperature set point was initially room temperature, approximately 22°C (72°F). After the weight stabilized, the temperature of the bubbler was slowly increased, which also increased the concentration of H₂O in the gas stream. A mass spectrometer was used to measure the moisture concentration in the TGA exhaust gas. The entire weight uptake observed during these tests was assumed to be due to moisture because there was no CO₂ in the feed gas. The results of the moisture uptake experiment are provided in Figure 22.

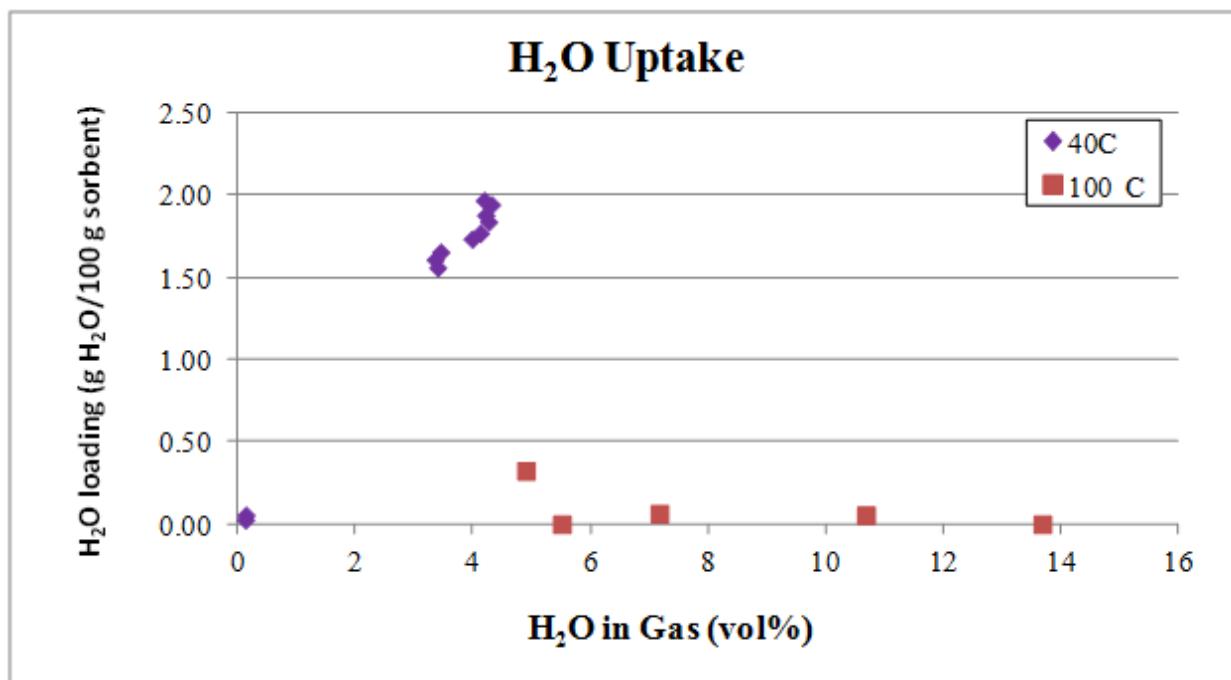


Figure 22. Moisture Uptake Data for Sorbent BN.

One important conclusion drawn from the data provided in Figure 22 was that the relationship between moisture loading and the moisture concentration in the gas was nearly linear at 40°C. In addition, the tests showed that the moisture loading at or above 100°C was negligible. From this information, the

delta moisture loading can be estimated for the sorbent under the process conditions. Based on the current process conditions of adsorption at 40° C, and a process gas at 40° and 1.5 bar, it is expected that the delta moisture loading will be approximately 1.0 g H₂O/100 g fresh sorbent. This is an important conclusion because the adsorption/release of moisture will result in additional heat removal/input, respectively, which must be taken into account in the equipment design.

A second test was conducted to assess the moisture uptake on sorbent BN without the presence of CO₂. A gas stream of N₂ with 5.7% H₂O was used, although these conditions are slightly more humid than the process being considered. The results of the moisture uptake are provided in Figure 23. The moisture uptake increased dramatically at lower temperature. For example, at 40°C the moisture uptake was over 2 g H₂O / 100 g sorbent, while it was approximately 0.7 g H₂O / 100 g sorbent at 60°C. As expected, when the sorbent temperature was greater than or equal to 100°C, the moisture content in the sorbent was negligible.

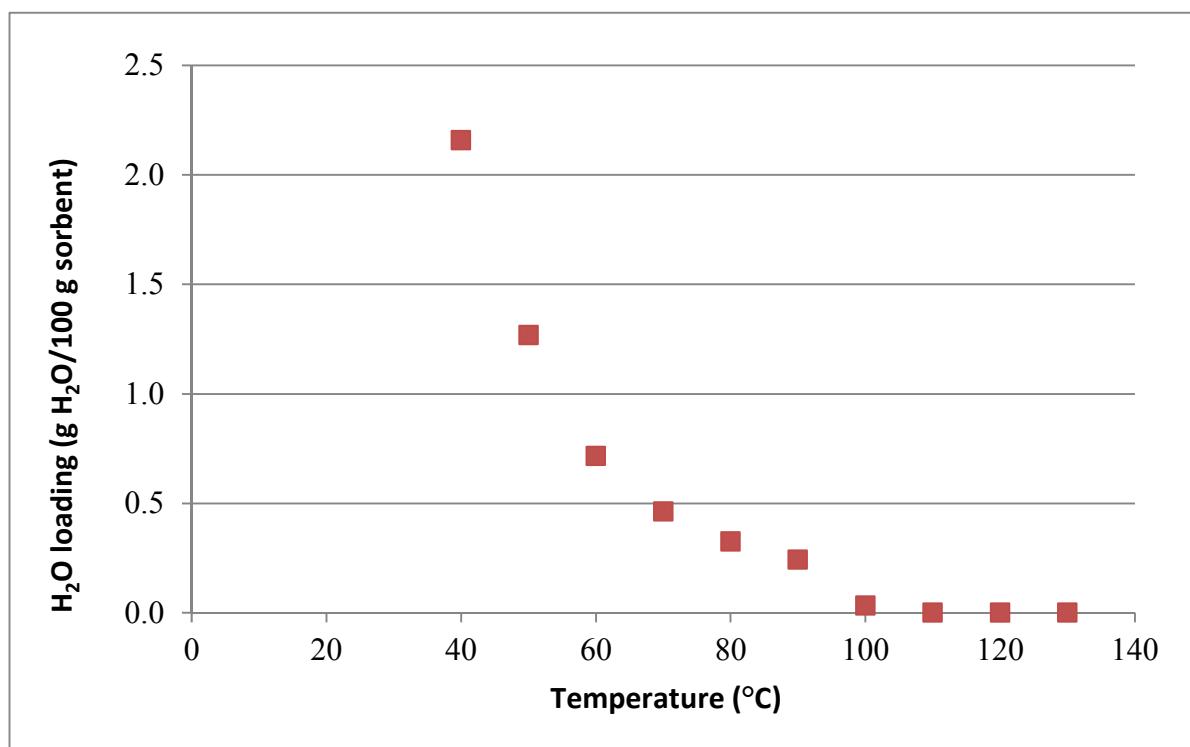
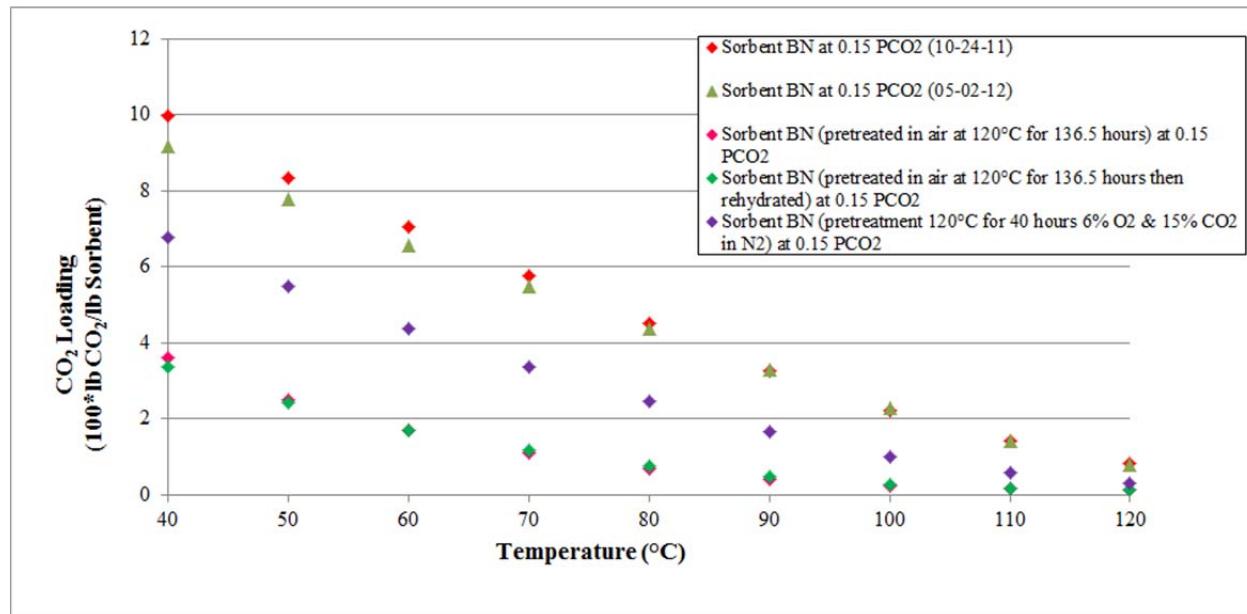



Figure 23. Moisture Uptake on Sorbent BN (N₂ with 5.7 vol% H₂O in Gas)

Several tests were conducted to determine the potential impact of oxygen on the adsorption capacity of sorbent BN. The CO₂ loading of BN following pretreatment with either 120°C air, or a 120°C gas mixture containing 6% oxygen, 15% CO₂ and N₂ amine oxidation at elevated temperatures is compared to BN

without pretreatment in Figure 24. The data suggests a significant detrimental impact on BN after exposure to 6% oxygen or air at elevated temperatures. This is likely due to the oxidation of the amines. This is a concern in the ADAsorb system because CO₂-lean flue gas was intended for use as the carrier gas between the regenerator and the adsorber. Flue gas typically contains 3 to 6% oxygen.

Figure 24. Impact of exposure to oxygen at elevated temperatures on BN performance

3.6.5 Heat of Reaction

Several different experiments were requested in order to assess the heat of adsorption of CO₂ as well as the heat of adsorption of moisture. The tests were challenging and several results were discarded due to experimental uncertainties. Two tests results exhibited sufficient agreement between multiple runs and provided some value. The tests were run in a standalone differential scanning calorimeter (DSC) system (no TGA), so the actual uptake of CO₂ was not measured. Although the heat generation was measured directly by the DSC, the CO₂ uptake was estimated from isotherms shown previously in Figure 15.

The first test was designed to measure the heat of reaction between the sorbent and CO₂ (no moisture). This experiment was characterized by exposing the sorbent first to dry N₂ at 120°C and then to a dry 15% CO₂/85% N₂ blend at 40°C. Based on separate tests, it was estimated that the drier gas would lead to a 20% reduction in the total CO₂ loading. By estimating the CO₂ loading and using the heat generated (measured by the outside lab) the heat of reaction for the dry gas (in which CO₂ uptake only should be generating heat) was ~77 kJ/mol CO₂.

A second experiment was designed to measure the total heat of reaction, taking into account both the heat of adsorption between the sorbent and CO₂ and the heat of adsorption between the sorbent and

H_2O . This experiment was characterized by exposing the sorbent to dry N_2 at 120°C, allowing the sorbent to reach equilibrium, and then exposing the sorbent to a 15% CO_2 /85% N_2 blended gas that was saturated at 40°C. Using the estimated CO_2 uptake under those conditions, the effective heat of reaction (which should include the CO_2 uptake and the H_2O adsorption) was 82 kJ/mol CO_2 . It is important to realize that many different assumptions were made to arrive at these estimates for the heat of reaction. Thus, they were treated only as order of magnitude estimates. To fully quantify the heat generated during the adsorption process, pilot testing was required to accurately measure the impacts of CO_2 and H_2O adsorption under actual process conditions.

ADA combined empirical data collected from prior field testing and laboratory experiments and used an iterative modeling approach to enhance the design effort. Results from this effort played an important role in the FEED step of the development process. Results from the modeling effort were used to optimize the 1 MWe design.

In previous sections, laboratory analysis was used to compare different sorbents. Based on these analyses, sorbent BN was selected to be the sorbent used during pilot testing and the techno-economic assessment.

3.6.6 Physical Strength and Attrition

Two different types of tests were completed to assess the physical strength of sorbent BN. First, the material was tested in an “as received” condition, which is identified as “beaded”. The sorbent is currently manufactured as part of another commercial process. The “as received” particle is spherical and larger than appropriate for the ADAsorb process. A beaded batch of sorbent with a mean particle diameter of 635 μm was tested to measure the crush strength. The crush strength test was completed using the beaded material. The crush strength was identified as the amount of weight placed on a bead when an audible crack was observed. This occurred at 2 kg/bead.

In addition to the crush strength test, a research entity was hired to evaluate the attrition properties of the sorbent that was beaded (“as received”) as well as sorbent that had been ground to a finer size for use in the ADAsorb process (approximate mean diameter was 100 μm). The likelihood of attrition was assessed using a jet-cup attrition test.

Two samples, identified as “beads” and “crushed sorbent”, were received by the test facility. Figure 25 shows the particle size distribution (PSD) of these materials obtained by using Sympatec Halos III analyzer.

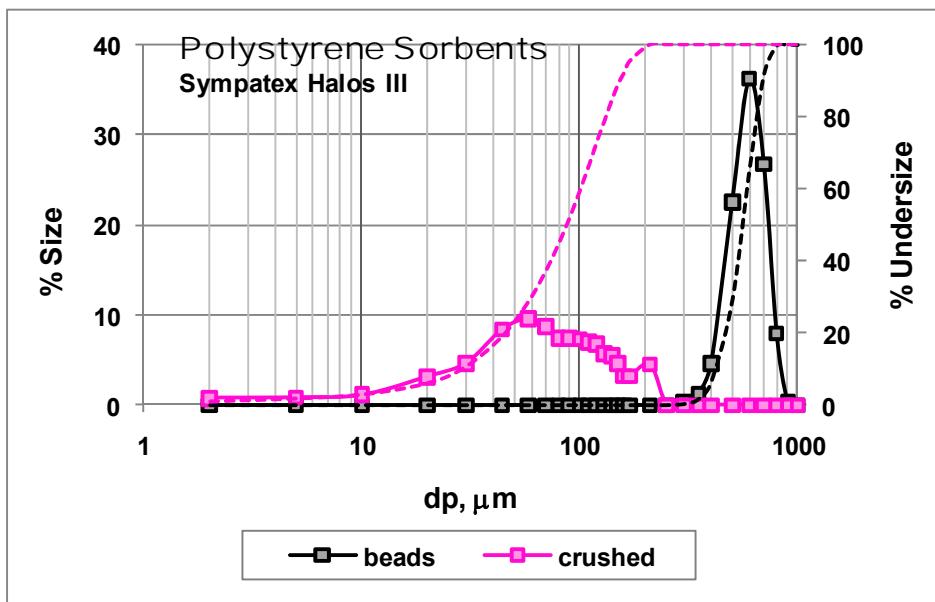


Figure 25. Particle Size Analysis of Two Sorbent Materials.

The particle size distributions for both initial and attrited samples of sorbent beads are shown in Figure 26.

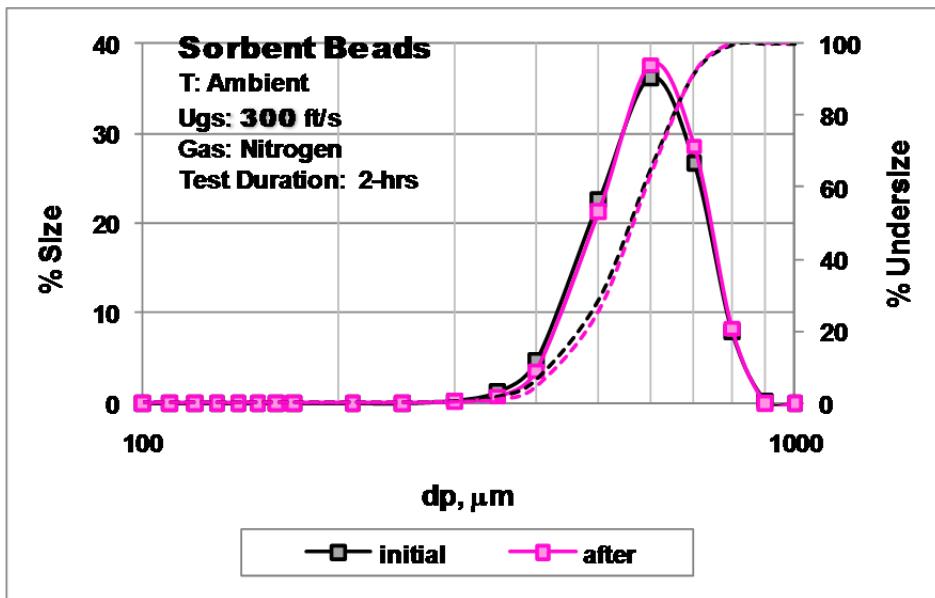


Figure 26. Attrition Characteristics of "Sorbent Beads" at 300 ft/s.

The crushed sorbent material contained almost 20% fines less than 44 microns. Therefore, these fines were selectively removed using sieves. The particle size distributions for both initial and attrited samples of fines-free crushed sorbent is shown in Figure 27.

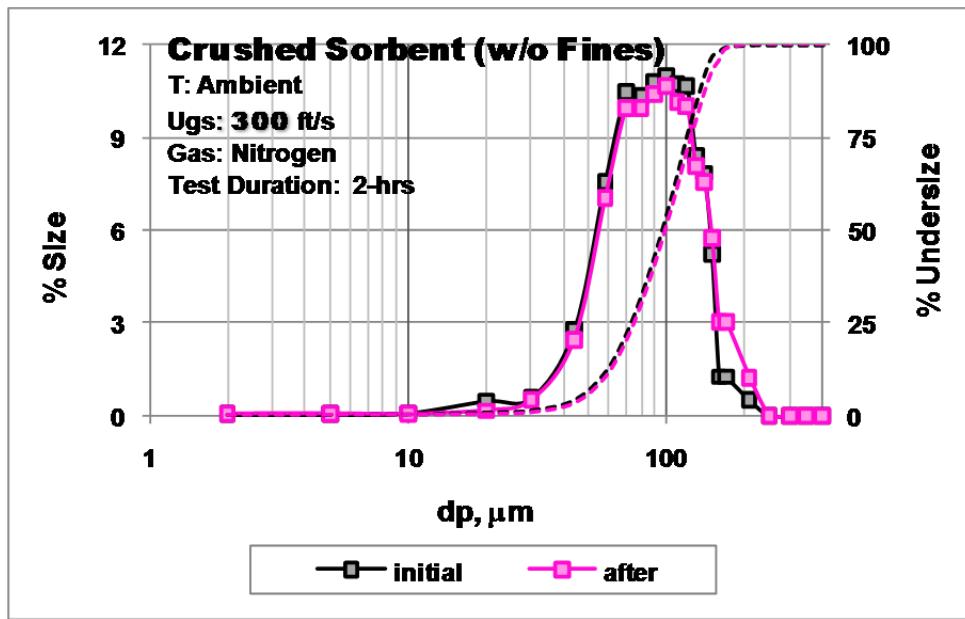


Figure 27. Attrition Characteristics of crushed sorbent at 300 ft/s.

The following test conditions were used in comparing two sorbents and test results are summarized in Table 9.

Table 9. Summary of Attrition Testing Results.

<u>Summary of Testing Results:</u>			
Particle Size Analyzer:	Sympatec Halos III		
Jet Cup:	Automated Unit w/ Standardized Conical Cup		
Jet Velocity:	300	ft/s	
Test Duration:	2	hr	
Temperature:	Ambient		
Gas:	Nitrogen		
Sample ID	AI (20)	AI (44)	Fines on Filter g
Beaded Sorbent	0.0	0.0	0.0
Crushed Sorbent (w/o fire)	-0.4	-0.8	0.6
PSRI Std. FCC Eq. (for Reference Purpose)	0.9	4.5	2.7

Results based on both attrition indices 20 and 44 (see Table 9) indicated that both the crushed sorbent and beads were highly attrition resistant. The attrition indices are much lower than the reference FCC equilibrium catalyst evaluated previously at the test facility.

The results of the crush strength and attrition testing revealed that this material exhibited promising attrition resistant characteristics. The economic analysis of the overall process, described in other reports, conservatively used the attrition rate of FCC catalysts to estimate the sorbent replacement requirements.

Note that in a commercial application, sorbent BN would be produced at the size required for the ADAsorb process and not ground. The manufacturing process inherently produces spherical particles that tend to plastically deform rather than break. This is ideal for a fluidized bed process and should result in very low attrition. However, due to manufacturing constraints at the quantities required for pilot testing, the material could not be manufactured at the size required. Breaking the resin beads will result in sharp edges and fines that will result in higher attrition than if spherical beads were available for use. Longer term pilot or full-scale testing with appropriately-sized beaded sorbents would be required to quantify actual rates of attrition for this material.

3.6.7 Cold Flow Modeling

As previously mentioned, two cold flow models were used during this program. Initial testing was conducted using a PSRI Inc. standard test setup that provided information on solid handling characteristics and could be used to measure heat transfer in air. The second cold flow model was designed to mimic some of the basic fluidization and conveying processes that were designed into the

pilot scale unit and provided information on sorbent fluidization and handling properties in a non-reacting flow environment.

Sorbent characteristics found using the PSRI Inc. cold flow model are given in Table 10 and Table 11.

Table 10. Sorbent BN Properties Derived through Cold Flow Modeling

Geldart Classification	A/B Transition	
Sauter Mean Particle Size	158	μm
90% size Distribution	80	μm
Particle Sphericity	90	unitless
Particle Density	0.71	g/cc
Particle Porosity	0.39	unitless
Bulk Density (Fluffed)	0.38	g/cc
Void Fraction (Fluffed)	0.46	Fraction
Bulk Density (Packed)	0.42	g/cc
Void Fraction (Packed)	0.41	Fraction
Minimum Fluidization Velocity	0.86	ft/s
Particle Aspect Ratio	0.74	unitless
Heat of reaction	82	kJ/mol CO ₂

PSRI's initial cold flow modeling was conducted using Sorbent BN with a median particle size (dp,50) of approximately 95 microns. This was deemed satisfactory for the planned nominal size of 100-micron material, which is a Geldart Group A material.

Seven tests were conducted with the 95-micron sorbent, and data were collected to measure bed densities, heat transfer coefficients, fines entrainment rates, CO₂ concentrations, bed pressure drop fluctuations, and bubble properties at the center of the bed. A listing of the test conditions and results appear in Table 11.

The measured bed densities were a strong function of the fluidizing gas velocity in the bed, decreasing linearly with increasing velocity. When CO₂ was added to the circulating gas to a concentration of approximately 6% by volume, the measured bed density increased by roughly 5%, due to the adsorption of CO₂.

The addition of CO₂ had a dramatic effect on the measured solids entrainment rates. At a fluidizing gas velocity of approximately 1.44 ft/s, the entrainment rate with CO₂ present was only 40% of what was measured without CO₂.

Table 11. PSRI Cold Flow Testing of 95 μm Sorbent

Gas Velocity	Bed Density	Heat Transfer Coefficient	Std. Deviation of ΔP	Entrainment Flux	CO_2 Concentration
ft/sec	lb/ft ³	BTU/hr-ft ² -°F	in. wc	lb/s-ft ²	%
0.50	19.21	75.7	0.504	0.00284	< 0.1
1.01	17.09	78.2	0.550	0.03713	< 0.1
1.42	15.33	78.9	0.568	0.09086	< 0.1
0.51	20.10	75.1	0.607	n/a	5.68
1.03	18.06	77.4	0.715	0.00799	6.57
1.46	16.60	76.8	0.693	0.03644	6.23
1.75	15.56	80.7	0.756	0.07048	6.16

Heat transfer coefficients measured both with and without CO_2 in the gas mixture were in the range of 75 to 80 BTU/hr-ft²-°F (425 to 455 W/m²-K), increasing slightly with increasing gas velocity. This value is notably higher than values previously calculated using the Molerus Technique (1992 & 1993), which were 45 to 50 BTU/hr-ft²-°F (255 to 285 W/m²-K).

The standard deviation of the bed pressure drop measurements was very low, generally less than 1 inch of water column. This represents smaller gas bubbles and good mixing, which result in good solids-gas contacting.

Additional testing by PSRI was conducted to generate data needed to identify the necessary particle size distribution for pilot plant operation. PSRI tested two particle size distributions. The first sample (Fine), with a Sauter mean diameter of 78.7 μm , was material crushed by ADA, with the fines content reduced by elutriation in the PSRI 12" fluidization column. The second sample (Coarse), with a Sauter mean diameter of 255.8 μm , was spherical bead material that PSRI crushed and screened to -40/+120 mesh (125 to 420 μm). Mean particle size is expressed by the Sauter mean diameter, d_{PSV} , which is the diameter of the spherical particle with a surface area to volume ratio of the average size particle, and as such it is the hydrodynamically equivalent particle size.

The estimated size distribution used as the basis for the pilot plant design was developed using the PSRI fluidization regime map. It represented the coarsest size distribution that would still be a Group A powder that could be operated at the highest velocity, while still maintaining a turbulent fluid bed.

The range of PSRI data brackets the pilot plant design basis point, which is labeled as "Pilot Plant Basis" on Figure 28. The fine material exhibited Group A behavior and fluidized very well, but above about 1.5 ft/s, the bed level started to become indistinct, and it appeared to be close to the maximum velocity for this size distribution. This material was clearly too fine for the pilot plant design basis of 4.0 ft/s. The coarse material falls in the Group B range on the fluidization regime map, and PSRI confirmed that it

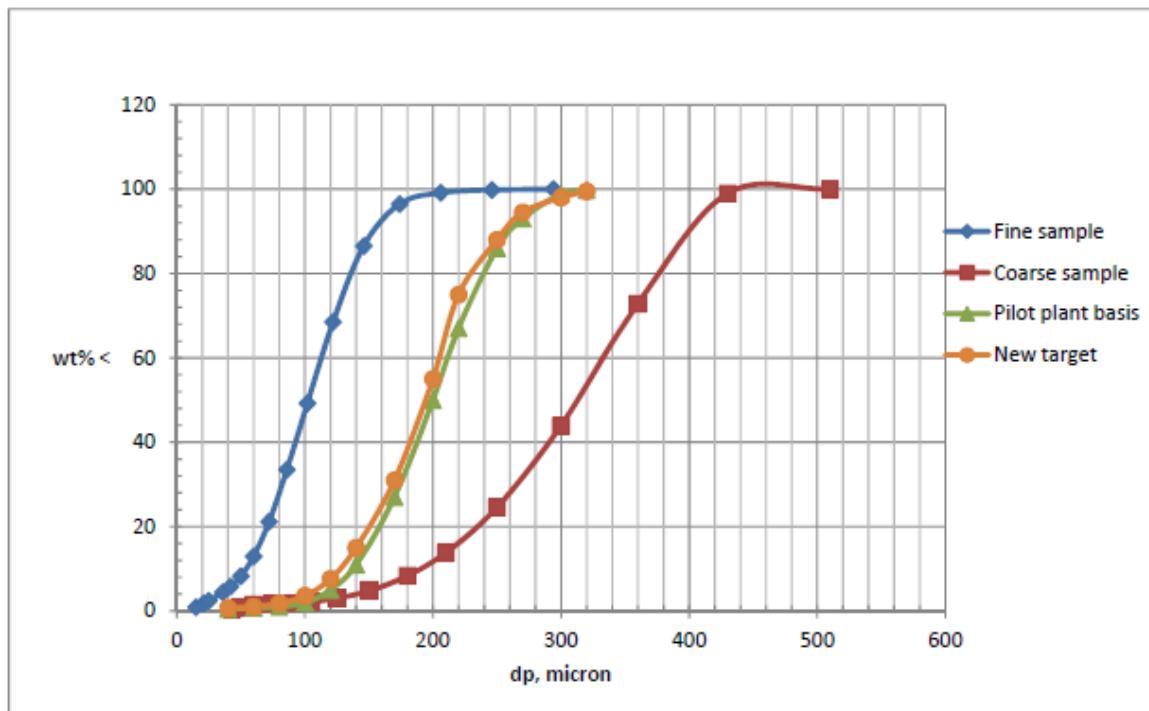
exhibited Group B behavior. They also confirmed that it could have run at well over the highest tested velocity of 4.27 ft/s. This material was too coarse for the pilot plant.

The entrainment rate measured for the fine material was higher than predicted by Technip, while that for the coarse material was lower than predicted as displayed in Table 12. The entrainment fluxes design basis for the three stages in the pilot plant adsorber were between 0.3 and 0.6 lb/s.ft².

Table 12. Entrainment Flux

Material: Fine (78 μm)	Entrainment flux (lb/s.ft ²)	
Velocity (ft/s)	Predicted	Predicted
0.5	0.00284	0.001
1.01	0.03713	0.014
1.42	0.09086	0.059
Material: Coarse (255 μm)		
2.38	0.00438	0.023
3.35	0.02623	0.084
4.24	0.08608	0.235

The heat transfer coefficient for the fine material was approximately 80 Btu/lb.ft².°F (455 W/m²-K), and approximately 65 Btu/lb.ft².°F (370 W/m²-K) for the coarse material. The initial pilot plant was designed using a value of 52 Btu/lb.ft².°F (295 W/m²-K), based on lab scale testing. Integrating this information into the 1 MWe pilot process design reduced the cooling coil surface area inside the adsorber vessel, which resulted in a reduction in vessel height. Additionally, plant personnel from the host site measured the temperature of the cooling water source that would be used by the pilot plant. The temperature of the cooling water was 12°C (54°F), which was significantly lower than the temperature used as the design basis. The project team decided to reduce the design cooling water temperature used to calculate the amount of required cooling coil surface area inside the adsorber. Integrating both the lower cooling water temperature and increased heat transfer coefficient into the process design reduced the overall height of the adsorber by approximately 48 ft. The reduction in adsorber height reduced costs in several areas:


- Structural steel in module fabrication.
- Overturning moment on structure, thus reducing complexity of foundation and overall size.
- Fabrication costs of adsorber vessel.
- Piping installation.

Of the two distributions tested, one is too fine and the other too coarse, so the target lies between the two. For the pilot plant, Technip stated that it was more important to have a Group A material, and to reduce the fluid bed density in order to minimize adsorber pressure drop, than to minimize entrainment rate. The exact location of the Group A – Group B boundary is uncertain, and Technip believed it was

preferable to err on the finer side to ensure that the target is a Group A material. For this reason, the final recommended sorbent size distribution should be somewhat finer than that used for the pilot plant design. The recommended target particle size distribution is displayed in Table 13 and Figure 28.

Table 13. Recommended Particle Size Distribution

dp, micron	wt% less than
40	0.7
60	1
80	1.8
100	3.6
120	7.6
140	15
170	31
200	55
220	75
250	88
270	94.5
300	98
320	99.5
Sauter mean	169.1 μm

Figure 28. Particle Size Distribution

The second model was constructed with two stages and multiple cyclones to allow investigations into fluidization regimes expected in the pilot facility. A photo of the model is shown in Figure 29. The benefit of this model was that it allowed for systematic testing of sorbent material at a wide range of fluidization gas velocities, and was used for operator training. Additionally it allowed for testing of low pressure drop gas distribution plates which were ultimately used during pilot testing.

Figure 29. ADA Cold Flow Model

Because the model was equipped with two-stage cyclones, downcomers, and diglegs, it was possible to run the cold flow model at high velocities that met and exceeded the design velocities in the pilot and to verify functionality under cold flow conditions. During the cold flow model parametric testing, observations could be made at the onset of bubbling fluidization, turbulent fluidization, and circulating fluidization as entrained sorbent was carried into the cyclones and then returned into the beds.

During parametric testing of the sorbent within the model, multiple sorbent samples were taken at different velocities. Ultimately, the sorbent was fluidized extensively at the pilot designed gas velocity and fine particles that were not collected by the cyclones were collected in a baghouse and removed from the system. This allowed bed samples of conditioned sorbent to be taken and analyzed for a particle sample size. These samples formed the basis of the target particle size distribution for sorbent production and pilot operations.

3.6.8 Summary of Sorbent Physical and Thermal Properties

As discussed above, several different physical properties were measured by outside laboratories as well as by ADA. The results are summarized in the following bullet list:

- Pore volume: 0.27 mL/g (provided by manufacturer)
- Particle density: 0.646 g/cm³ – As shipped from the manufacturer – measured at Adsorption Research, Inc.
- Density
 - Bulk density: 0.586 g/mL (36.5 lb/ft³) – After being treated with saturated N₂ at 55°C – measured at Adsorption Research, Inc.
 - Bulk density: 0.445 g/mL (27.8 lb/ft³) after treatment at 40C in 4% H₂O in N₂ – measured by ADA
 - Tap density: 0.458 g/mL (28.592 lb/ft³) after treatment at 40C in 4% H₂O in N₂ – measured by ADA
- Sorbent heat capacity: 1.05 kJ/kg·K – measured by FAI laboratories
- Sorbent thermal conductivity: 0.08 W/m/K (for polystyrene, which is the main substrate component)
- Crush strength: 2 kg/bead, Measured by Adsorption Research, Inc.

3.6.9 Sorbent Cost

While the sorbent cost is considered a key sorbent property, it cannot be assessed using laboratory experiments. At the onset of the current program, a goal sorbent cost of \$5/lb was assumed. Although a commercial CO₂ capture sorbent cost is not yet known, the attrition results and subsequent economic sensitivity analyses suggest that it may be possible for a commercial sorbent to be more expensive than \$5/lb without making the overall process cost prohibitive.

3.7 Process Calculations and Computational Modeling

During design of the pilot system, Technip utilized proprietary models to design the three-stage adsorber and single-stage regenerator. Key sorbent characteristics such as particle density, particle size, and thermal conductivity were inputs into the model.

ADA also worked with NETL and the Carbon Capture Simulation Initiative (CCSI) program to model the adsorption and regeneration process. The CCSI modeling was conducted using a one-dimensional computational model for a bubbling fluidized bed reactor developed at NETL. ADA provided inputs for the model. The CCSI team modeled reaction kinetics for the sorbent using a lumped parameter equilibrium and kinetic model developed at NETL and fitted to experimental data obtained using TGA data provided by ADA.

The CCSI model predicted an overall removal of CO₂ from the process gas stream of 58.07% and an achieved working load of 4.5 g CO₂ /100 g sorbent, compared to the design condition of 7 g CO₂/100 g sorbent. The CCSI team identified two possible reasons for the poor modeled performance of this

process. The first of these is due to the predicted non-isothermal behavior of the regenerator in this process. The CCSI model highlighted the strong cooling effect as sorbents loaded with CO₂ were introduced at the top of the regenerator. Based on the model, the temperature of the solids leaving the regenerator was only 104°C. The addition of cool solids immediately decreases the local temperature of the bed, which is compounded by the rapid release of adsorbed species from the heavily loaded sorbent via endothermic reactions.

The second potential reason for the low working CO₂ capacity from the model is due to the model input data with significantly slower kinetics of adsorption of CO₂ at low temperatures which limited the modeled performance of the adsorber. The CCSI team was not provided with all of the kinetic studies conducted by ADA. Some of the initial results, which were provided to the CCSI team, were conducted with a standard stepwise temperature ramp and the results may have been representative of actual process conditions in the pilot. The model predicted that the uptake of CO₂ appears to be approaching to 85% of the equilibrium loading. This would suggest that the performance of the adsorber could be improved slightly with faster kinetics or longer residence times, but that improvement might be uneconomical.

The regenerator design in the pilot includes features from existing fluidized beds used in the chemical and process industries. A bank of heat transfer tubes is located within the bed of sorbent that takes up 32% of the cross-section of the regenerator. There are a few inches of sorbent bed above and below the bank of heat transfer tubes. If the fluidization velocity is too low, the sorbent will bubble rather than fully fluidize in the spaces above and below the tubes. Since the steel tubes in the regenerator significantly restrict the cross sectional area for fluidization flow, the velocity within the tube zone became significantly greater than the velocity above and below the tubes.

One of the recommendations made by CCSI to improve performance was to use a bottom sorbent exit on the regenerator. The high velocity within the tube zone prevents sorbent circulation to the regenerator bottom, making the bottom exit design infeasible. A bottom exit would be starved of sorbent flow when the tube zone fluidization velocity exceeded the sorbent transport velocity.

Another potential option would be to operate the regenerator at a lower velocity, resulting in bubbling beds above and below the heat transfer tubes, and fluidized flow within the tube zone. During bubbling operation, the sorbent would be fluidized within the tube zone, but the residence time associated with fluidization would be a small fraction of the overall residence time in the regenerator. The majority of the sorbent residence time would occur in the higher density, bubbling bed sections above and below the tubes, where the contact with fluidization gas and heat transfer occur much slower.

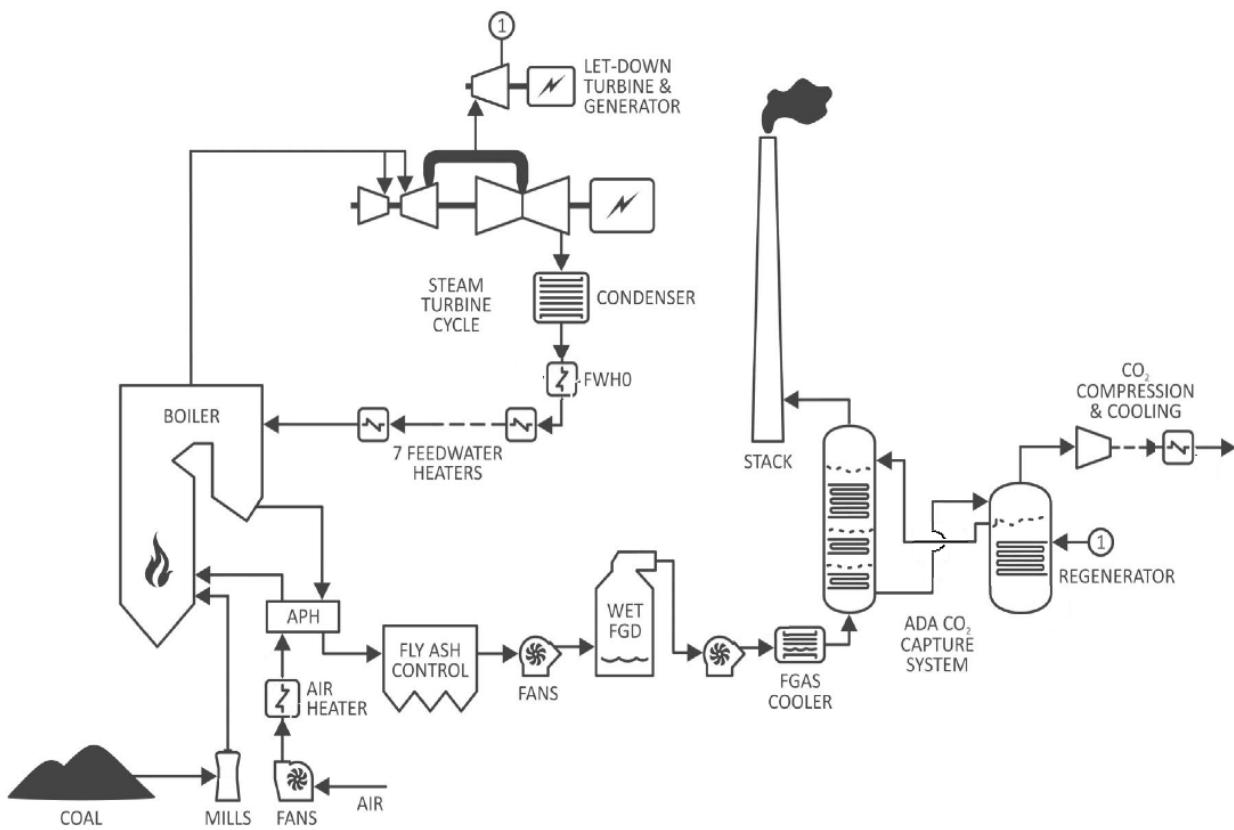
A baffle was added at the sorbent inlet of the regenerator to limit potential impacts of cold sorbent entering the bed by directing the new sorbent to a small area on the top of the bed. Regenerator temperature measurements made during pilot testing indicated that the non-isothermal operation predicted by the CCSI team did not exist during pilot operation at the sorbent recirculation rates tested

in the pilot, which were 30% to 60% below design. It is possible that as the sorbent recirculation rate approaches the design rate, the behavior modeled by the CCSI team may become more of a concern.

4. Process Design

4.1 Conceptual Design - 550 MW

A full-scale conceptual design was developed using the fundamental process technology identified during the initial design activities, and characteristics of the selected sorbent. Design activities were conducted during Task 2 of the project through the series of full-scale conceptual design activities, as described by the subtasks listed below.


- 2.3: Preliminary Conceptual Design: 550 MW
- 2.4: Gather Additional Design Data
- 2.5: Review Results of Process Model and Sorbent Selection
- 2.6: Refine Commercial Scale (nominal 550MW) Conceptual Design

The specific subtask activities have been combined for clarity in this report, but were conducted iteratively during project execution.

The solid sorbent-based CO₂ capture process developed during this project, referred to in this report as the ADAsorb Process, employs the use of a dry sorbent characterized by amine functionalization. Several assumptions were made during the development of the preliminary conceptual design based on public literature and laboratory testing, including the following.

- Particles physically resemble polystyrene beads with respect to size
- Particle density: 36.6 lb/ft³
- Heat of reaction is 587 Btu/lb CO₂ adsorbed
- Adsorption temperature is 40°C
- Regeneration temperature is 120°C
- Flue gas temperature after the SO₂ polishing unit is 57°C

The ADAsorb process integrated into the PC plant is shown in Figure 29. Similar to the solvent MEA process, the ADAsorb process is implemented immediately upstream of the power plant stack.

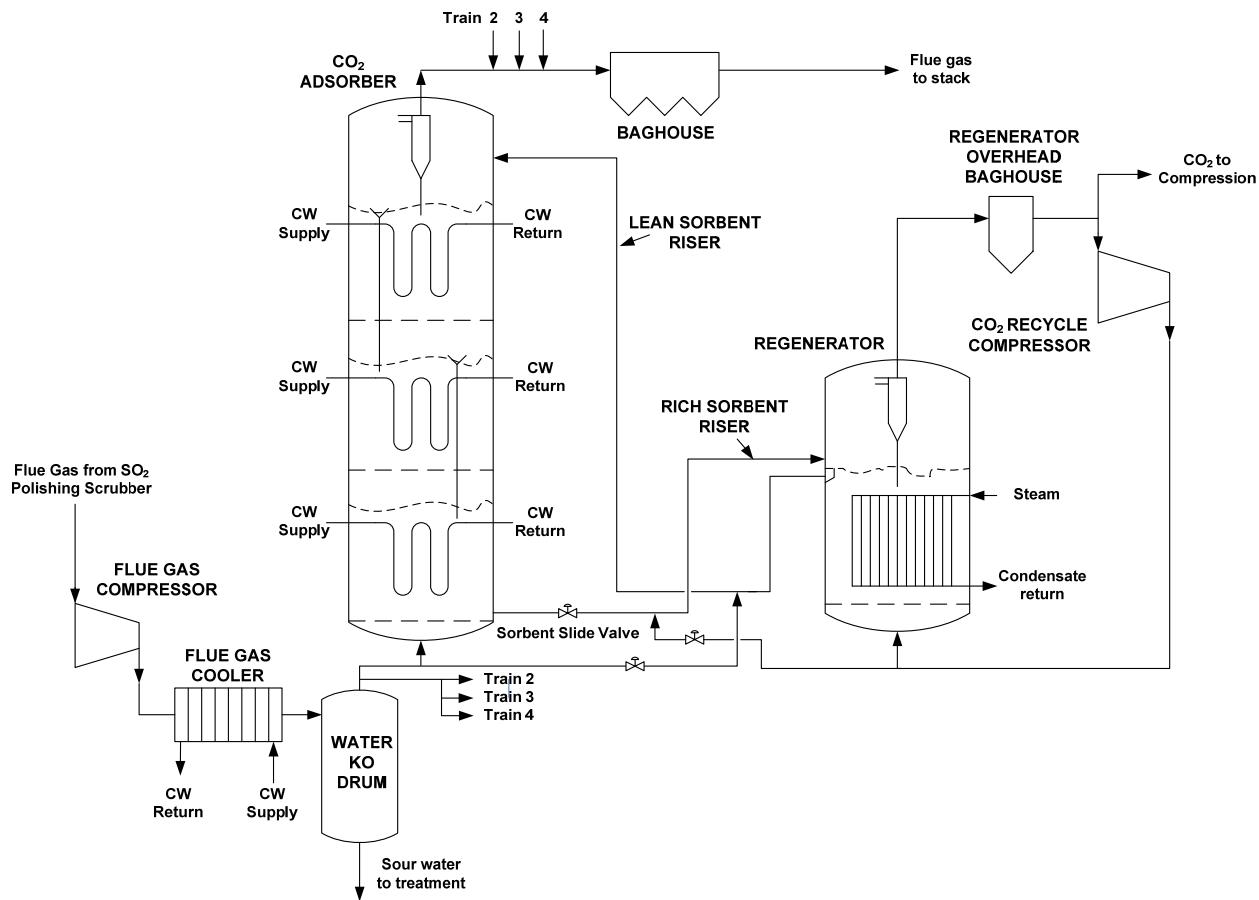


Figure 30. Process Flow Diagram of ADAsorb System Integrated into a Power Plant.

A sketch of the ADAsorb Process is shown in Figure 31. Flue gas is routed from the existing plant through ductwork to the CO₂ capture facility. The amine functionalization on the sorbent can react to form heat-stable salts similar to aqueous amines. Therefore, the SO₂ concentration in the flue gas before entering the CO₂ capture facility must be reduced to levels comparable to those observed in the Econamine process via a similar SO₂ polishing unit. It should be noted that many solids, including the solid evaluated during this project, can be regenerated to recover the functionality of the amines following reaction with SO₂. Thus, as an alternative to a polishing SO₂ scrubber is the ability to remove a bleed stream of sorbent for chemical regeneration.

A flue gas blower is necessary to provide sufficient pressure to pass the flue gas through the CO₂ capture equipment, and return it via ductwork back to the stack. The flue gas is then directed through a cooler, where the temperature is decreased to 40°C. Water vapor is separated from the flue gas in a knockout (KO) drum.

After the KO drum, the cooled flue gas enters a three-stage fluidized bed adsorber. Several adsorber designs were considered, as discussed in Section 3. A fluidized bed TSA process was ultimately selected, based upon process considerations and sorbent characteristics.

Figure 31. Process Flow Diagram of the ADAsorb Capture Process.

Two-stage fluidized beds are common in the petrochemical industry. Based on provided sorbent properties obtained through laboratory sorbent characterization, results from Technip's proprietary fluidized bed process models, as well as their experience with reactor scale-up, Technip recommended a three-stage fluidized bed as the process technology for the adsorber to approach counter-current flow between the solids and the process gas and achieve the 90% CO₂ removal goals established for the project.

Table 14 indicates the expected pressure and CO₂ loading for the adsorber predicted by laboratory isotherm data, as presented earlier in Figure 15, and output from Technip's proprietary fluidized bed models, where the sorbent loading is the expected equilibrium CO₂ loading. Note that, because of the pressure conditions predicted by the Technip process model, shown in

Table 14 below, the CO₂ working capacity, or difference between the inlet and outlet conditions, for the sorbent in the ADAsorb system was projected to be 10.47 - 3.45 = 7.02% CO₂/sorbent.

Table 14. Predicted CO₂ Partial Pressure and Sorbent Loading in the Adsorber

Adsorber Location		Sorbent Loading (wt% CO ₂ /sorbent)	CO ₂ Partial Pressure (bar)
Stage 3 (Top)	Top	3.45%	0.019
	Bottom	5.79%	0.083
Stage 2 (Mid)	Top	5.79%	0.083
	Bottom	8.13%	0.148
Stage 1 (Bottom)	Top	8.13%	0.148
	Bottom	10.47%	0.214

Each stage in the adsorber is equipped with a bundle of serpentine cooling tubes to maintain isothermal operation. The top bed of the adsorber is responsible for cooling the sorbent from the regeneration temperature (120°C) to the adsorption temperature (40°C), removing the heat generated from the exothermic reaction between CO₂ and the sorbent, and removing the exothermic heat due to the adsorption of the remaining moisture in the flue gas. The cooling coils in the bottom two fluidized beds are responsible only for removing the heat of reaction between CO₂ and the sorbent and the heat adsorption of moisture. Due to this added sensible heat requirement, the top bed depth is larger than the bottom two.

The stages are separated by horizontal steel sections, which allow the flue gas entering at the bottom to flow through the adsorber and fluidize the sorbent. The treated flue gas is released at the adsorber top and routed to a series of cyclones followed by a baghouse, which collects any entrained sorbent.

The staged fluidized bed was selected for several key performance characteristics, including:

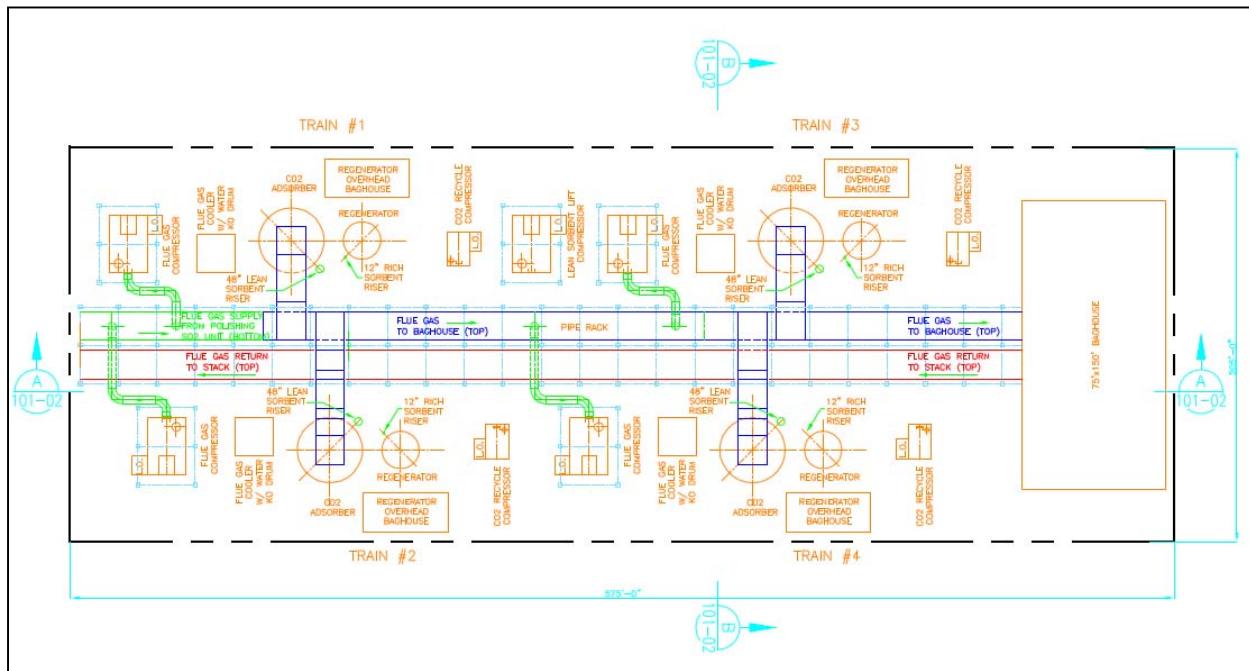
- Maximizing the driving force for mass transfer (i.e. CO₂ uptake) by approaching counter-current gas/solids contacting;
- Isothermal operation;
- Operation of fluidized bed reactors has been successfully demonstrated in other industries.

Standpipes function as passages for sorbent to cascade down from one fluidized bed to the next (top to the bottom), while adsorbing CO₂ from the flue gas flowing upward. As the CO₂-rich sorbent is withdrawn at the bottom, lean sorbent is simultaneously added at the top of the adsorber. The amount of the rich sorbent discharged is controlled by a sorbent slide valve. The CO₂-rich sorbent is pneumatically conveyed with CO₂ to the regenerator via a rich sorbent riser.

In an isothermal (120°C) single-stage fluidized bed regenerator, the rich sorbent releases CO₂ by means indirect steam in an internal heat exchanger. Since the temperature of steam (152°C) extracted from IP/LP crossover section of the PC plant steam turbine is hotter than the regeneration temperature of the solid sorbent (120°C), the expansion of the steam through a back pressure (BP) turbine before entering

the exchanger is required to prevent the thermal degradation of the amines impregnated in the solid sorbent and also to generate additional electricity. Saturated steam at 45 psia is obtained at the BP turbine exit where the temperature and pressure of the steam will be adjusted accordingly to ensure the amine functional groups are not damaged during the regeneration process.

The higher temperature in the regenerator reverses the reaction between the amine functional groups and the CO₂, thus releasing the CO₂ into the gas phase. The released CO₂ exits the top of the regenerator and is directed through a baghouse. A portion of the CO₂ is routed to the CO₂ recycle blower, while the remaining CO₂ is sent to the compression plant similar to the MEA process. The CO₂ recycle blower provides enough pressure for the CO₂ to promote adequate fluidization inside the regenerator and to convey sorbent from the adsorber discharge to the regenerator in the rich sorbent riser. To complete the cycle, the CO₂-lean sorbent from the regenerator is transferred via a sorbent riser, using the conveying media of CO₂-lean flue gas. CO₂-lean flue gas is utilized to prevent adsorption of CO₂ by the regenerated sorbent prior to returning the sorbent to the adsorber. Using the assumptions from the preliminary conceptual design period, four adsorption/regeneration trains were estimated to process all the flue gas being exhausted from a 550 MW_{net} subcritical coal fired power plant.


The solid sorbent chosen for pilot testing collects CO₂ in an exothermic reaction resulting from chemisorption of CO₂ onto an amine covalently bonded to the sorbent substrate. The sorbent releases CO₂ at elevated temperatures. To prevent heat generated in the reaction from heating the sorbent and quenching further adsorption, cooling coils within the fluidized beds remove generated heat and maintain isothermal conditions throughout the adsorber.

One of the design considerations during the conceptual design period was sorbent conveying within the system. One of the concepts considered was bucket conveyors, which are commonly used to move large volumes of solids. Long-term maintenance costs associated with the required moving parts resulted in a decision to use dense-phase conveying. Laboratory results indicated that at elevated temperatures during regeneration, the presence of oxygen in flue gas may oxidize and degrade functional amines on the sorbent. For this reason, CO₂ product gas was specified as a more suitable option to reduce risk of premature sorbent degradation. Therefore, in the conceptual design, the CO₂ product stream gas to convey hot sorbent from the regenerator to the adsorber.

The sensible heat advantage of solid sorbents compared to solvents is offset by the ease of sensible heat recovery in a cross heat exchanger with an MEA system that uses heat from regenerated solvent to preheat CO₂ laden solvent before it is regenerated. This is due to the inherent ease with which liquids can be pumped through efficiently designed heat exchangers and the physical difficulties of exchanging sensible heat of solid particles while conveying sorbent particles between the adsorber and regenerator. A cross heat exchanger was not designed for this project, but was considered as part of another DOE project, DE-FE0012914, and initial findings will be presented in Section 4.2.

Flue gas from the outlet of the wet scrubber (FGD) equipment flows into the CO₂ scrubber. Following CO₂ removal, the flue gas flows through particulate control devices to separate any sorbent that has been carried out of the fluidized bed. Larger particles will be returned to the adsorber and fine particles will be removed from the system. The low CO₂ flue gas will then be directed to the main stack. Steam for regeneration heat is extracted from the crossover of the IP and LP turbines before being expanded to 166°C and 85 psig (5.9 bar) through a backpressure turbine.

To treat the flue gas from a large (i.e. ≥ 500 MW) coal-fired power plant, four trains of the process shown in Figure 31 would be necessary based on the properties of one specific sorbent. A plot plan of the integration of the process into the coal-fired power plant is provided in Figure 32.

Figure 32. Plot Plan of the ADA sorb system at a Full-Scale Coal-Fired Power Plant

4.1.1 EPC Review of Commercial Scale Process Economics

ADA subcontracted Stantec Consulting to provide a techno-economic assessment which compared the basic ADA solid sorbent system design to a conventional MEA system. During the assessment, the effort indicated the relative cost contributions of capital equipment, operating costs, CO₂ compression costs, and fuel costs using an Illinois #6 bituminous coal as the baseline fuel. Costs of the initial assessment were determined to be slightly less than the costs associated with an MEA system, but well within the error range of such estimates.

The TEA was able to break down the costs associated with electricity generation with the solid sorbent post-combustion capture system. The biggest drivers of costs associated with post-combustion capture were with capital equipment, sorbent cost and attrition, and energy penalty. In order to reduce costs, the most effective method is to improve sorbent characteristics so that less capital equipment is necessary and the overall power plant size can be reduced due to a reduction in energy penalty. In order to accomplish these goals, a sorbent must have the highest working capacity possible, the fastest kinetics possible to reduce reaction vessel size, and be regenerated at the lowest temperature possible to reduce consumption of high-value steam.

Preliminary cost estimates for the ADAsorb Process demonstrated a lower cost of electricity impact when compared to the established MEA process. Vendor quotes and other historical database information were used to calculate the incremental COE increase. As determined using the Association for the Advancement of Cost Engineering International (AACE) methodology, the level of cost accuracy for staged fluidized bed process design is defined by a Class IV/V estimate, which is approximately in a range of ± 50 percent accuracy.

Preliminary estimates indicated a PC plant featuring the ADAsorb Process could lead to improved economic viability as well as a greater technical performance than that of the MEA process published in the DOE Cost and Performance Baseline for Fossil Energy Plants Volume 1: Bituminous Coal and Natural Gas to Electricity, Rev. 2.23. The COE is lowered by three percent and the net plant efficiency is increased by 13 percent for the initial study. Compared with the PC plant without carbon capture (Case 9) published in the DOE report, the PC plant featuring ADA's solid sorbent technology results in a COE increase by 80 percent from 67.6 (escalated to 2015 dollars) to 121.8 mills/kWh, which is greater than the DOE target of 35 percent increase in COE. This gap can be reduced by improving sorbent performance (working capacity, attrition resistance and regeneration energy), which is the largest driver of system performance. Costs could also be reduced by optimization of the steam condition at IP/LP crossover to eliminate a need for the BP turbine and to integrate into the steam cycle in a more efficient manner. Additionally, it may be possible to include heat integration either within the CO₂ capture process or between the CO₂ capture process and the power plant. Finally, the most critical element for cost reduction is to reduce size of capital equipment or the number of vessels due to increases in sorbent performance, which will reduce the capital cost component, which is the largest contributor to COE increase.

A summary of the techno-economic assessment conducted in the second quarter of 2011 is shown in Table 15. All costs are estimated in 2015 US dollars.

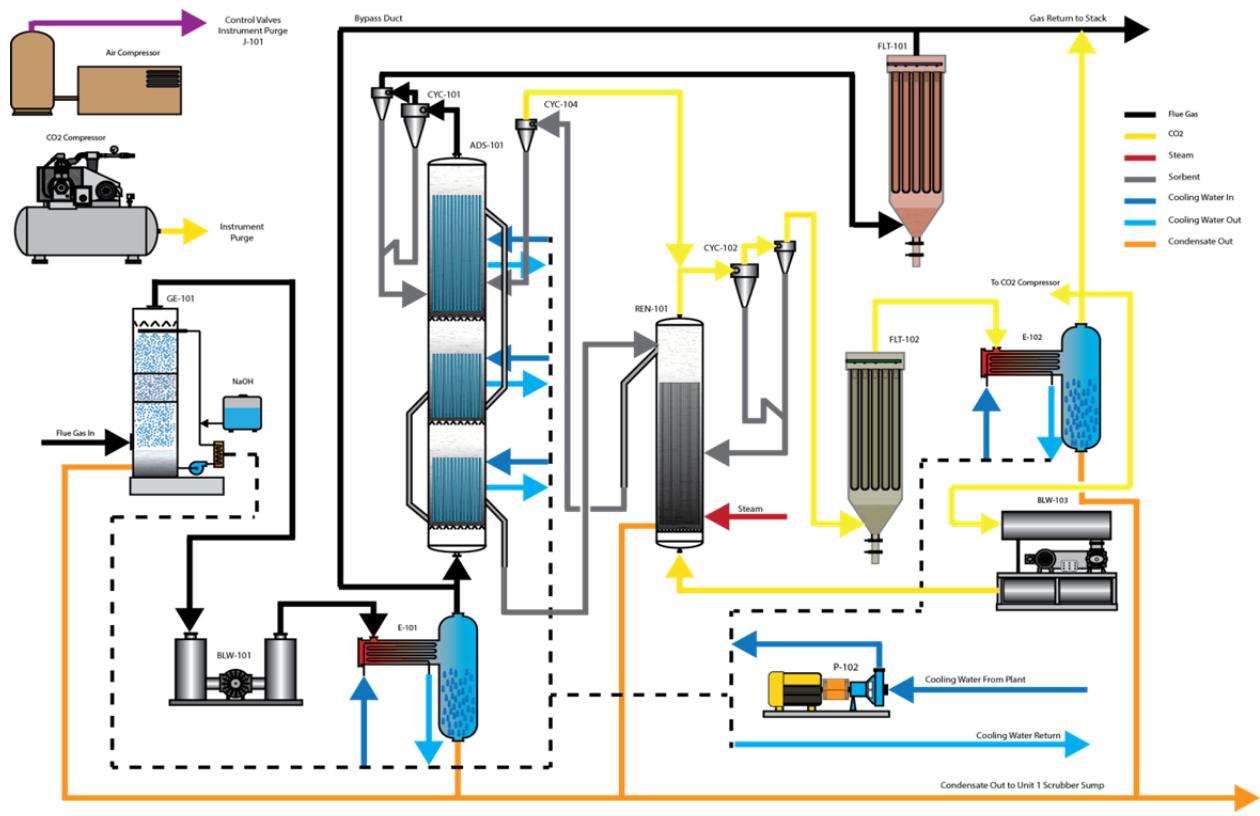
Table 15. Technology Comparison Results for Solid Sorbent and MEA.

Description	Unit	Econamine1 BEC as per DOE	Sorbent1 BEC as per DOE
Gross Power Output	kW _e	672,700	656,125
Electrical Output – BP Turbine	kW _e	0	47,369
Auxiliary Load Summary	kW _e	122,740	153,534
Net Power Output	kW _e	549,960	549,960
Thermal Input	kW _{th}	2,102,644	1,865,320
Coal Flow Rate	lb/hr	614,994	545,581
Net Plant HHV Efficiency	%	26.2	29.5
CO ₂ Captured	lb/hr	1,313,960	1,165,561
Raw Water Consumption	1000 gal/D	8,081	6,460
Regen. Energy	Btu/lb CO ₂	1,530	1,139*
Bare Erected Cost	2015\$	1,415,831,000	1,294,480,737
COE (2015\$)	mills/kWh	125.0	121.8

* The regeneration energy reported does not include any heat integration or optimization strategies.

The modeling results of the supported amine sorbent highlight that the activated carbon sorbents would not be cost-competitive. Results of sorbent testing indicated that the working capacity of the activated carbon sorbents was less than half of the working capacity of the supported amine sorbent BN. As a result, the capital costs associated with the reduced working capacity would increase significantly because larger adsorption vessels would be needed to accommodate the greater amount of sorbent necessary to facilitate 90% CO₂ capture from the flue gas. Since reactor vessels are capital equipment and capital equipment was determined to be the most significant cost driver, it can be assumed that use of activated carbon sorbents in a fluidized bed process would be cost prohibitive.

Various equipment vendors were consulted to analyze the capital costs associated with a full-scale system. In some cases, the laboratory screening data was insufficient to answer all pertinent questions. For example, fixed bed testing results were not sufficient to provide precise reaction kinetic rates for a counter-current system. Since the capital costs of different systems are highly dependent on the required gas/solid contact time, which is dictated by reaction kinetics at the appropriate conditions, results from TGA testing in conjunction with results from the trickle-down reactor were used to extrapolate the required contact time for specific CO₂ sorbents. Although a trickle-down reactor will result in different mass and heat transfer characteristics than a three-stage fluidized bed, it represents a more “ideal” counter-current design and results can help inform design decisions for a fluidized bed system. Results from the trickle-down tests were presented in Section 3.6.3, where laboratory testing suggested that the reaction kinetics under 40°C isothermal conditions and near ambient pressures experienced in the trickle-down reactor were fairly fast, achieving 90% CO₂ capture within seconds at


CO₂ loading of 70 to 80% of equilibrium. The TGA results suggested that adsorption kinetics may actually be much slower as the sorbent becomes saturated with CO₂, requiring tens of minutes to reach equilibrium. The adsorber design conditions for the ADAsorb system to assure 90% CO₂ capture were set primarily on the heat transfer characteristics of the sorbent and the size and time required to maintain isothermal conditions. Furthermore, the ADAsorb adsorption section was designed with flexibility to allow some control over residence time to better evaluate the actual residence time in the adsorber that was required to achieve the CO₂ capture goal.

Results of a techno-economic assessment completed after pilot testing, and insights into potential reductions in energy penalty resulting from heat integration, are included in Section 7.

4.2 Pilot Design – 1 MWe

The detailed design of the ADAsorb pilot facility was completed by Technip with support from ADA. Pilot design details were established based upon laboratory results and characteristics of a single sorbent, identified as sorbent “BN” herein, and in a previous topical report.³⁴ Additional design parameters included adsorption at 40°C (104° F) and regeneration at 120° C (248° F). The pilot was designed for an optimal sorbent circulation rate of 32,600 lb/hr to achieve a sorbent CO₂ working capacity of approximately 7 g CO₂ / 100 g sorbent, based upon results from laboratory testing.

The detailed pilot design included the necessary P&IDs, a process flow diagram, heat and mass balance sheets, equipment design, general instrumentation, and equipment layout. ADA worked with its subcontractor and equipment vendors to develop a control scheme, gas concentration measurement instrumentation, and performance measurements. These efforts were jointly used to create the necessary documentation packages for the construction company to fabricate and install the pilot equipment used for the 1 MWe pilot plant. A simplified schematic of the system is presented in Figure 33. The key parameters used for the pilot design are presented in Table 16.

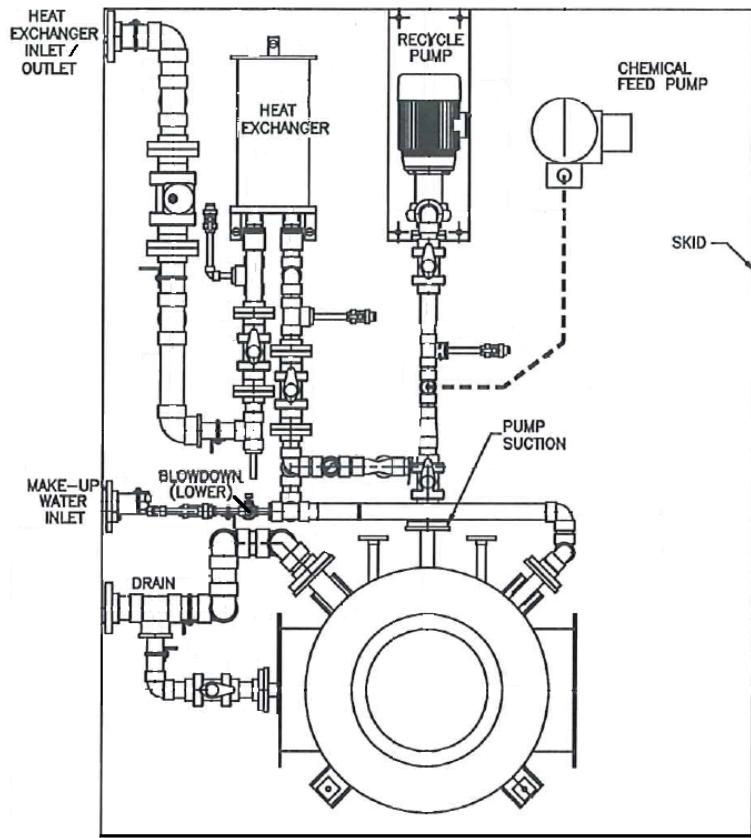


Table 16. Pilot Design Basis.

Parameter	Location	Value	Units
Flue Gas Flow Rate		1808	acfm
Gas Velocity in Adsorber		4.2	ft/sec
Sorbent Circulation Rate		31107	lb/hr
% CO ₂ Captured		90.00%	Weight %
CO ₂ Working Capacity		7.00%	gCO ₂ /g Sorbent
H ₂ O Working Capacity		1.00%	gH ₂ O/g Sorbent
CO ₂	Fluidizing	343	acfm
	Transfer to REG	67	acfm
	Transfer to ADS	252	acfm
	Total used in Process	662	acfm
	Product	375	acfm
	CO ₂ Removed within	2172	lbs/hr
Temp	Bottom ADS bed	104	F
	Middle ADS bed	104	F
	Top ADS bed	104	F
	Regenerator	248	F
Adsorber In	CO ₂	13.1	%
	O ₂	5.65	%
	H ₂ O	4.85	%
Adsorber Out	CO ₂	1.58	%
	O ₂	6.73	%
	H ₂ O	0.78	%
Regenerator Out	CO ₂ (dry)	93.4	% (dry)
	O ₂	0.38	%
	H ₂ O	7.2	%

4.2.1 Polishing Scrubber

The pilot was designed to treat a slipstream of 3,109 SCFM of flue gas extracted from the host plant downstream of the flue gas desulfurization (FGD) unit at a temperature averaging 57°C (135°F). After leaving the host site, the flue gas passes through a polishing scrubber, GE-101, that reduces sulfur dioxide (SO₂) concentrations in the incoming flue gas to the design specification of less than 1 ppmv. This scrubber is necessary to reduce the SO₂ levels in the flue gas to minimize the formation of heat-stable salts that would create a loss of amine functionality. The temperature of the flue gas increases within the scrubber due to the heat of reaction of the SO₂ with the scrubber's 20% caustic solution. A built-in slurry cooler utilizing a plate and frame heat exchanger and approximately 125 gpm of water, reduces the gas to a scrubber exit temperature of 40°C (104°F). All pipework upstream and immediately downstream of the scrubber, as well as the scrubber itself, is constructed of fiber reinforced plastic (FRP) to eliminate corrosive effects. A sketch of the scrubber skid is shown in Figure 34.

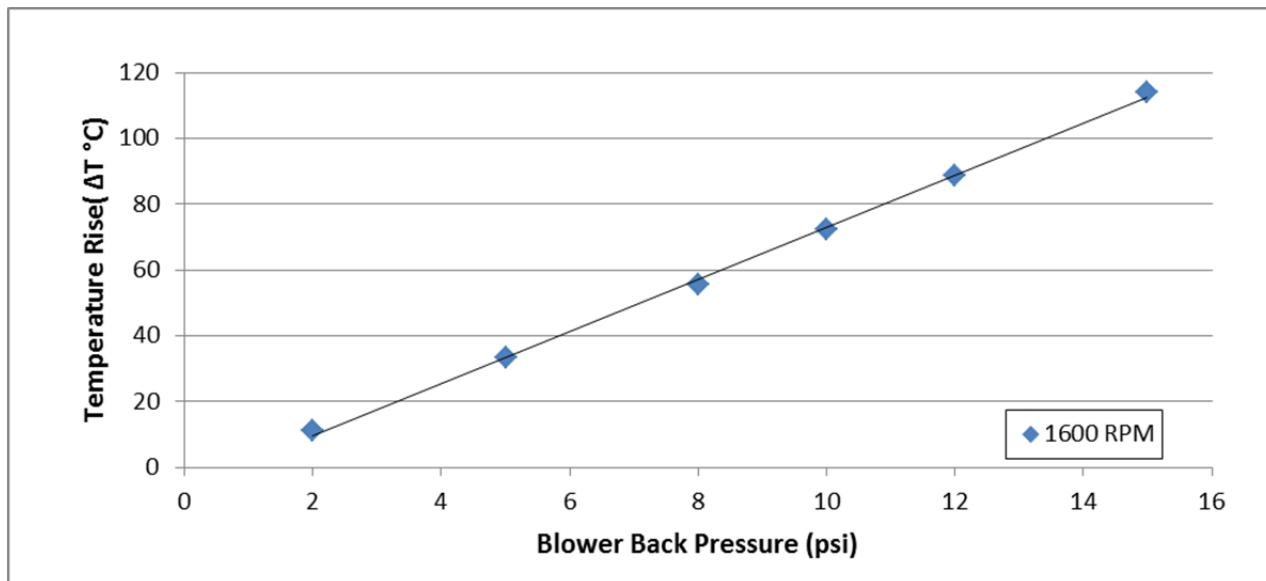


Figure 34. SO₂ Scrubber Skid

4.2.2 Blower and Flue Gas Cooler

A blower, BLW-101, is installed after the scrubber to provide sufficient pressure to overcome the pressure drop of the capture system and allow flue gas to pass through the carbon capture equipment and return it via ductwork back to the original stack. The pilot was designed to operate with a blower back pressure and differential pressure of 7.3 psig and 7.7 psig respectively. This blower is operationally limited by the differential pressure across the blower and is rated for a maximum continuous operational differential pressure of 15 psig. As a failsafe to protect the FRP scrubber and its inlet and outlet piping in the event of ductwork pluggage, a vacuum relief valve is installed between the scrubber and the blower. The pressure drop of the system is due in part to the bed density, bed depth, pressure drop across the distribution plates at each stage, and pressure drops through the cyclones and bag houses. As a result of the flue gas compression, the flue gas temperature is increased.

As the flue gas is compressed within the blower the temperature increases by approximately 50°C in accordance with the blower curve provided in Figure 35.

Figure 35. Flue Gas Temperature Increase as a Function of Adsorber Blower Back Pressure.

Immediately following the blower is a shell and tube flue gas cooler, E-101, which utilizes approximately 80 gpm of water to cool the flue gas to the operating temperature of the adsorber, 40°C. This cooler has the ability to cool inlet flue gas from the minimum design temperature of 30°C up to the unaltered outlet temperature of the blower. The cooler and all downstream equipment and piping are constructed of steel.

Downstream of the flue gas cooler is pilot unit bypass ductwork, which has the capacity to direct all flue gas around the pilot unit and return it to the stack. This bypass is utilized during pilot start-up, shutdown, and during operation to regulate the flow through the adsorber.

4.2.3 Adsorber and Adsorber Particulate Control

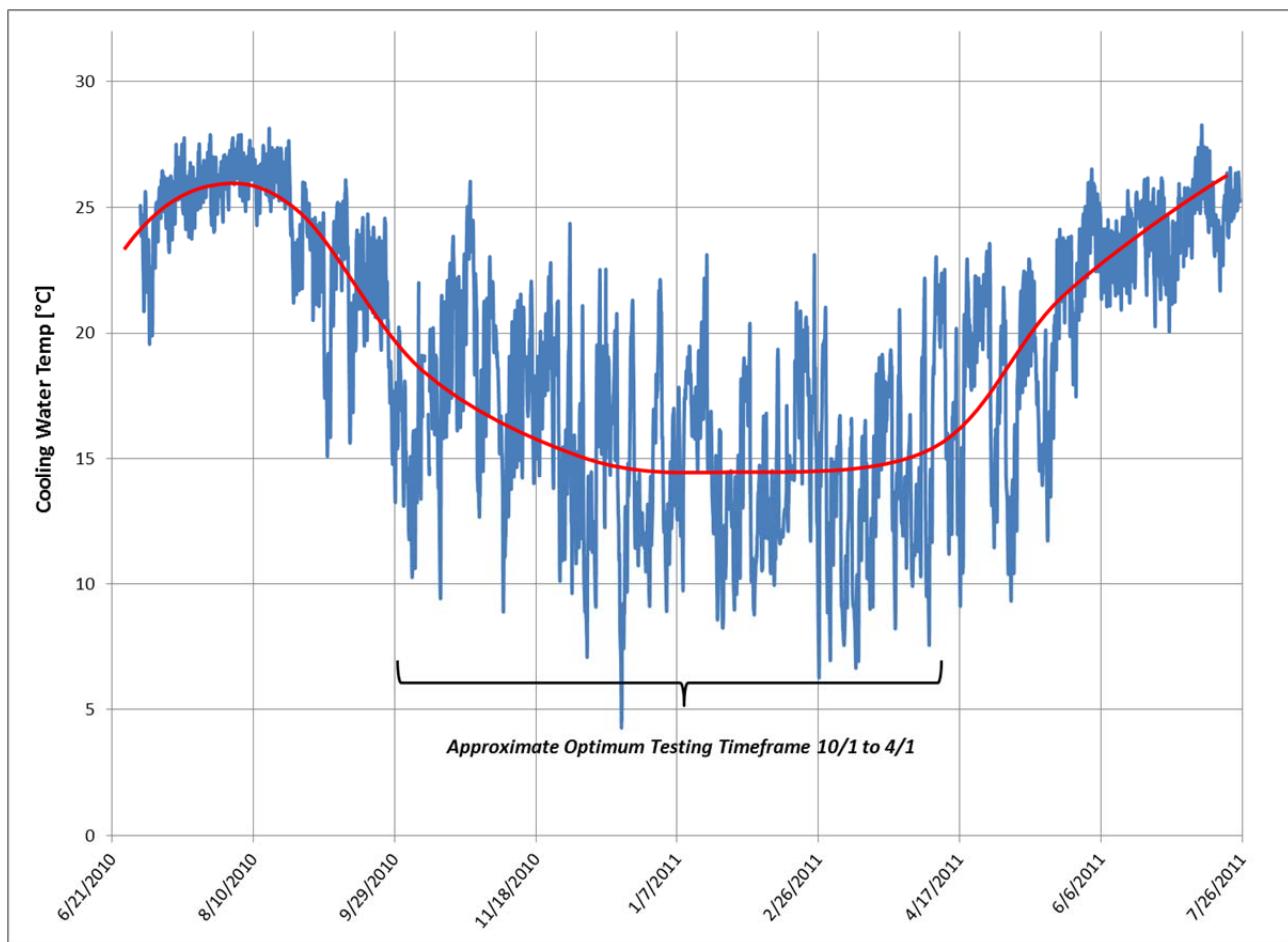
Flue gas enters the base of a three-stage fluidized bed after exiting the flue gas cooler. The adsorber is a vertical, cylindrical vessel constructed of carbon steel, as illustrated in Figure 36. Flue gas enters the bottom of the lower bed and proceeds upwards at sufficient velocity to fluidize the sorbent. Sorbent BN has a minimum fluidization velocity of 0.86 ft/sec, as discussed in Section 3.6.8. Above each bed, there is a disengagement zone where gravity carries most of the sorbent back into the bed immediately below the zone. Flue gas then flows through a distribution plate and into the next fluidization stage until the low-CO₂ gas exits the top of the adsorber.

Flue gas temperature at the inlet of the adsorber is controlled to 40° C (104° F) for sorbent BN. The temperature is affected by a number of factors, including the flue gas blower inlet temperature, the flue gas blower back pressure, and the flue gas cooler water flow rate. These parameters can be adjusted to set the inlet flue gas temperature at the adsorber. The pilot blower inlet temperature can be

manipulated via the slurry cooler built into the SO₂ polishing scrubber and the blower outlet temperature is due to the work performed on the flue gas when it is compressed to overcome the pressure drop associated with the adsorber, as discussed in Section 4.3.2.

Figure 36. Three Stage Adsorber Design.

The adsorber was designed with water-cooled coils in each bed to maintain isothermal operation of 40°C (104°F). The surface areas of the cooling coils within the bottom, middle, and top beds are 430 cubic feet (cf), 430 cf, and 1014 cf respectively. The amount of cooling needed is dependent upon the flue gas cooler outlet temperature, the operating temperature of the regenerator, and the sorbent heat of reaction.


Densely packed CO₂ loaded sorbent exits the bottom of the pilot adsorber through a dip leg and slide gate valve. This adsorber outlet valve determines the rate at which sorbent circulates within the system as the regenerator empties via an overflow. The sorbent mass flow rate range ranges from 0 to 33,000 lb/hr. The sorbent within the dip leg must be kept in dense phase to minimize flue gas introduction into the regenerator. Approximately 78 SCFM of CO₂ from the CO₂ product stream is used to pneumatically convey the loaded sorbent to the top of the regenerator.

CO₂-deficient flue gas exits the adsorber through a two stage cyclone, CYC-101. As the flue gas tangentially enters the cyclones, the heavier, denser sorbent particles are carried to the walls and directed to dip-legs at the bottom of the cyclones, while the flue gas leaves from the top of the device. This cyclone is designed to remove particulate from the gas stream at 99.99% efficiency within the designated sorbent particle size distribution, as discussed in Section 3.6.8 and shown in Table 13. The cyclone is rated to handle up to 2464 ACFM of flue gas with a dust loading up to 21,377 lb/hr at this efficiency. The solids that have been removed from the gas stream via the cyclones are returned to the adsorber through the dip-legs.

The flue gas that leaves the cyclones is routed to a pulse-jet fabric filter which removes very fine sorbent that may have been damaged through attrition as well as any sorbent which may be carried through the cyclones in the event of an upset in operation. The fabric filter is capable of handling 3,600 ACFM of flue gas with an air/cloth ratio of 5.6:1. The fabric filter is equipped with a flame arresting deflagration panel to act as a vent in the event of a deflagration. In the pilot unit, the low CO₂, particle-free gas is then returned to the host unit.

4.2.4 Cooling Water System

The pilot was designed with a once-through cooling water system using cooling water extracted from the river that flows past the host site. The river temperatures from June 2010 through July 2011 are shown in Figure 37. Although the cooling water system could be modified with a chiller to provide additional range for cooling water inlet temperatures, such a cooler was not available for this project. Thus, the operating period of the pilot was constrained to spring and fall months to ensure sufficient cooling capacity for pilot operations while using sorbent BN. Furthermore, the pilot was not constructed for operation during freezing weather and, therefore, operation during winter would not be practical.

Figure 37. Temperature of River Water Used for Pilot Plant Cooling Water.

The river water used for the pilot is taken from and returned to the generating units WFGD make up water header. This water is untreated filtered and untreated. The CO₂ pilot utilizes a “witch’s hat”-style strainer to remove large debris prior to the entrance of the cooling water pump, P-102. The cooling water pump is designed to operate at 1285 gpm, 80 psig, with a head of 191 ft. The pump is rated to provide 1520 gpm, 88 psig, with 244 ft of head. This pump provides all cooling water for the flue gas and CO₂ coolers as well as the scrubber slurry cooler and the adsorber coils.

4.2.5 Regenerator and Regenerator Particulate Control

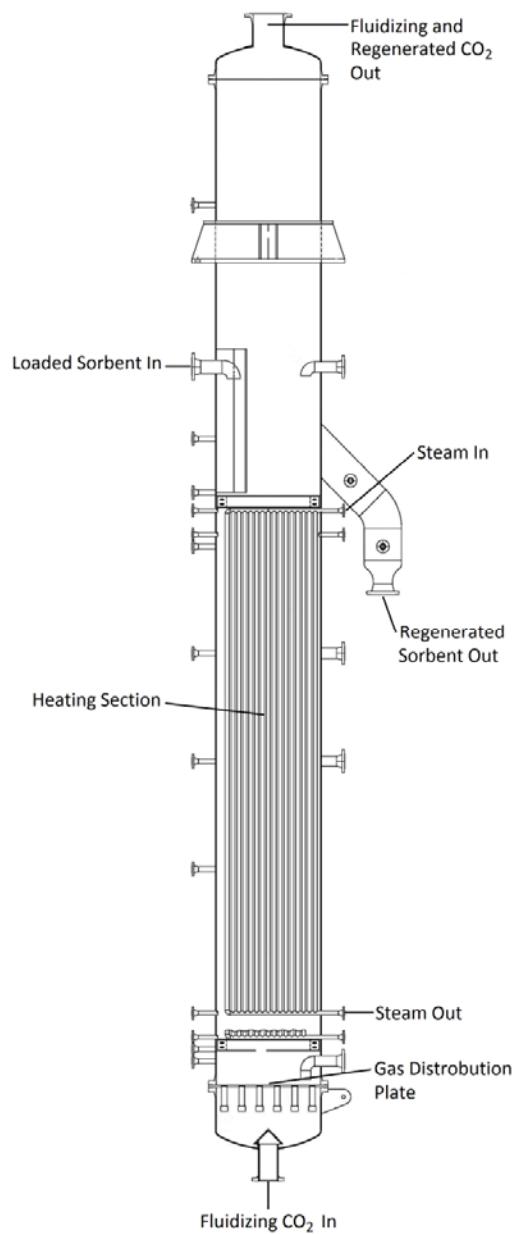
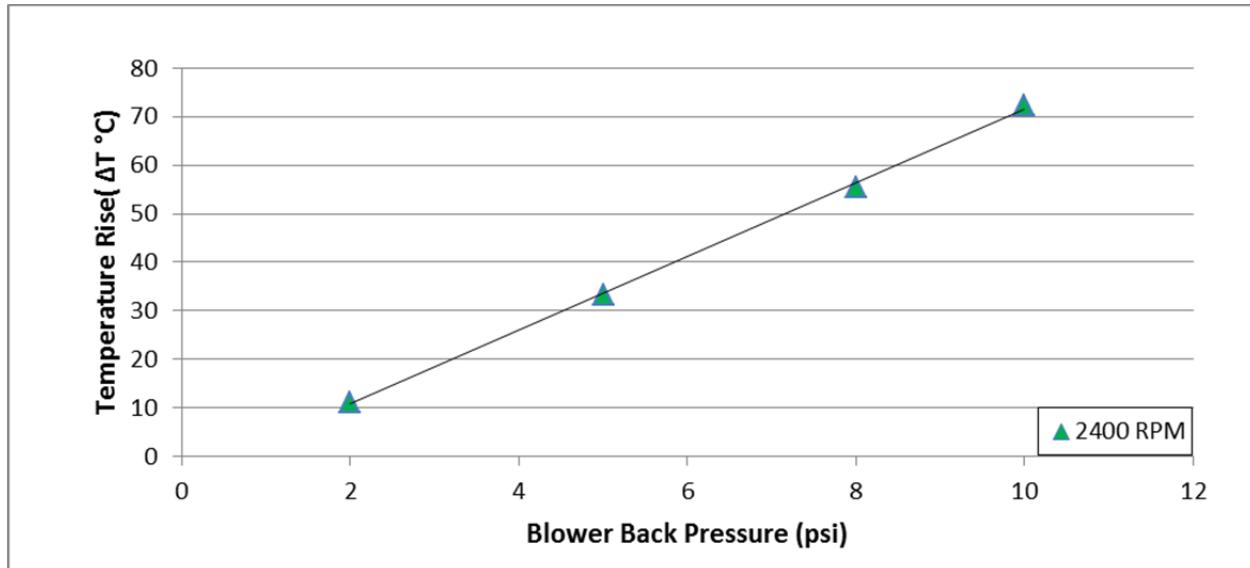

The regenerator consists of a single stage fluidized bed, illustrated in

Figure 38, which utilizes a condensing heat exchanger to condense steam to heat the sorbent and gas within to the required regeneration temperature of 120°C. Indirect heating allows for better control of the system to prevent hot spots and potential damage to the sorbent as a result of exposure to high temperatures. The steam supplied to the regenerator’s heat exchanger has a maximum capacity of


3,770 lb/hr at the design conditions of 149°C (300°F) and 86 psig. The heat exchanger coils have a surface area of 1,188 ft². The steam supplied to the regenerator in the pilot has the ability to be supplied to the heating coils at a minimum of 3 psi up to the supply pressure of approximately 500 psi. The steam temperature supplied to the coils can range from the respective condensation temperature at a given pressure up to the supply temperature of approximately 371°C.

As loaded sorbent is heated in the regenerator, CO₂ is released from the sorbent, which then passes through a two-stage cyclone and a small fabric filter as was described in Section 4.3.3. Approximately 400 SCFM of the CO₂ is recycled to use as regenerator fluidization gas. In a commercial application the balance of CO₂ would be transferred to a compression plant, while the pilot returned it to the plant stack.

In addition to the blower for the adsorber, another blower, blw-103, is necessary to provide the motive force for the fluidizing CO₂ in the regenerator. The temperature increase in the recirculated gas entering the regenerator as a result of the compression is shown in Figure 39. Blower 103 was designed to operate with an outlet temperature and pressure of 120°C and 5.9 psig. This blower is operationally limited by the outlet temperature and is rated for a maximum continuous operational outlet temperature of 190°C (375°F). Prior to entering this blower the fluidizing CO₂ is passed through a shell and tube heat exchanger, E-102, similar to the flue gas cooler. This cooler is designed to utilize 60 gpm of cooling water to cool the CO₂ to an exit temperature of 40°C. Cooling the CO₂ removes excess moisture and conditions the gas before it is compressed and subsequently heated in the blower.

Figure 38. Regenerator Design.

Figure 39. Gas Temperature Increase as a Function of Blower Back Pressure in the Regenerator.

Utilizing both the temperature increase as a result of the regenerator blower back pressure and the steam in the heat exchanger, sufficient heat duty is available for many practical temperature-swing process examinations.

As mentioned in Section 4.3.3, the regenerator level is designed to be held constant by utilizing an overflow design for emptying the regenerator. Regenerated sorbent passing through the overflow is delivered to a cyclone, CYC-104, at the top of the pilot unit via pneumatic conveyance using approximately 292 SCFM of 120°C CO₂. The cyclone separates the heated regenerated sorbent and delivers it to the top bed of the adsorber through a densely packed dip leg to minimize the amount of CO₂ introduced into the scrubbed gas stream. The conveying CO₂ is returned to the product stream.

4.2.6 Future Use

The 1 MWe pilot facility was designed using characteristics of a single sorbent though it can provide some operational flexibility to accommodate future testing campaigns with alternate sorbents that have different characteristics. The range of operation of major equipment and services has been discussed in this Section, 4.3. In order to accommodate different sorbents it may be necessary to add equipment for cooling water refrigeration depending on the specific sorbent's heat transfer coefficient. It is possible to operate with sorbents of varying densities due to the operational range of the fluidization gas blowers. The extent to which the pilot may provide flexible operation is fairly broad in terms of flue gas flow rates, but will not be able to exceed 1 MWe equivalent. Turndown has proven to be effective to as low as 200 kWe for stable operation.

Additional information associated with operational issues encountered during testing and recommendations for additional testing with sorbent BN are included in Section 6.6.

4.2.7 Additional Design Factors

The final pilot design incorporated site-specific details including plant interface requirements and permitting requirements. These activities are summarized below.

Plant interface requirements were established based upon consensus between the host plant facility and ADA. Due to some preferences for steam line integration and other plant concerns, small modifications were made to the pilot system to ensure the least disruptive integration of the pilot facility with the host site.

Electrical, steam, water, and other utilities connections were determined and then agreed upon with the host site. The pilot construction company, McAbee Construction, and ADA worked with the plant to carry out the necessary utility connections and plant integration.

While designs were being completed and plant interface requirements were worked out, ADA solicited bids for subcontracting services to provide the necessary equipment, materials, fabrication, and installation work required for pilot plant implementation. Potential vendors and suppliers were engaged and specific scopes of work were created for selected vendors.

Permits, environmental and construction, and NEPA clearance as required by DOE and the host site were obtained. A Go/No Go decision was made in conjunction with a continuation application for funding before construction commenced. As part of the application and necessary permitting requirements, multiple documents and permits were negotiated such as the following.

- Host site agreement.
- Environmental questionnaires for the host site and other project team sites or activities not addressed in prior submittals.
- Environmental and construction permits.
- Topical report on sorbent analysis and selection.
- Preliminary test plan.
- Complete detailed design package with quotes and delivery dates for selected service contractors and major equipment purchases, plus all other expenditures documented to support budget requests for Budget Period 2.
- Updated Project Management Plan with schedule and Statement of Project Objectives.
- Phase 1 costs to date and estimated costs to complete.

5. Procurement and Construction Activities

5.1 Procure & Manufacture Sorbents

ADA contracted with a confidential third party to produce two 10,000 lb batches of raw sorbent. The quantity of sorbent ensured that if one batch of pilot sorbent was contaminated or destroyed during pilot operation, that a separate batch of sorbent would be available to facilitate continued testing.

Some post-manufacturing processing was required to prepare the raw sorbent for testing. The relatively small amount of sorbent required by ADA for pilot testing made it cost prohibitive to manufacture the sorbent at the size distribution needed for pilot operation. This sorbent has the ability to be produced at specified particle sizes and post-manufacturing processing would not be required of a commercial product. A large batch trial was conducted to dry the sorbent to less than 12% moisture in a vacuum dryer and the results were not acceptable. A second large batch trial attempting to dry the sorbent in a fluidized bed dryer was successful. After achieving acceptable drying results, the sorbent designated for pilot testing was processed to the specified particle size distribution via pin milling and screening.

ADA worked conducted quality assurance tests to ensure the sorbent had been manufactured to the correct particle size distribution discussed in Section 3.6.8. Samples of the sorbent were sent to ADA and tested in ADA's laboratory during every step of the processing to ensure the sorbent adsorption properties were not altered. Quality control sampling took place to ensure similar performance characteristics between batches. Specifically, several different lots of the sorbent were analyzed in ADA's laboratory to ensure the 1 MWe pilot sorbent was suitable and exhibited similar characteristics of previously analyzed batches.

5.2 Procure and Construct Pilot-Scale Equipment

ADA selected a McAbee Construction Inc. due to their tremendous amount of experience in module fabrication to execute the following work packages:

- Fabrication of Adsorber and Regenerator Vessels
- Fabrication of Pilot Modules
- On-Site Installation Activities
 - Foundation, UG Utilities
 - Piping Installation
 - Module Installation and field erected structural steel
 - Electrical Scope of Work
 - Piping and Equipment Insulation

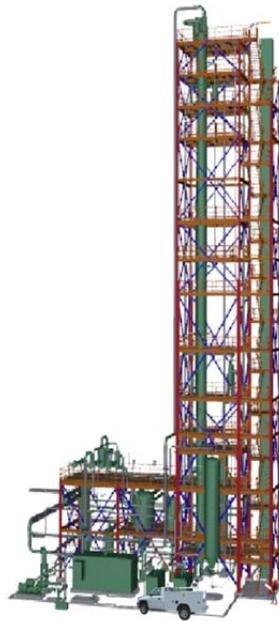
In an effort to reduce costs associated with the fabrication and installation of the pilot unit, ADA conducted several conference calls between project participants. The construction company believed costs could be further reduced by limiting site construction activities and increasing the module scope of

work by pre-assembling all equipment to the greatest extent possible at the module shop. Process design and the equipment layout were evaluated to ensure on-site activities were minimized.

ADA hosted an engineering, procurement, and construction (EPC) kick-off meeting at the ADA corporate headquarters in Highlands Ranch, CO. This meeting served to set the expectations and lay the project management ground work for the EPC tasks. In addition ADA participated in a host site discovery meeting. This meeting was hosted by ADA and the host site, and had participants from many project stake holders. During this meeting measurements and drawings were procured for pilot utility routing design.

Project team members from ADA, the host site, and Technip conducted a hazard and operability study (HAZOP). During the HAZOP, the project team evaluated several operational deviations (e.g., no flow, less flow, more flow) for each process line. During this exercise, the project team discussed the consequences of such actions and identified the necessary safeguards which needed to be installed to ensure safe operation of all ancillary systems included in the pilot unit. At the conclusion of this exercise, the project team identified several areas which needed to be addressed (e.g., ambient monitoring of CO₂ and oxygen near sorbent unloading areas). The HAZOP was beneficial to the project and useful for evaluating new technologies.

5.2.1 Procure Pilot Scale Equipment


Before fabrication began, ADA worked closely with Technip to finalize vendor procurement documentation and equipment quotes. Revised quotes and equipment data sheets were used for the procurement specifications and were part of the procurement contractual documentation with purchase order issuing.

Procurement for instrumentation, all large equipment, and critical path components began at the time McAbee was provided with the structural information needed to develop a materials take off (MTO) for the pilot structural steel order, to ensure delays were minimized. All equipment was shipped to McAbee's facility in Tuscaloosa, AL. Equipment procured for the project was inspected and inventoried as it was received.

5.2.2 Finalize Fabrication and Construction Work Packages

An important component of detailed design of the 1 MWe pilot was the 3D model. The 3-D model was used to support fabrication. Therefore, the 3-D model was reviewed at several different stages of completion. An example of an overall 3-D rendering of the pilot is shown in Figure 40. The adsorber is the tallest module in the figure. A 30% complete model review for the 1 MWe pilot was conducted between ADA, Technip, and McAbee. From this meeting the project team was able to decide on major equipment locations, which facilitated pipe routing for the 90% complete model review. Once the model was completed the fabrication and construction work packages were able to be put together.

Once the fabrication and construction work packages were finalized a construction schedule and contract coordination meeting was held at McAbee's office in Alabama. The purpose of this meeting was to coordinate schedule and contractual details while the project transitioned from design engineering to construction efforts.

Figure 40. Sample 3-D Rendering of the Pilot.

In January 2013, a construction kick-off meeting was held at the host site. The purpose of this meeting was to coordinate schedules and communication between all project stakeholders, plan construction activities ensuring all concerns are addressed, and evaluate any impacts.

5.2.3 Fabrication and Construction of Pilot Scale Equipment

Fabrication of the pilot was performed in Alabama. The vessels and structure were constructed in a fabrication shop and module yard. When the modules were completed, they were loaded on a barge and transported upriver to the host site. A photo of the modules during construction is shown in Figure 41. A photo of the pilot during transport on the barge is shown in Figure 42.

After arrival at the host site, the modules were unloaded and erected on a concrete pad at the host site. After erection of the modules, wiring and plant tie-ins were completed. Activities at the host site were supervised by ADA personnel.

Figure 41. Photo of Pilot Modules under Construction.

Figure 42. Pilot during Barge Transport.

5.2.4 Pilot Installation

While fabrication of the pilot vessels and structures was being performed, installation of foundations and drainage systems, structural support steel and inlet/outlet ductwork with isolation valves, and required utilities (electrical, compressed air, steam) was completed at the host site. ADA worked to

provide the necessary compressed air and subsystems for installation at the pilot while contractors performed the foundation work, electrical work, and tie-in to the plant steam system and duct work.

Once the pilot was delivered to the host site, it was installed on the prepared foundations. A photo of the pilot during erection activities is shown in Figure 43.

Figure 43. Pilot Erection at Host Site.

Installation progressed smoothly throughout and substantial completion of pilot mechanical and electrical activities was completed within a year of the start of module fabrication. ADA's onsite construction manager worked with the construction company's installation team during all construction and installation activities.

Above-ground piping and electrical installation activities commenced once the modules were installed at the host site. ADA's onsite construction manager worked with the construction company's installation team as well as plant personnel to finalize installation activities during first quarter of 2014. Electrical scope of work completed included conduit and cable tray installation, plant interface wiring, interconnecting wiring between field devices and control building, and verification of point to point wiring checks.

6. Pilot-Scale Operation and Evaluation

6.1 Pilot Testing Plan

A series of parametric and a continuous operations period was planned to validate the following key performance parameters. A review of these parameters is provided in Section 6.4.4.

- Reactor pressure drop
- Successful isothermal operation of the adsorber and regenerator
- CO₂ delta loading
- H₂O delta loading
- Combined enthalpy of reaction/adsorption of CO₂ and H₂O
- Reaction kinetics of sorbent BN
- CO₂ partial pressure in the regenerator
- Optimize process variables:
 - Temperature (adsorber and/or regenerator)
 - Sorbent Circulation Rate
- Identify sorbent bed height required to maintain 90% CO₂ capture
- Confirm key fluid bed design parameters:
 - Bed density
 - Heat transfer coefficient (cooling in adsorber, heating in regenerator)
 - Riser lift gas requirement
 - Standpipe aeration gas requirement
- Assess the experimentally predicted number of adsorber stages (3) required for 90% CO₂ removal with BN sorbent
- Confirm the overall feasibility of using solid sorbent BN for CO₂ capture from power plant flue gas in a staged fluidized bed adsorber and fluidized bed regenerator

6.1.1 Parametric Testing Plan

A series of parametric tests was planned to demonstrate 90% CO₂ capture at the design conditions and determine sensitivity to flow and temperature. Approximately two weeks of parametric tests were scheduled to be completed once the system was operating stably on flue gas and circulating sorbent without the introduction of steam.

With flue gas circulating through the system, sorbent was introduced and the system was filled. To avoid any condensation, cooling water would be pumped through the cooling coils only after the exothermic CO₂ loading of the sorbent had increased the temperature of the system to at least 40°C. The heat exchangers responsible for removing heat in the adsorber would be assessed; specifically, the ability of the system to operate isothermally under the design operating conditions.

Once stable operation and sorbent circulation were demonstrated and the sorbent had been loaded with CO₂, the regenerator temperature would be incrementally increased via the addition of steam for indirect heating. The temperature of the regenerator would be slowly increased to avoid exposure of the sorbent to high O₂ concentration at high temperature, which could lead to oxidation of the amines. The steam usage would be continuously measured and, before increasing the regeneration temperature, the successful performance of the heat exchanger in the fluidized bed regenerator would be confirmed.

Once the regenerator temperature were above approximately 70°C the CO₂ laden sorbent would begin to regenerate and, therefore release CO₂. However, the working CO₂ capacity was expected to be unacceptably low at this regeneration temperature. The system would be allowed to achieve steady state operation and after the CO₂ mass balance had been closed, the regeneration temperature would be increased. The system would then be allowed to reach steady state conditions again at several different regeneration temperatures. The regenerator temperature was to be increased to 120°C unless 90% CO₂ capture were achieved at a lower regeneration temperature.

There are several key operating parameters that can be varied to ensure that 90% CO₂ capture is attained, including the following.

- Adsorption temperature.
- Regeneration temperature.
- Sorbent circulation rate.
- Bed height in each of the staged fluidized beds.
- Flue gas volume into the adsorber.

The goal of the parametric tests was to identify the optimal operating conditions prior to initiating the continuous performance-testing period.

6.1.2 Continuous Performance Testing Plan

The continuous testing subtask was designed to obtain sufficient operational data on removal efficiency to determine if 1) there is a degradation in the CO₂ removal performance of the sorbent and 2) to monitor process parameters such as temperatures, pressures, and sorbent attrition rates at an operating condition that is determined from results of the parametric testing and process modeling sensitivity analyses as “optimum” by ADA and subcontracted engineers and approved by DOE/NETL, and the rest of the project team. The 1 MWe pilot was operated starting at the optimal conditions identified during the parametric testing. Once the condition of 90% CO₂ capture had occurred, the plan was to maintain consistent operating conditions throughout the duration of the test, unless the onsite team decides that another set of conditions would be superior based on heat duty, pressure drop, etc. The quality of the concentrated CO₂ stream was monitored during continuous testing.

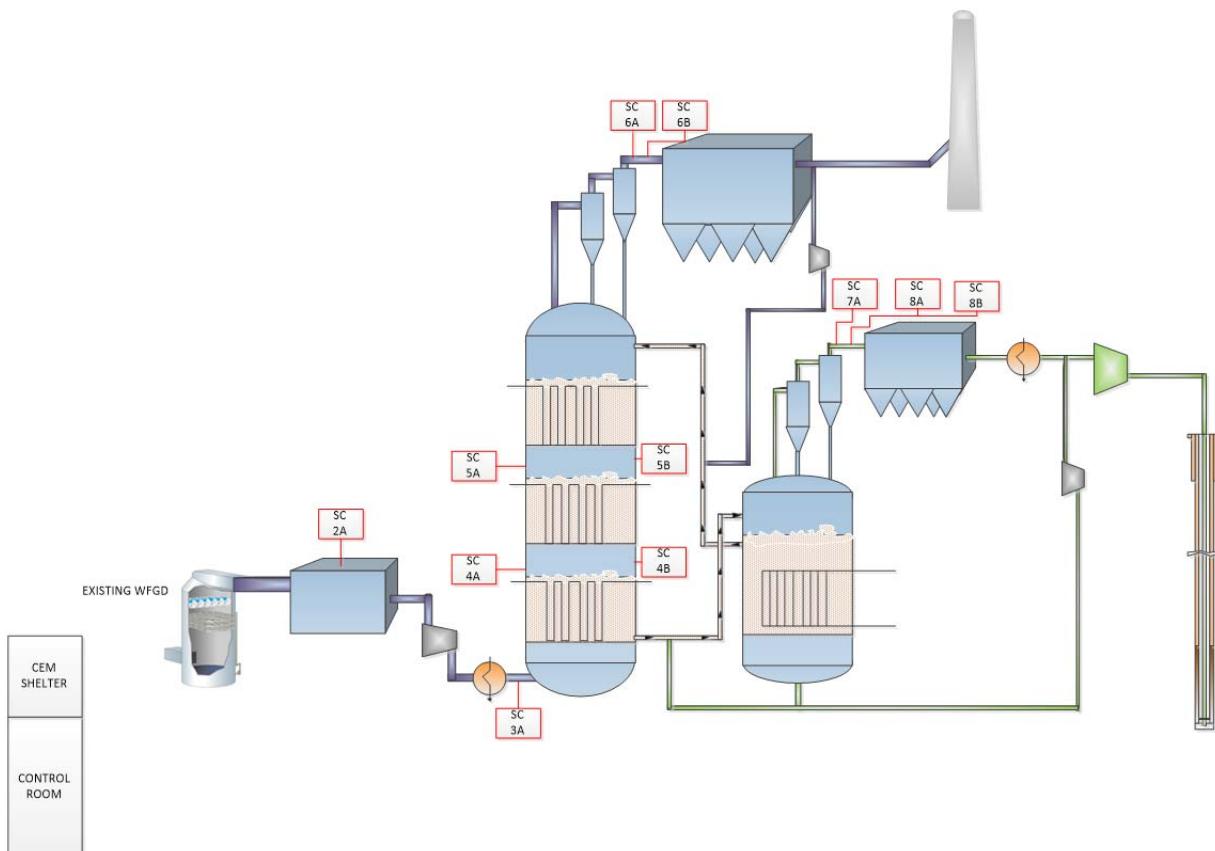
6.1.3 Test Methods

Gas Analysis

The 1 MWe pilot was instrumented to allow for detailed analysis of temperatures, pressures, gas flow rates, CO₂ concentrations, and moisture levels throughout the system. A series of gas analyzers was utilized to measure the gas at the adsorber inlet, outlet, and the regenerator outlet; these sampling points allowed for a mass balance to be calculated.

Sorbent Analysis

Samples of the sorbent were collected throughout the duration of 1 MWe pilot testing. The sorbent from different locations was analyzed periodically and tested in the laboratory to assess if any degradation had occurred and for analysis to monitor any uptake of TCLP Heavy Metals. The sorbent was collected from the adsorber and the regenerator. Results are presented in Sections 6.3 and 6.4.


Gas Sampling Locations

The gas sampling locations are shown in Figure 44 and described in Table 17.

The host site also provided the flue gas composition, specifically the SO₂ concentration, in the flue gas upstream of the 1 MWe polishing scrubber. The intermittent analyzers for the CO₂, O₂, and H₂O were shared, and were thus operate intermittently at any one sampling point. CO₂ and O₂ analyzers for locations 3A and 6A were remotely located in a shelter; all other analyzers were located at the sample points. There was an additional CO₂/O₂ analyzer other than those listed in Table 17. This additional analyzer was placed outdoors near the bottom of the baghouses to measure ambient CO₂ and O₂ concentrations for safety purposes.

Table 17. Gas Sampling Locations.

Sampling Point	Gas(es) Sampled	Frequency of Sampling	Analyzer Location	Used for Mass Balance
3A	CO ₂ , O ₂ , SO ₂ , CO, NO, NO ₂	Continuous	Adsorber Inlet	Yes
4A, 5A	CO ₂ , O ₂ , SO ₂ , CO, NO, NO ₂	Intermittent	Fluidized Bed Overhead	No
4B, 5B	H ₂ O	Intermittent	Fluidized Bed Overhead	Yes
6A	CO ₂ , O ₂ , SO ₂ , CO, NO, NO ₂	Continuous	Adsorber Outlet	Yes
6B	H ₂ O	Intermittent	Adsorber Outlet	Yes
8A	CO ₂ , O ₂ , SO ₂ , CO, NO, NO ₂	Continuous	Regenerator Outlet	Yes
8B	H ₂ O, O ₂	Intermittent	Regenerator Outlet	Yes

Figure 44. 1 MWe Pilot Gas Sampling Locations.

6.2 Commissioning and Start-up

ADA prepared a startup and commissioning plan detailing the sequence of commissioning activities to ensure all equipment operates in a safe and reliable manner. As each major equipment item was built, a factory acceptance test (FAT) was conducted at the equipment manufacturer to ensure the equipment would operate at design specifications.

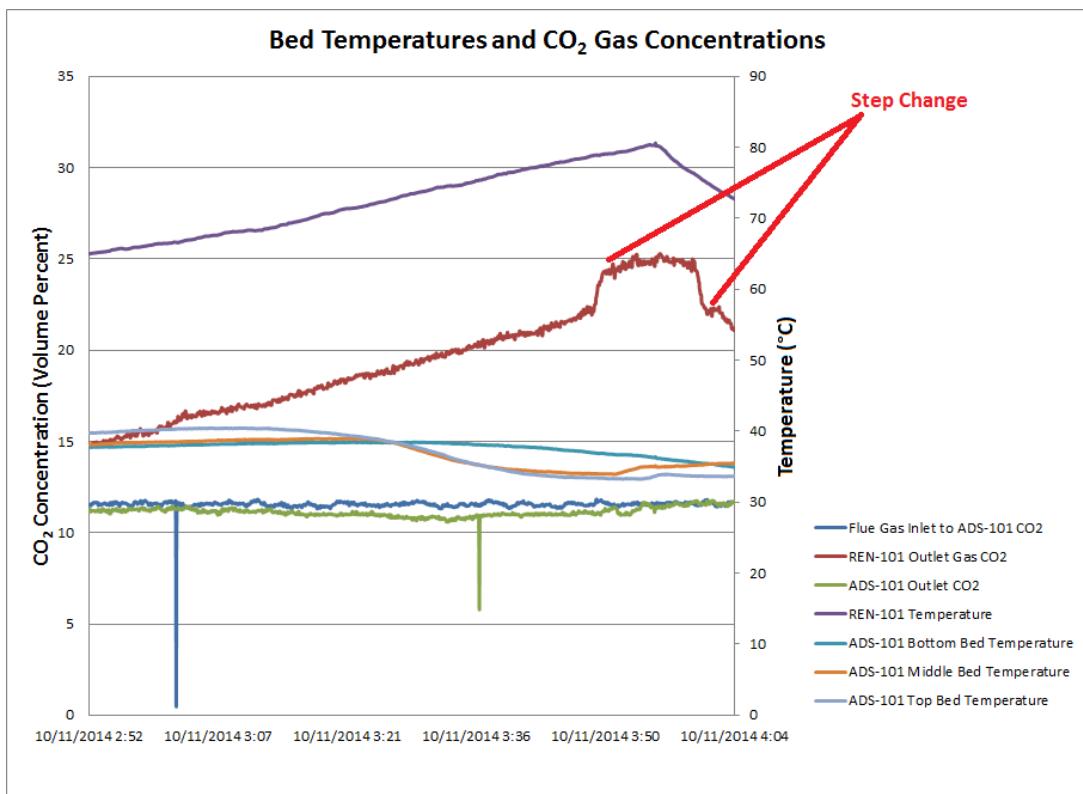
The commissioning plan detailed the startup tests to monitor and measure the performance boundaries of the system with all the equipment in place. The primary areas of focus were scrubber functionality, flue gas flow, pressure drop, cooling/heating capability and control within all vessels, HMI control, control loop tuning, and data collection capability. The commissioning period was to last for a period of two months, an aggressive schedule that allowed for limited opportunity to correct any significant equipment operating issues.

ADA began operation of the ADAsorb pilot on September 29, 2014. Upon startup, sorbent was loaded into the system and sorbent circulation was demonstrated and the sorbent control loops were tuned. To avoid any condensation, the cooling water was pumped through the cooling coils only after the exothermic CO₂ loading of the sorbent had increased the temperature of the system to at least 40°C (104°F). The heat exchangers responsible for removing heat in the adsorber were assessed; specifically, the ability of the system to operate isothermally under the design operating conditions. Once these conditions were met, the adsorber inlet flue gas flow rate was gradually adjusted to a rate representative of a 1 MWe.

Upon achieving an adsorber inlet flue gas flow rate representative of 1 MWe, steam was introduced into the regenerator. The regenerator temperature was slowly increased via the addition of steam for indirect heating. The temperature of the regenerator was slowly increased to avoid exposure of the sorbent to high O₂ concentration at high temperature, which could lead to oxidation of the amines.

6.3 Pilot Testing Periods

Pilot testing was defined as three distinct periods: Round 1 Parametric Testing from October 10 and November 11, 2014, Round 2 Parametric Testing in spring of 2015 between April 4 – May 4 and May 15 – June 25, 2015, and Continuous Operation at 90% CO₂ Capture for 20 hours starting on June 25, 2015. Operation during these periods is discussed in this section. An analysis of results from testing is presented in Section 6.4.


6.3.1 Round 1: Parametric Testing

Round 1 of parametric testing was conducted between October 10 and November 11, 2014. Several operational issues were encountered that required system repairs, including damage to deflagration panels in the baghouse resulting unstable operating conditions and a large surge of sorbent carrying over into the baghouse, instrument grounding issues that caused unreliable signals and difficulty in

operating the system, demister pad pluggage in the polishing scrubber and associated increased pressure drop and caustic carryover to the blower. These issues and other project delays associated with a plant outage are detailed in the section below.

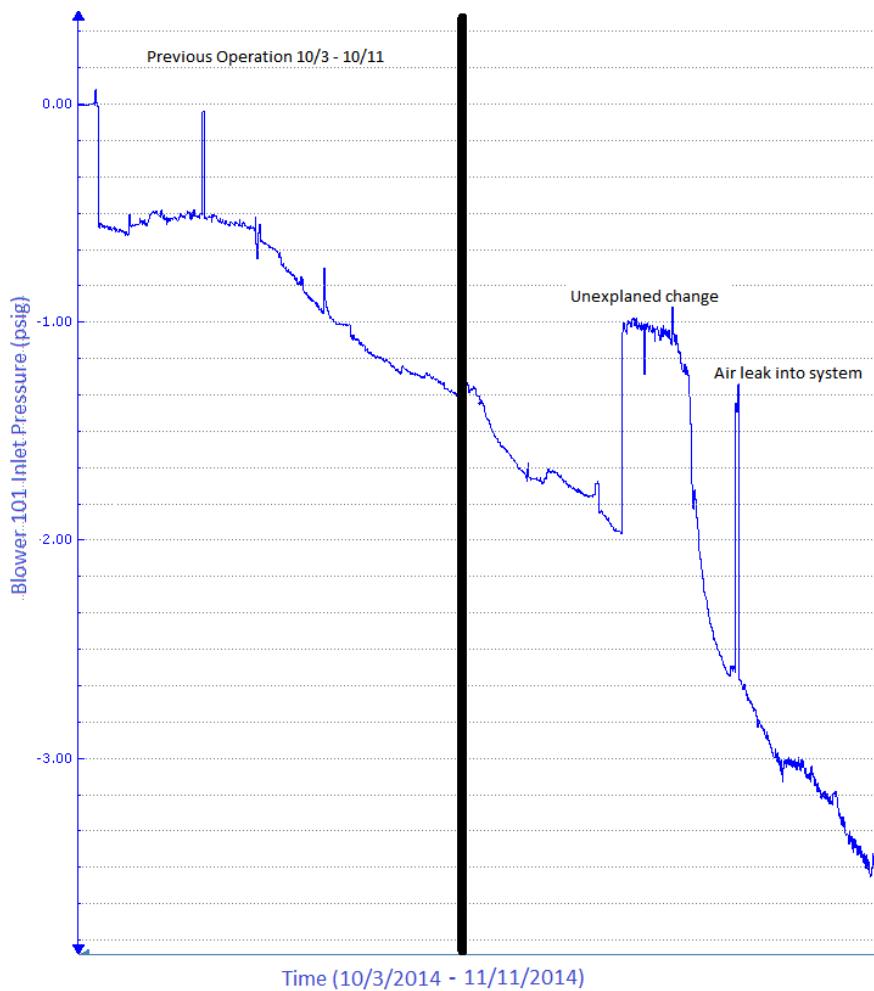
Round 1 of parametric testing began with the introduction of steam at 16:30 on 10/10/2014. Between the time of steam introduction and 4:10 on 10/11/2014, 11 hrs and 40 min, the sorbent temperature within the regenerator was increased from 40.5°C to the first parametric set point of 80°C. Once the sorbent became saturated with CO₂ and before the regenerator was operating at temperature and functioning to reduce the CO₂ concentration on the sorbent, the inlet CO₂ was approximately equal to the outlet CO₂.

An example of data collected during regenerator heat-up is provided in Figure 45. Unfortunately, before stable operating conditions in the system could be achieved, an upset condition occurred that resulted in a system shut-down. Specifically, immediately upon achieving the 80°C regenerator temperature, the adsorber fluidized bed became unstable, causing a surge of sorbent to exit the adsorber. The sorbent back-flowed through the sorbent return dip leg of the cyclone located at the exit of the adsorber that was designed to separate sorbent from CO₂-lean flue gas, return the sorbent to the adsorber and pass the flue gas to the baghouse. When sorbent flowed backward through the return dip leg, the cyclone was ineffective and sorbent was carried directly into the baghouse. Deflagration panels were located in the baghouse that were designed to fail open in the event of an explosion. The excessive sorbent entering the baghouse exceeded the 1.0 psig burst pressure of the deflagration panels. The pilot was forced to shut down until the panels could be repaired.

Figure 45. Round 1 Parametric Testing Data Example.

The deflagration panel was replaced and on 10/25/2014 the pilot was at steady-state flow and sorbent circulation, ready to reintroduce heat to the regenerator and resume parametric testing. Unfortunately, the host site went into an unscheduled outage at the same time so the pilot had to be systematically shut down. On 10/29/2014 the host site began start up and ADA was given permission to resume operation of the pilot unit. Upon startup of the pilot unit's flue gas blower, BLW-101, an internal coupling sheared and the pilot was once again required to shut down.

With the blower coupling repaired at 14:15 on 11/3/2014 the pilot was once again ready to reintroduce steam and resume parametric testing. The first set point of 80°C was achieved that day at 17:49 and steady operation of the pilot at this condition began. During the operation of the pilot at this condition, it was noted by operators that large fluctuations in process values was occurring which made steady operation very difficult. Over the course of the following two days parametric testing at one other temperature was attempted with minimal success due to the apparent inability to understand the interrelations between process variables which made steady state operation practically impossible.


At midnight on 11/6/2014 the steam system was once again shut down. The desuperheater, which both cools and reduces the pressure of the steam for the pilot plant, was subsequently disassembled and inspected due to per the recommendation of the manufacturer due to the inability to accurately control

steam temperature and pressure within the regenerator. No issues were discovered with the desuperheater. It is possible that the steam temperature measurements were erroneous, as described in more detail below.

During this period of operation it should also be noted that the pressure at the outlet to the scrubber/inlet to the flue gas blower had been steadily decreasing and no recommendations provided by the scrubber manufacturer to reduce this pressure through demister washing had been effective.

Between 11/6/2014 and 11/10/2014 it was discovered that local instrument displays were displaying values different than values read within the programmable logic controller (PLC) panel via multi-meter and on the operator human-machine interface (HMI). Prior to startup all instrumentation was calibrated and all values were verified to be consistent at all three locations. Through troubleshooting it was uncovered that faulty grounds existed within the PLC cabinet. During operation of the pilot, it is believed that static generated due to fluidizing the sorbent material enhanced the issues. The instrument values operators were using for pilot control were unreliable and often erroneous. The discovery of the grounding fault issues were likely the cause of many of the control issues experienced and noted by the operators and seemingly erratic behavior of the system, such as the step change illustrated in Figure 45, and the desuperheater temperatures.

Steam was reintroduced to the system on 11/10/2014 after ground-fault issues were addressed. Before the system could get to the target set point, it was noted that the pressure drop across the flue gas blower was approaching the maximum differential pressure of 15 psig corresponding to the high vacuum at the outlet to the scrubber/inlet to the flue gas blower, such as that illustrated in Figure 46. In addition to the high vacuum at the inlet the blower was also beginning to make unexpected noise.

Figure 46. Flue gas blower (Blower-101) Inlet Pressure from 10/3/2014 to 11/11/2014.

Upon inspection, the scrubber demister pad was found to be completely fouled and, due to the high vacuum, the supports had broken as shown in the photo in Figure 47. The fouled demister resulted in carryover of caustic material into the flue gas blower, ultimately resulting in the blower seizing during shutdown which required extensive rebuild and repair. During inspection of these components the ambient temperature remained below freezing for several days resulting in damage to cooling water system flanges due to ice formation.

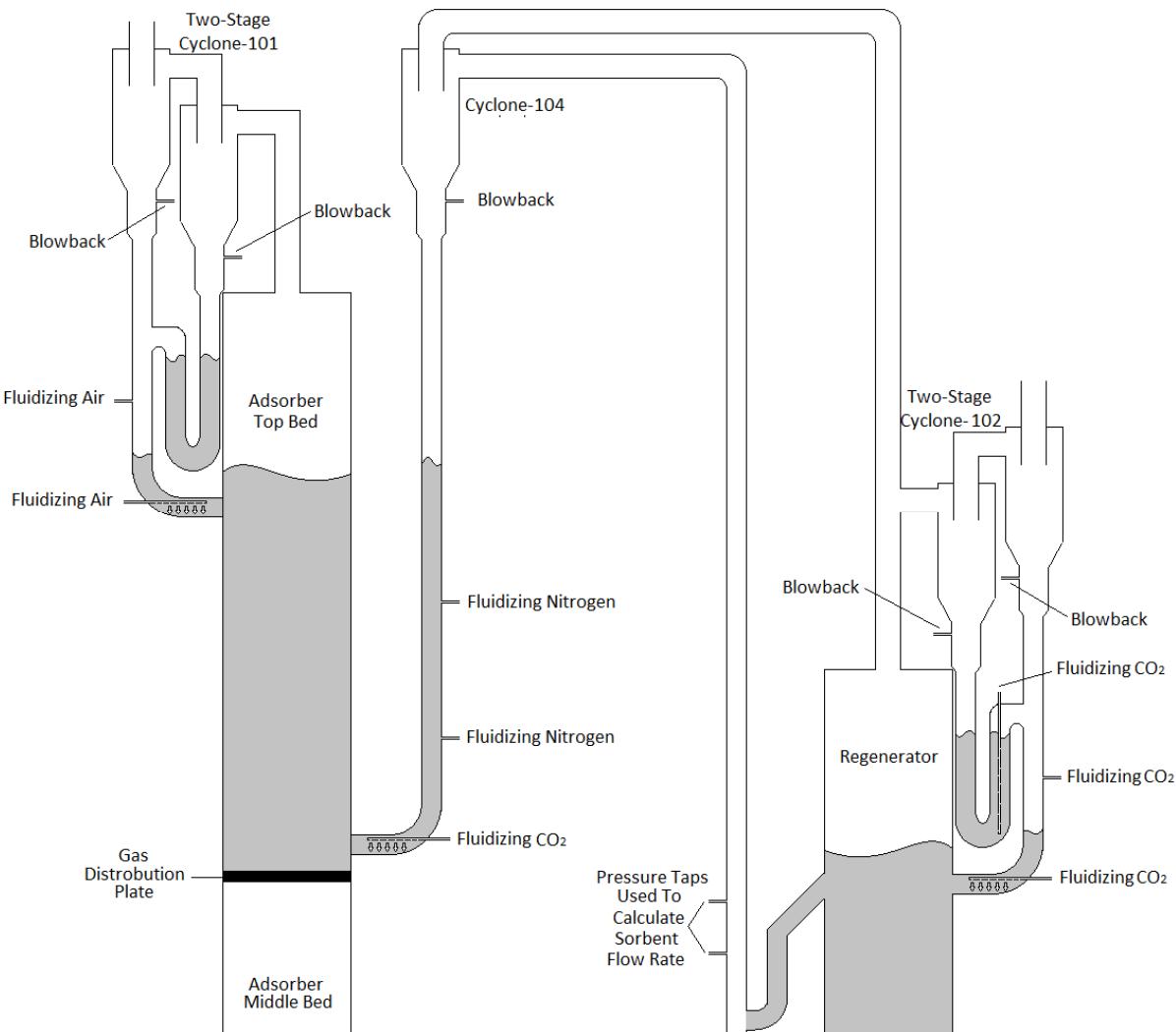
Figure 47. Fouled Demister Pad.

The pilot was online flowing sorbent and flue gas for a total of 21 days during start-up and this first round of parametric testing before it was shut down as a result of the blower damage, demister failure, and freezing ambient temperatures. The system was secured for the winter months and necessary repairs beginning on 11/11/2014.

Pilot testing and collection of data representative of equilibrium operation was limited as a result of controls issues, problems with carryover from the SO₂ scrubber, host unit shut down, and freezing ambient temperatures. However, during the 2014 testing period, operators were able to establish consistent sorbent cycling through the system. Unfortunately, instrument and panel grounding and wiring issues affected the integrity of the collected operational data. Therefore, specific results regarding CO₂ capture and regeneration were unreliable for the first attempts at testing.

Following initial parametric testing, on 11/10/2014, a sorbent sample was collected for laboratory evaluation to determine if exposure to flue gas and cycling in the pilot impacted performance or indicated any potential future handling concerns. Testing was completed for particle size distribution, TCLP (EPA method 1311) testing, and CO₂ capacity. These results, discussed further in Section 6.5, indicated that the sorbent was not subject to contamination from metals present in the flue gas and would not be considered hazardous waste for disposal.

During the pilot shutdown, necessary repairs to the blower were performed as well as a re-engineering of the demister pad and demister wash system by the demister manufacturer. Additional modifications including modifications to the flue gas and CO₂ cooler, E-101 and 102, water supply valves, the addition of scales to both baghouse hoppers, and the addition of blowbacks to all of the cyclones were completed during the required shutdown. These modifications facilitated operation of the scrubber without damage to the flue gas blower and allowed for safer and easier operation the remainder of the project.


6.3.2 Round 2: Parametric and Continuous Testing

The pilot was re-commissioned beginning 3/26/2015 and parametric testing recommenced on 4/9/2015. The spring 2015 pilot operation was conducted between 4/3 - 5/4/2015 and 5/15 – 6/26/2015. Due to sorbent carryover into the fabric filters during initial parametric tests during Round 1, parametric testing was initiated at a reduced adsorber inlet flue gas flow rate of approximately 850 ACFM, or 0.5 MWe to better manage any variations in sorbent handling characteristics resulting from heating the sorbent.

During the second round of parametric testing, material handling of the heated sorbent continued to be a challenge. For example, pluggage of the sorbent return dip leg below cyclone-101, the cyclone designed to separate sorbent returning to the adsorber from the regenerator from carrier gas, as well as complete pluggage of the cyclone-102, the cyclone located at the outlet of the regenerator designed to separate the CO₂-rich gas from any sorbent carried out of the regenerator, led operators to shut down the system many times due to upsets and to make modifications. These cyclones are shown in Figure 48.

Additional grounding fault issues were uncovered during operation of the pilot. A third-party instrumentation specialist was brought in to assist in troubleshooting signal interference issues experienced by the operators. These issues resulted from poor wire practices by a third-party electrical contractor during fabrication, which included removing shielding from instrument wiring several feet prior to termination in the controls cabinet. Modifications to the wiring were made, including replacing necessary shielding and assuring adequate grounding. These modifications seemed to resolve the issues.

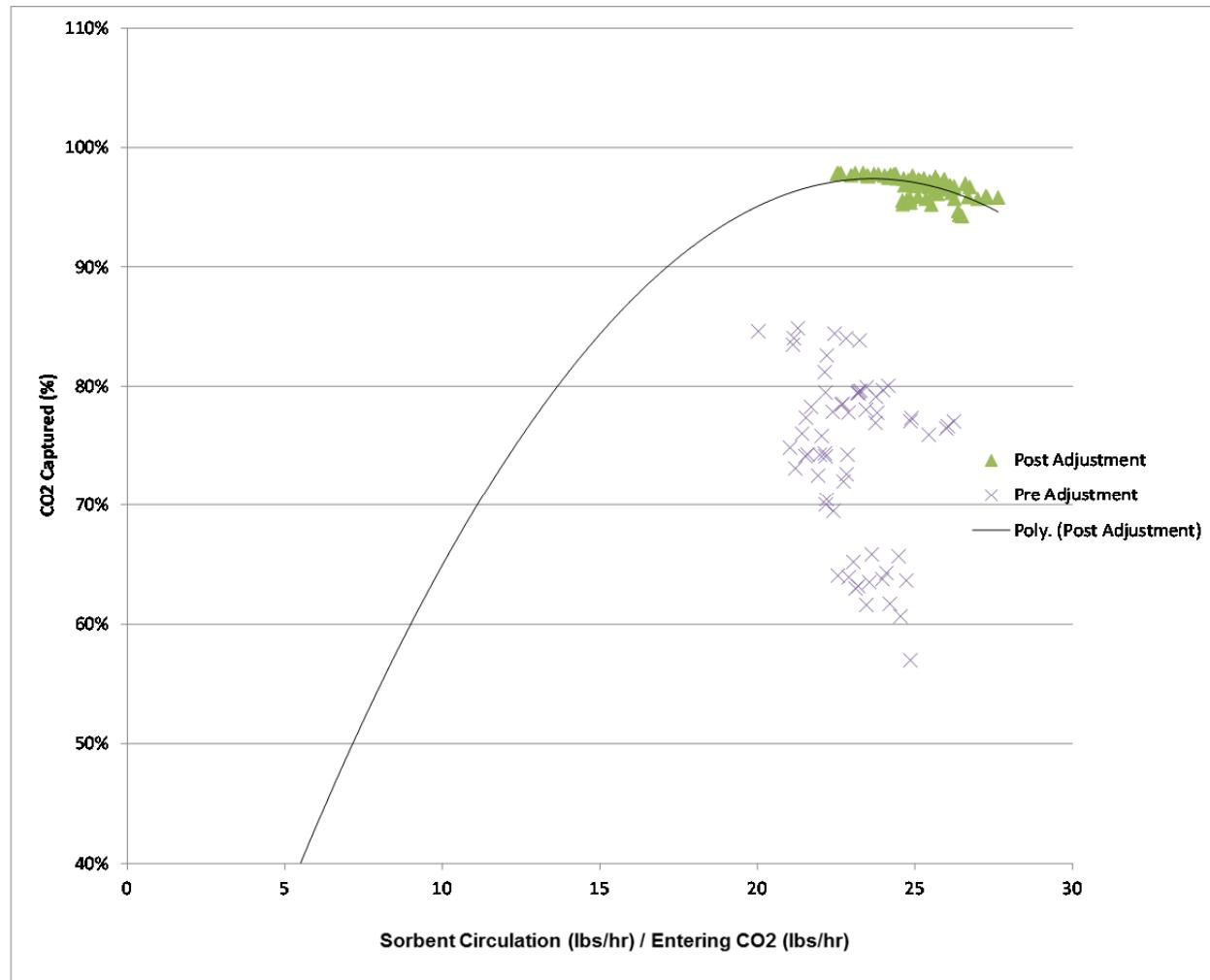

On June 6th additional modifications were made to the dip leg of cyclone-104, the cyclone that separates sorbent returning from the regenerator from carrier gas, within which pluggage and slug flow out were occurring. Previously two vibrators had been mounted to this 8-inch steel pipe in conjunction with increasing fluidizing CO₂ where the dip leg meets the adsorber. The installation of the vibrators did not resolve the flow issues. In place of the vibrators, fluidization ports were installed in the dip leg into which nitrogen (N₂) could be metered, as illustrated in Figure 48. Once the fluidizing nitrogen was installed and tuned to between 1 to 2 ACFM per location material handling issues were minimized.

Figure 48. Adsorber and Regenerator Connection Components.

On-site operators noted several indicators that, during some periods of operation, the measured sorbent circulation rate may have been incorrect due to sorbent potentially being recirculated back to the top of the regenerator by passing through the partially clogged cyclone-104 (sorbent return to adsorber from regenerator). Due to the placement of the pressure taps used to measure sorbent circulation rate, as shown in Figure 48, all sorbent exiting the regenerator is assumed to be returned to the adsorber. Using only these pressure taps, any sorbent bypassing the adsorber by recirculating into the regenerator through cyclone-104 will not be accounted for. The theory that some recirculation was periodically occurring was supported by large amounts of sorbent completely clogging the first stage of cyclone-102, the gas exit from the regenerator, leading to sorbent and CO₂ back flowing through the cyclone-102 dip leg and second stage, and carrying large amounts of sorbent into the fabric filter.

Fine tuning of the regenerator outlet CO₂ fluidization valves and the cyclone-104 nitrogen fluidization valves was performed on 6/12/2015. CO₂ capture data before and after fluidization adjustments is shown in Figure 49. This data, combined with the log notes, supports the belief that sorbent flow into the adsorber was periodically limited during operation before the fluidization adjustments. Analysis of the raw data for the two distinct time periods and data sets, pre and post valve adjustment, shown in Table 18, reveals significant changes in some of the results, which supports the lack of sorbent circulation into the adsorber during periods prior to adjusting fluidization.

Figure 49. CO₂ Capture Before and After Fluidizing N₂ and CO₂ Valve Adjustments.

Table 18. CO₂ Measurements Before and After Fluidizing N₂ and CO₂ Valve Adjustments.

Tag Description	Units	Pre-Adjustment	Post-Adjustment	%Change
CO ₂ entering adsorber	lb/h	474	481	1%
CO ₂ exiting adsorber	lb/h	123	15	-720%
CO ₂ removal in adsorber	lb/h	351	465	25%
CO ₂ removal in adsorber	wt%	74%	97%	24%
Moisture uptake in adsorber	lb/h	45	46	2%
Sorbent working capacity	%	3.2%	3.9%	18%
Total sorbent inventory	lb	9,809	9,885	1%
Sorbent circulation rate entering the adsorber	lb sorbent per lb CO ₂	23	25	8%
CO ₂ in flue gas entering adsorber	vol%	13.3	13.5	1%
Calculated solid flow in transfer line	lb/h	10,858	12,111	10%
Steam flow rate from plant	lb/h	1,313	1,540	15%
Adsorber exit valve open	%	4.2%	6.9%	39%
Area open in HY-003	in ²	1.4	2.3	39%
Regenerator bed level	ft	18.98	17.34	-9%
Adsorber bottom bed avg. temp.	°C	37	41	7%
Adsorber middle bed avg. temp.	°C	39	44	7%
Adsorber top bed avg. temp.	°C	41	43	3%
Regenerator temp.	°C	119	121	1%

An increase in the open area of the valve at the bottom of the adsorber, HY-003, increased steam consumption, increased adsorber temperatures, and decreased regenerator bed height post-adjustment are all indicative of more sorbent entering/exiting the adsorber after fluidization adjustments. It is important to note the CO₂ entering the adsorber in lb/hr and volume % remained constant during both time periods as well as the regenerator temperature and total sorbent inventory.

Of interest is the area open within the HY-003 valve itself and how it corresponds to the sorbent circulation rate. Increasing the area open within the valve from 1.4 in² to 2.3 in², a change of 66%, the circulation rate only registered a 12% change. This is additional support for the belief that sorbent may have been bypassing the adsorber during some of the testing periods.

The top bed at several conditions as well as the middle and bottom bed at two conditions were not able to maintain the desired condition of 40°C. The adsorber bed cooling coils utilized the host site FGD make-up water which was taken from a local river. The pilot unit was designed under the assumption that this water was filtered through a sand filter prior to the pilot extraction location. It was discovered

during operation that the water was not filtered and that due to build up on the water pump pre-screen, known as a witch's hat, sufficient water flow to the coils could not be achieved. The fouled pump pre-screen, or "witch's hat", is shown in Figure 50.

Figure 50. Fouled Water Pump Pre-screen.

Although there were indications that some sorbent was bypassing the adsorber, funding limitations and a fixed testing schedule dictated that parametric tests were undertaken to assess the performance of the ADAsorb system. Continuous parametric testing was conducted between 6/6/2015 and 6/24/2015. During this time, the regenerator was held at the design operation conditions of 120°C. The flow rate of the adsorber was varied throughout the period. Some adjustments to the sorbent flow rate were also made. Analysis and discussion of the results are provided in Section 6.4.

6.3.3 Continuous, 90% CO₂ Removal Testing

Although the pilot was operated continuously for most of the month of June 2015, the period designated as "continuous operations" was during 20 hours on June 25, 2015 when the gas flow rate was reduced sufficiently to achieve 90% CO₂ capture. As discussed previously, the combination of CO₂ adsorbed while transporting the regenerated sorbent to the adsorber, and excess sorbent residence time in the adsorber when the sorbent was approaching equilibrium capacity, limited the ability to achieve high capture at reasonable gas flowrates.

6.4 Analysis and Discussion of Pilot Results

6.4.1 First Round of Parametric Testing

Due to the faulty data resulting from grounding issues and the limited data, few conclusions can be drawn from the first round of testing. It was possible to achieve stable sorbent circulation in the three stage ADAsorb system at the design sorbent circulation rate prior to introducing steam to the regenerator and heating to the design temperature of 120°C.

Figure 45 in Section 6.3.1 shows the CO₂ concentration exiting the adsorber trending up as the sorbent temperature within the regenerator trended up, indicating that the regenerator effectively desorbed CO₂. Laboratory testing of sorbent collected from the pilot also indicated exposure to flue gas and cycling did not degrade the sorbent. The DOE authorized extending the project into the spring of 2015 to collect additional data from ADAsorb operation after the risk of freezing had passed, and pilot repairs were completed.

6.4.2 Second Round of Parametric Testing

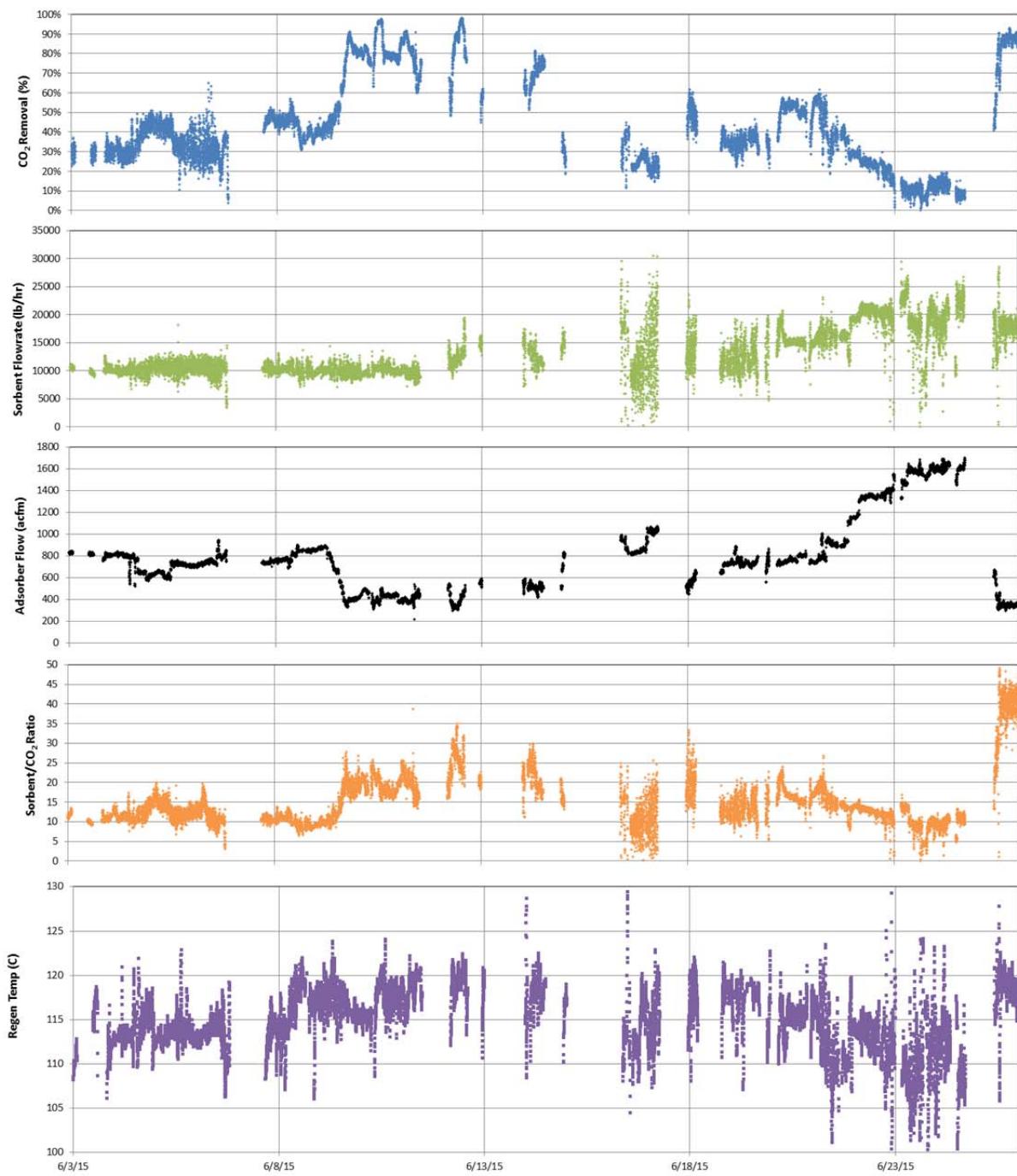
Trend data of adsorber flow rate, sorbent flow rate, regenerator temperature, and CO₂ removed during continuous testing between 6/3/2015 and 6/25/2015 is shown in Figure 51. Operating conditions compared to design conditions are presented in Table 19.

The sorbent circulation rate was not measured directly due to challenges in measuring the flow of solids in a system. The sorbent circulation rate was calculated using the Darcy-Weisbach equation:

$$\Delta p = \lambda (l / d_h) (\rho v^2 / 2) \quad (13)$$

The Δp was measured using two pressure taps located at the outlet of the regenerator as sorbent is conveyed to the adsorber. The equation can be rearranged to yield density, and since the density of the sorbent is much greater than the gas, this value can be used along with the measured gas flow to determine the sorbent flowrate in lb/hr.

The bottom adsorber bed was the most critical level to control in the system. If the bottom bed level dropped below the minimum level, the difference in pressures between the adsorber and regenerator would cause a flow of flue gas into the rich sorbent transport line. When that occurred, a large decrease in the adsorber exit flow corresponded to a high regenerator outlet flow, typically resulting in significant sorbent carryover from the regenerator cyclone to the baghouse. Maintaining bottom bed level became the most critical operator control variable for stable operation. Increasing the sorbent circulation rate between the adsorber and the regenerator tended to cause the bottom bed level to drop, as sorbent would exit the bottom bed faster than it could be replenished. The highest continuous sorbent circulation rates tended to correspond to lower than design levels in the middle bed, which encouraged sorbent turbulence and filling of the middle to bottom bed drop tube. Opening the level control valve between the middle bed and bottom bed beyond approximately 50% open resulted in a reversal of flow


through the drop tube, preventing sorbent flow between the middle bed and bottom bed of the adsorber. At times the reversal was substantial enough to cause the middle bed to fill beyond maximum level and starve the bottom bed of sorbent. In those situations, only a dramatic decrease in adsorber fluidization flow would break the stagnation and allow commencement of sorbent circulation.

The top adsorber bed level had a direct correlation to the level of sorbent in the lean sorbent cyclone dip leg (CYC-104). In order to promote flow out of the cyclone dip leg, and increase the sorbent circulation rate, the most effective sorbent levels were maintained at much lower than design (18 ft vs 26 ft design). When the adsorber was operated with a high level in the top bed, sorbent circulation rates decreased with a subsequent increase in the potential for sorbent carryover from the adsorber cyclone (CYC-101) to the baghouse.

Bed levels in the adsorber and regenerator are dependent on the fluidization velocities, the mass of sorbent in the bed, and the temperature of the bed. The total mass of sorbent in the system was increased beyond the design capacity to compensate for the lower velocities and bed levels being used. Evidence of this is shown in the higher than design pressure drop through the adsorber, as measured at the exit of the flue gas blower (BLW-101). The design blower outlet pressure was 5.9 psi, but operations maintained a pressure of 6-7 psi continuously.

During the 2015 testing between June 2 and June 25, the regenerator was maintained at nominally 120°C, the design operation conditions, but dropped below this point at times as indicated in the figure. The flow rate of flue gas through the adsorber was varied between 360 acfm and 1,600 acfm throughout the period. Recall that the design condition for the pilot was 1,808 acfm. The design condition for sorbent flow was 31,107 lb/hr. The circulation rate of sorbent in the system was varied between 10,000 and 26,000 lb/hr throughout the period. Due to changes in material handling characteristics of the sorbent, it was impossible to maintain sorbent flow above about 20,000 lb/hr.

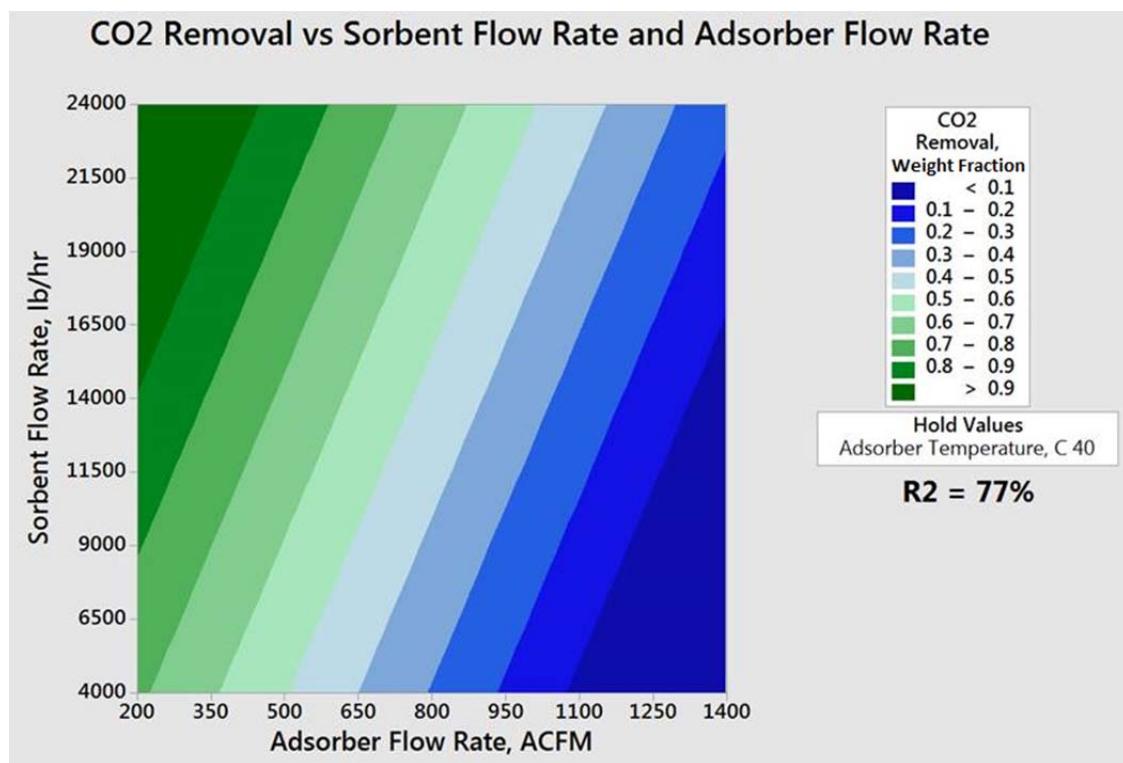
The results indicate that greater than 90% CO₂ removal was achievable during some test conditions, particularly at low flue gas (adsorber) flow rates. At gas flows of nominally 800 acfm or above, the CO₂ removal was typically below 50%.

Figure 51. Overview of Data Collected after 6/6/2015.

Table 19. Pilot Design and Operating Conditions.

		Design	Measured						Units
Flue Gas	Adsorber In	1808	1611	779	824	428	415	350	acfm
Sorbent	Circulation Rate	31107	18439	15103	10070	13183	9876	17993	lb/hr
Sorbent/CO ₂ Ratio	ADS Inlet	15.5	9.3	17.1	10.3	25.9	20.0	43.8	lb/lb
CO ₂ Inlet (%)	ADS Inlet	13%	13%	13%	13%	13%	13%	13%	%
CO ₂ % Capture	% mass Captured	90.0%	13.6%	52.0%	42.0%	94.0%	82.0%	87.0%	Weight %
CO ₂ Working Capacity	g CO ₂ /100g Sorbent	7.0%	1.5%	3.3%	4.4%	4.0%	4.3%	2.2%	gCO ₂ /100 g Sorbent
H ₂ O Working Capacity	g H ₂ O/100g Sorbent	1.0%		0.53%	0.86%	0.28%	0.27%		gH ₂ O/100 g Sorbent
CO ₂	Fluidizing	343	262	267	195	237	229	306	acfm
	Transfer to REG	67	114	90	90	100	90	115	acfm
	Transfer to ADS	252	240	250	254	254	255	213	acfm
Density	Bottom ADS bed	15	15.3	19.8	19.3	20.7	22.4	23.3	lbs/cf
	Middle ADS bed	15	14.2	21.6	20.8	23.9	23.3	24.5	lbs/cf
	Top ADS bed	15	15.7	20.4	20	22.3	22.2	23.5	lbs/cf
	Regenerator	26	18	17.3	19	18.6	18.6	17.5	lbs/cf
Bed Height	Bottom ADS bed	13.3	11.5*	10.5	9	10.5*	7.5	7.8	ft
	Middle ADS bed	13.3	9.5*	7.5	8	8*	6	6	ft
	Top ADS bed	28.9	18*	17	21.5	22.5*	23	17.9	ft
	Regenerator	17	18*	17	16	20.5	15.5	15.9	ft
Temp	Bottom ADS bed	40	40	43	40	42	37	40	C
	Middle ADS bed	40	39	43	41	45	41	44	C
	Top ADS bed	40	43	51	42	43	41	46	C
	Regenerator	120	114	119	118	121	117	119	C
Adsorber In	BLW 101 Outlet	5.9	6.9	6	7	7	6.8	6	psig
	CO ₂	13.1	13.1	13.7	13.8	13.8	13.1	14	%
	ADS Outlet	1.0	1.43	0.38	0.45	0.32	0.32	0.3	psig
	CO ₂	1.58	10.4	6.5	7.8	0.9	2.4	1.8	%
Regen Out	CO ₂ (dry)	93.4	89	96.8	85.5	88.8	85.5	89.9	% (dry)

* Unstable bed conditions during test


Data collected between 6/6/ and 6/24/15 was further analyzed to determine trends. The data set was scrubbed according to the conditions below for analysis.

- Calibration points generated during calibration of:
 - CO₂ Analyzer at adsorber inlet
 - CO₂ Analyzer at adsorber outlet
 - CO₂ Analyzer at regenerator outlet
- Data generated during:
 - Manual moisture measurement at CO₂ gas sampling locations
 - Filter blow-backs at CO₂ gas sampling locations
 - Regenerator temperatures less than 104°C
 - Other corrupt data as indicated by O₂ measurements in excess of 10% at CO₂ gas sampling locations

Percent CO₂ removal across the adsorber was calculated as follows:

$$\frac{\text{Mass of CO}_2 \text{ in} - \text{Mass of CO}_2 \text{ out}}{\text{Mass of CO}_2 \text{ in}} \quad (14)$$

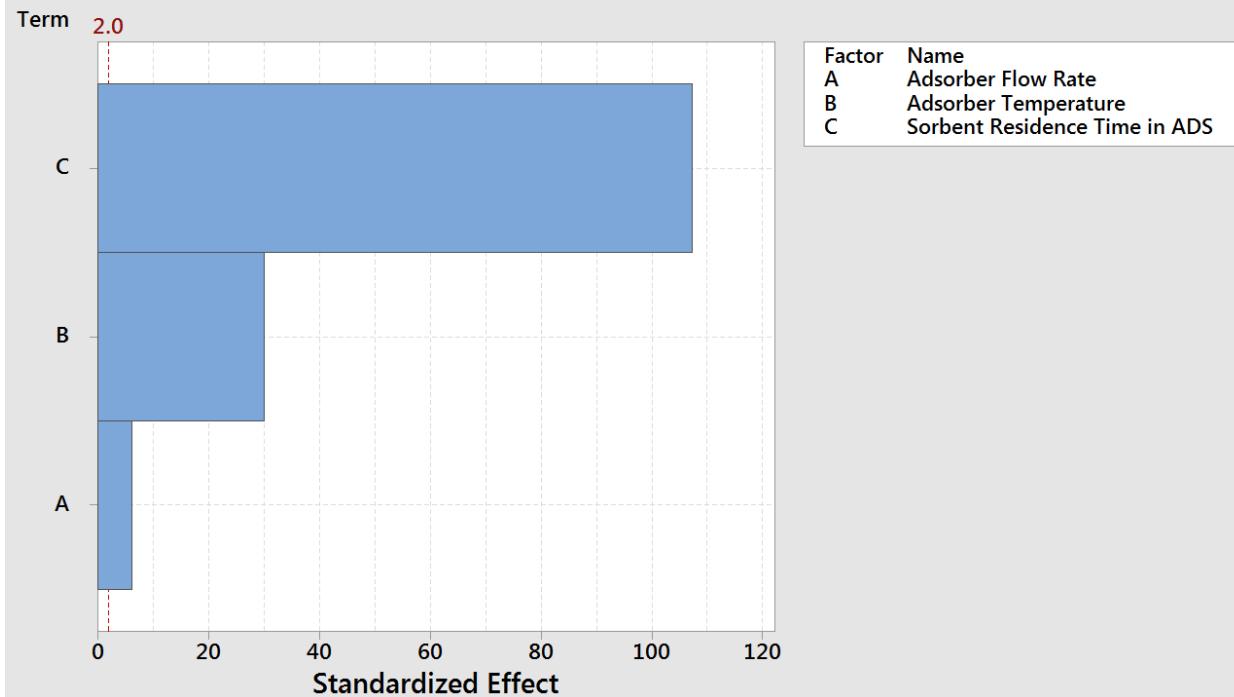
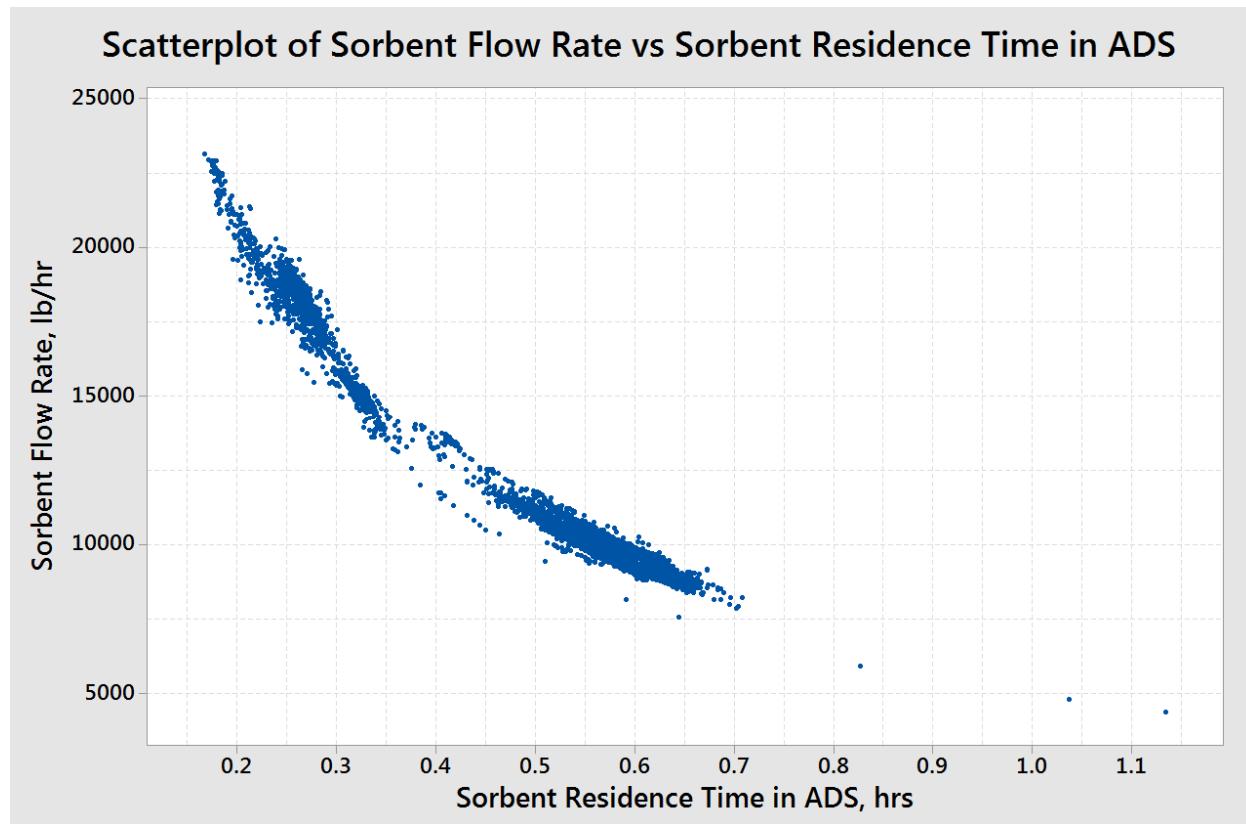
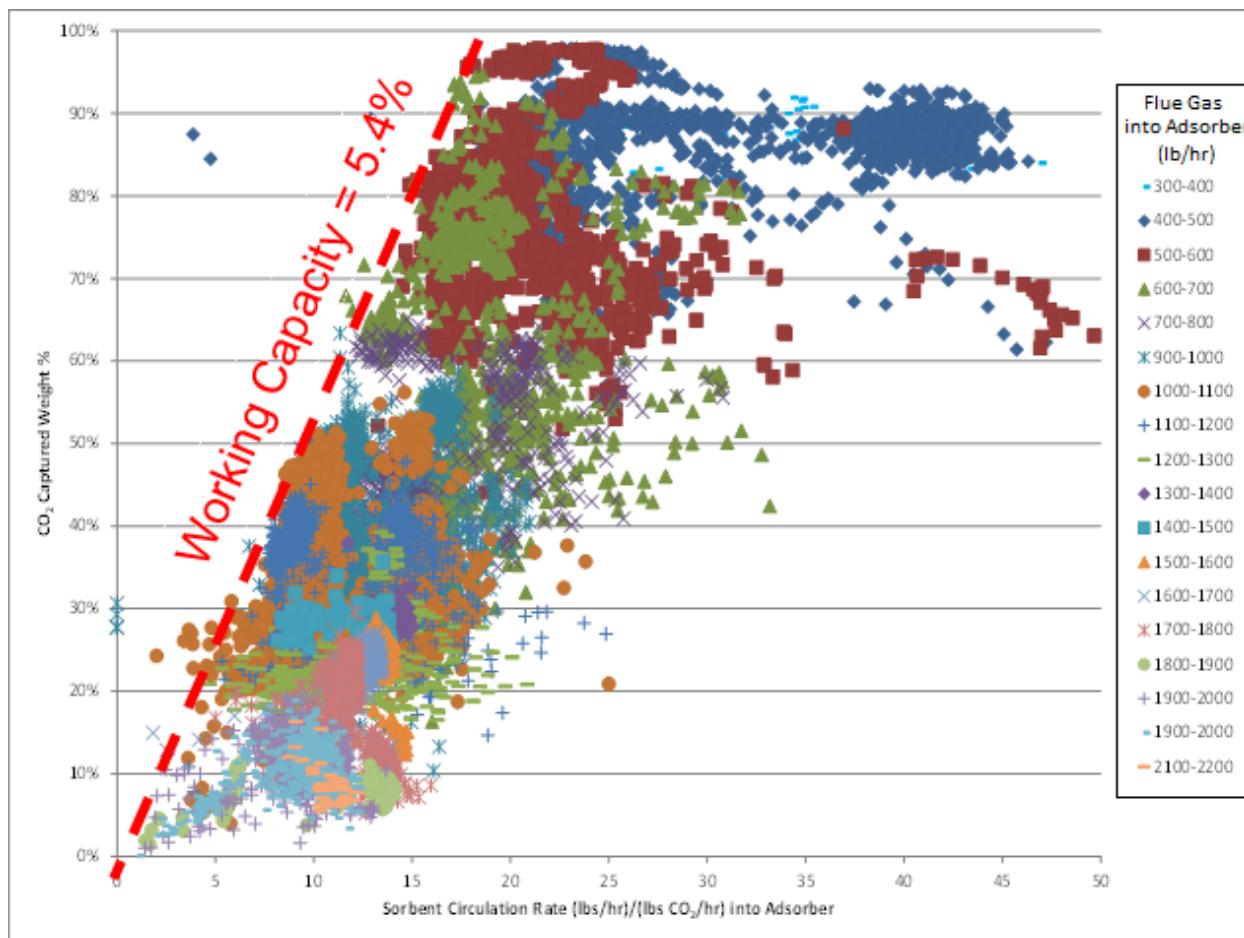

A two-variable regression analysis was used to fit the entire scrubbed data set. The resulting model of CO₂ removal as a function of sorbent flow rate and adsorber flow rate is shown in Figure 52. The data fits this model with an R² value equal to 77% due in part to the fluctuations in operations due to material handling, including potential sorbent recirculation. The figure illustrates how at any given adsorber flow rate, an increase in sorbent flow rate produced an increase of CO₂ removal from the incoming flue gas. The most optimal conditions for CO₂ capture exist at low adsorber inlet flue gas flow rates and high sorbent flow rates. The operational data showed that using Sorbent BN within the as-built pilot, 90% CO₂ removal could be accomplished only at low adsorber flue gas flow rates combined with high sorbent circulation rates.

Figure 52. CO₂ Removal versus Sorbent Flow Rate.


A Pareto chart of the standardized effects determines the magnitude and the importance of an effect. The chart displays the absolute value of the effects and draws a reference line on the chart. Any effect that extends past this reference line is statistically significant. The Pareto chart shown in Figure 53 shows that the sorbent flow rate, and subsequent adsorber residence time, has the greatest impact on working capacity.

Pareto Chart of the Standardized Effects
 (response is Sorbent Working Capacity, $\text{gCO}_2/100\text{g sorbent}$, $\alpha = 0.05$)


Figure 53. Pareto Chart Associated with Figure 52 CO₂ Removal Contour Plot.

Sorbent residence time within the adsorber is directly related to the sorbent flow rate combined with the sorbent density within the adsorber, which is dependent upon the adsorber inlet flue gas flow rate. A plot of sorbent residence time as it relates to sorbent flow rate can be seen in Figure 54.

Figure 54. Plot of Sorbent Flow rate vs. Sorbent Residence Time in Adsorber.

A plot of the CO₂ capture compared to the ratio of the sorbent circulation rate/CO₂ mass flow for a range of flue gas flow rates through the adsorber is presented in Figure 55. For illustration, a line showing the CO₂ capture by a sorbent with a CO₂ delta loading across the adsorber of 5.4 g CO₂ /100g sorbent is included in the Figure. Note that because the units on the x-axis in the Figure are the sorbent to CO₂ mass ratio, 100% CO₂ capture is expected at a sorbent to CO₂ ratio of 18.5 at a delta loading of 5.4 g CO₂ /100g sorbent working capacity. Results indicating more than 5.4 g CO₂ /100g sorbent working capacity would fall to the left of the line shown in the graph. Thus, it is clear from the data shown that 5.4 g CO₂ /100g sorbent working capacity is the effective maximum delta CO₂ loading across the adsorber that Sorbent BN demonstrated during pilot operation.

Figure 55. Plot of CO₂ % Removed versus Mass Ratio of Sorbent / CO₂ into Adsorber.

A review of pilot test results was conducted to determine key factors that were limiting the delta CO₂ loading on the sorbent across the adsorber and the CO₂ removal potential of the pilot. Potential reasons for delta CO₂ loading across the adsorber that were less than the working capacity expected from laboratory testing, as well as variability in the data to the right of the 5.4% line suggest other factors including the following.

- Degradation of sorbent in the pilot.
- Slower than expected reaction kinetics and corresponding insufficient sorbent residence time in the adsorber.
- Adsorption of CO₂ in the transport line between the regenerator and adsorber.
- Intermittent operation such as potential recirculation of sorbent to the regenerator when sorbent may have been bypassing the adsorber but recorded as passing through the adsorber, or periods with reduced regenerator temperatures.

6.4.3 Review of Potential Factors Impacting Performance during Parametric Testing

6.4.3.1 Sorbent Stability

The thermogravimetric analysis (TGA) performed on samples of sorbent taken from the pilot after Round 1 testing to assess the CO₂ capture performance indicated that no significant change in CO₂ capacity had resulted due to exposure to flue gas and system operation. Recall that during Round 1, the pilot experienced an upset condition when the temperature of the regenerator was initially increased to design temperature. The system was operated with flue gas for several days at 40°C to establish stable operation prior to this, however.

For this analysis, the sorbent was exposed to 100 % CO₂ at 120°C at first and subsequently CO₂ adsorption was assessed at temperatures in the range 120 to 40°C under 15 % CO₂ in N₂. Details of these results are shown in Figure 56.

Three sorbent samples were analyzed using the TGA to determine whether there was any sorbent degradation after exposure to flue gas. The samples were: BN13 (as-received), BN17 (sample taken in October from pilot) and BN 18 (sample taken in December from pilot). The results indicated that the samples collected during Round 1 of Parametric Testing did not show a substantial reduction in CO₂ working capacity between regeneration (120°C, 100 % CO₂) and adsorption (40°C, 15 % CO₂) conditions when compared to the as-received sorbent. Results of the particle size analyses also showed no change in particle size distribution from unused material.

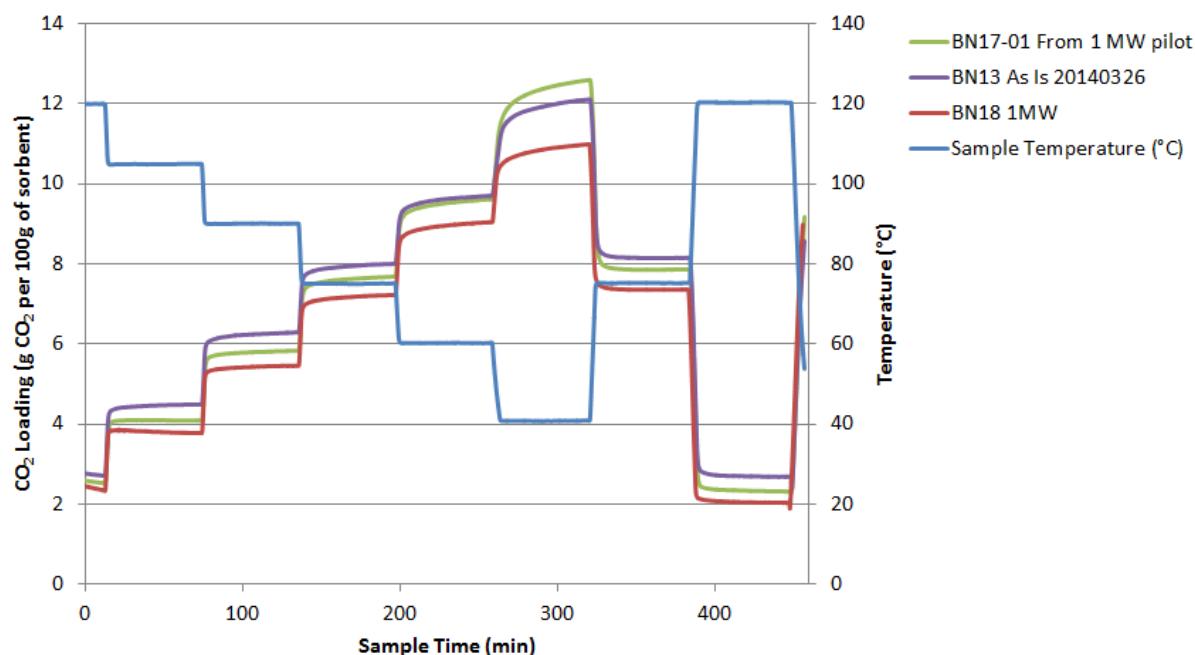
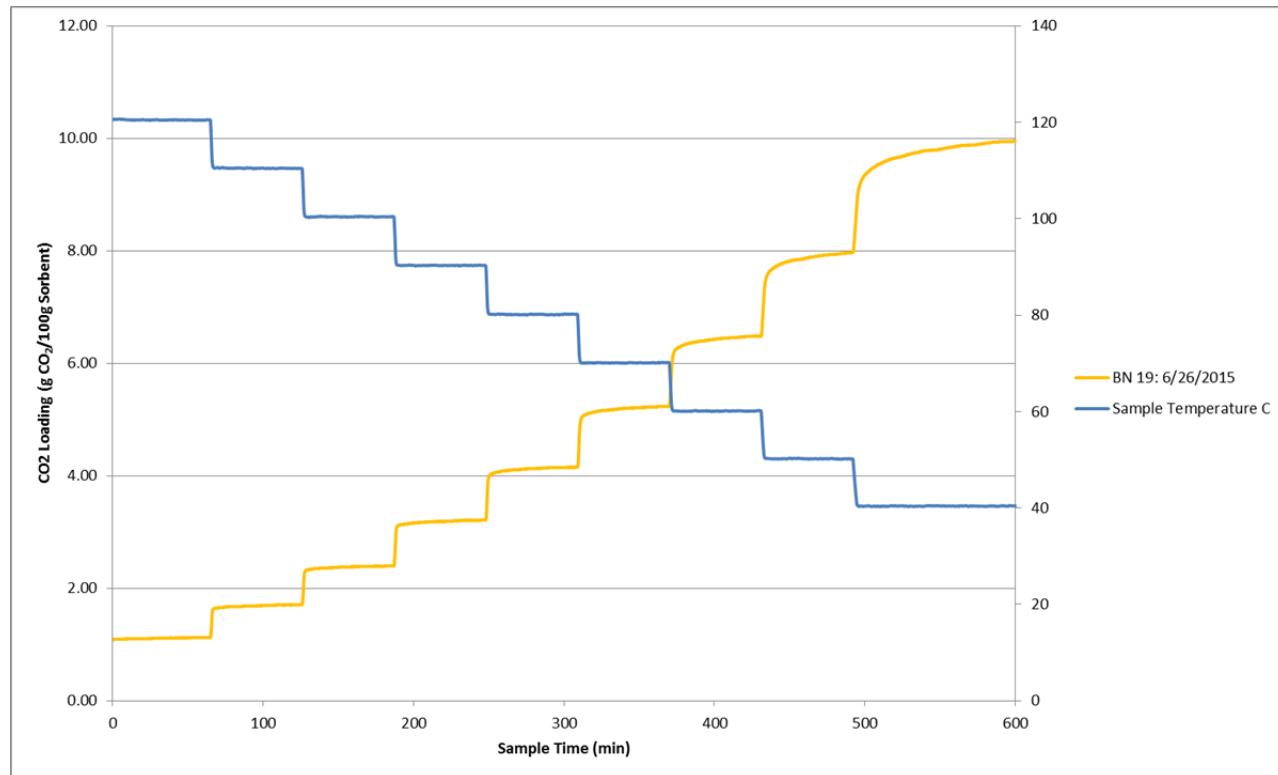
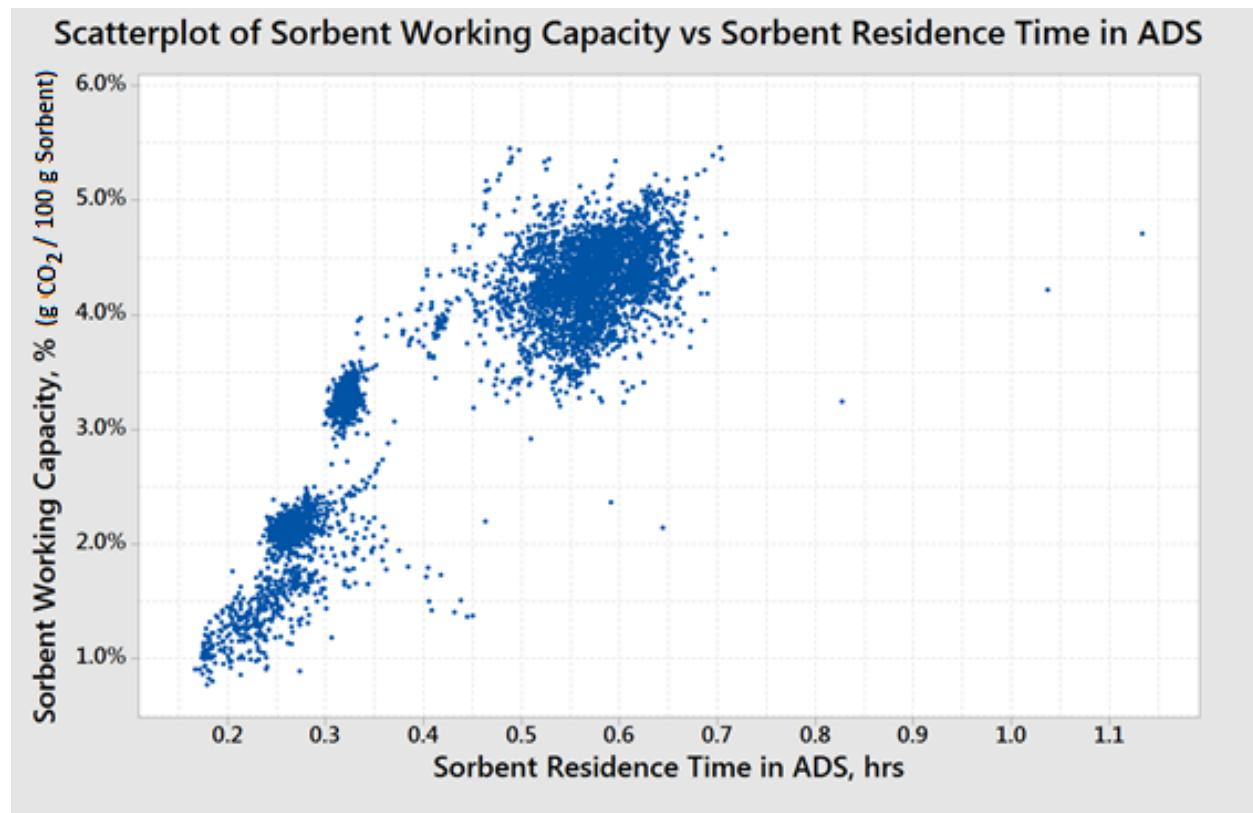



Figure 56. TGA Results for New and Used Sorbent Samples.

The thermogravimetric analysis (TGA) was again performed on sorbent taken from the pilot after 2015 testing to assess the CO₂ capture performance. This sample was taken after 23 days of continuous operation in the pilot, in addition to cycling in flue gas without regeneration for nominally 2 weeks during 2014 parametric testing. This TGA analysis also indicated that no significant change in CO₂ working capacity, when compared to sample BN 13. During the TGA test, the sorbent was again exposed to 100 % CO₂ at 120°C at first and subsequently CO₂ adsorption was assessed at temperatures in the range 120 to 40°C under 15 % CO₂ in N₂. The TGA weight versus time trend for the step-wise temperature test is shown in Figure 57.


Figure 57. TGA Results for Sorbent Sampled from the Pilot on 6/26/15.

Laboratory data from TGA testing suggested that the equilibrium capacity of the sorbent under conditions present at the inlet and outlet of the adsorber in the pilot should approach 7%, as presented in Section 3.6.1. The CO₂ delta loading of the sorbent based on CO₂ measurements at the inlet and outlet of the adsorber compared to the mass flow of sorbent indicated that the working capacity within this portion of the system was 5.4 g CO₂/100g Sorbent (5.4%). Since laboratory data on sorbent removed from the system indicated that the equilibrium working capacity of the sorbent between the regenerator outlet conditions and the adsorber outlet conditions were relatively unchanged from sorbent prior to field testing, it is likely that there was another explanation for the limited delta CO₂ capacity calculated from pilot testing. Two potential explanations are non-equilibrium conditions at the

exit of the adsorber, and loading the sorbent with CO₂, prior to entering the adsorber. These two potential causes are discussed further in subsequent sections.

6.4.3.2 Sorbent Reaction Kinetics

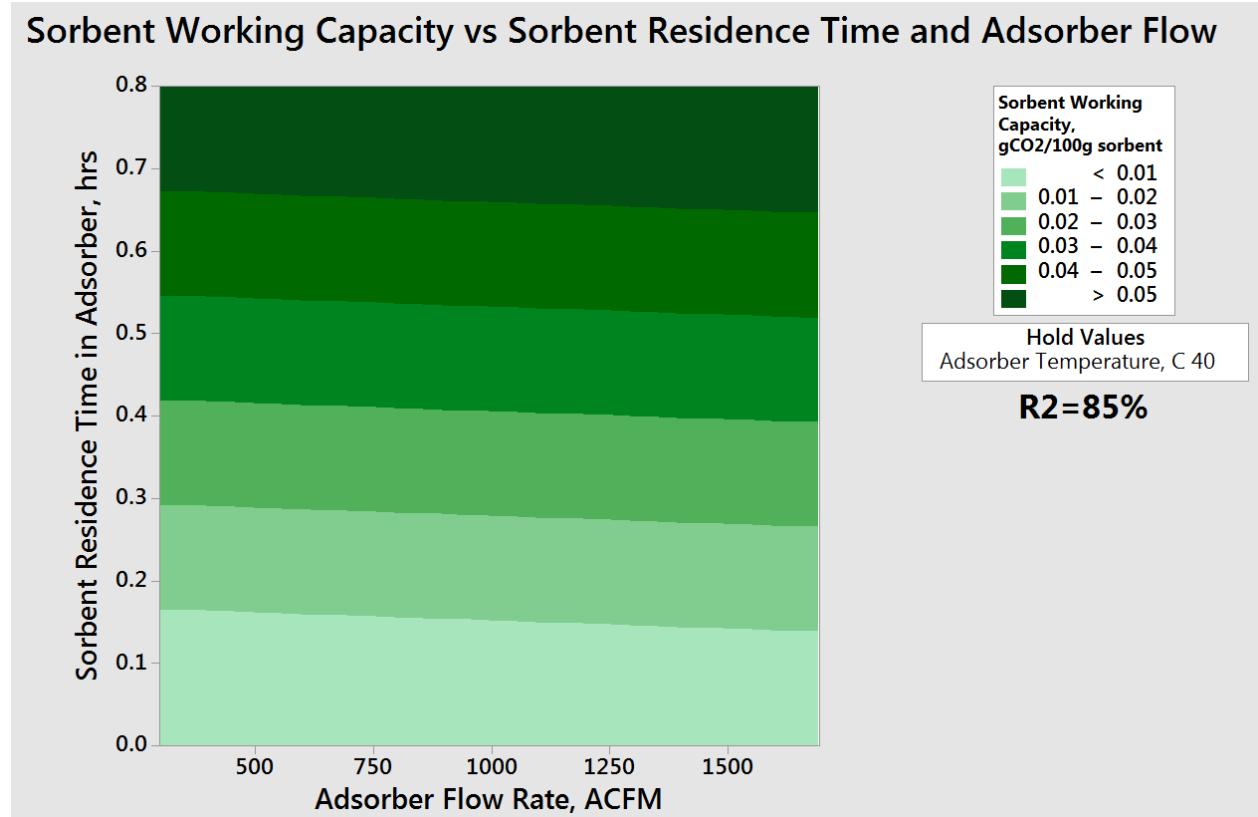

One potential cause of delta CO₂ loading below expectations was not reaching equilibrium loading because of insufficient residence time in the adsorber. Results from adsorption-desorption cycles in the TGA results and from the trickle-down reactor in the laboratory, presented in Section 3.6.2, indicated that the pilot design specification for adsorber residence time of 12 to 15 minutes should be sufficient to reach equilibrium loading. However, pilot results, as summarized in Figure 58, indicate that at least 30 minutes was required to reach 5.4 g CO₂/100g sorbent delta loading on the sorbent. Because additional residence time in the scrubber did not increase the delta loading above 5.4 g CO₂/100g sorbent, another factor likely contributed to both the limited CO₂ working capacity and could have contributed to the perception that sorbent kinetics were limiting pilot performance.

Figure 58. Plot of Sorbent Working Capacity versus Sorbent Residence Time in the Adsorber.

A statistical analysis of the relationship of sorbent working capacity to adsorber flue gas flow rate and adsorber residence time is illustrated in Figure 59. Working capacity is seen to be relatively unchanged by the rate at which flue gas is introduced into the adsorber where the residence time within the

adsorber has a dramatic effect on the working capacity achieved. On average, residence times in excess of 40 minutes are shown to be needed within the adsorber in order to achieve the maximum observed working capacity of 5.4 g CO₂ /100 g sorbent.

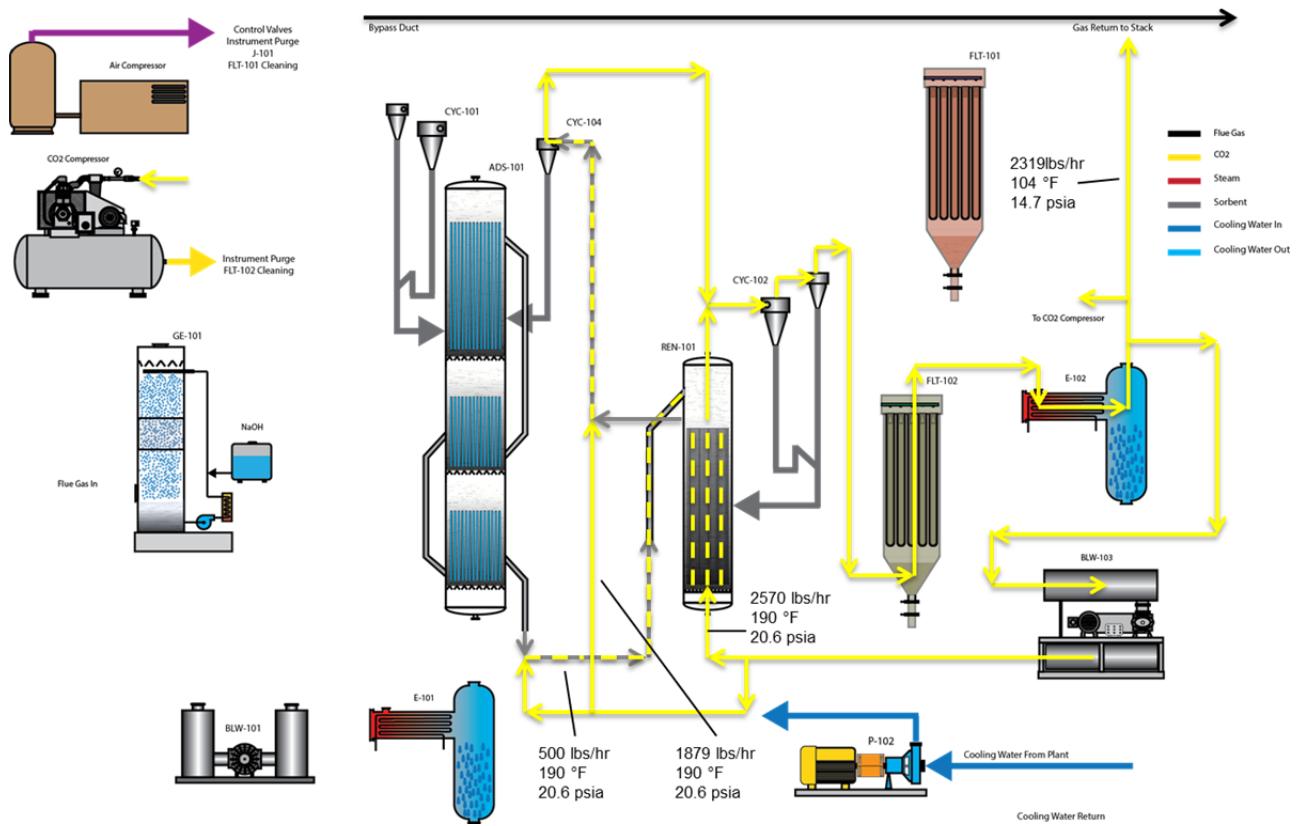


Figure 59. Sorbent Working Capacity versus Residence Time within the Adsorber.

6.4.3.3 Pre-Loading with CO₂ Prior to Adsorber

The most likely cause of the constrained working capacity is associated with the conveying gas used to transport sorbent from the regenerator to the adsorber. The conceptual design approach, as described in Section 4.1, was to use CO₂-lean flue gas to minimize adsorption of CO₂ onto regenerated sorbent. Because of the risk of oxidation of amines at elevated temperatures in the presence of oxygen, as described in Section 3.2.4, a last-minute design change was made prior to pilot testing to use oxygen-free gas. Rather than using nitrogen, which would have required adding a large nitrogen generator and other design changes in the pilot that may not be feasible at full scale, a decision was made to use CO₂-rich gas from the outlet of the regenerator blower (identified as BLW-103 in Figure 60) as the conveying gas. Although the risk of CO₂ uptake was noted, the risk was initially discounted because of the misconception that the nominal two seconds of residence time during sorbent conveying was not sufficient to result in significant CO₂ adsorption in the transport line.

The regenerator blower outlet temperature at the regenerator fluidizing and carrier lift gas location was nominally 75°C, well below the regeneration temperature of 120 °C. The cooled blower exit gas was used to transport the regenerated sorbent from the regenerator outlet to the adsorber. The average carrier gas flow was 290 scfm. The stream was 80% to 90% CO₂, which results in nominally 1,800 lb/hr CO₂ in the carrier gas. Based on the TGA analysis, at 75°C and a 0.8 bar partial pressure (see Figure 15), the sorbent loading is at equilibrium around 8.5 g CO₂/100 g sorbent (note that this is total loading, not working capacity). Results from Run 8 of the trickle-down reactor test in the laboratory (Table 7) indicated that less than two seconds was sufficient for sorbent BN to adsorb 2.6g CO₂/100g sorbent at 40°C from a gas stream with 12.5% CO₂, which is far enough from equilibrium capacity that sorbent kinetics are expected to be very fast based on both TGA testing and the trickle-down reactor tests. Additionally, a thermocouple that was installed in the dip leg below CYC-104, the cyclone designed to separate sorbent from the carrier gas, indicated that the sorbent had cooled to 63°C prior to entering the adsorber for that manual measurement. It is very plausible that sorbent BN adsorbed additional CO₂ while being conveyed between the regenerator and adsorber. Since the loading exiting the regenerator is expected to be nominally 3.45 lb CO₂/100 g sorbent at 120°C and pilot regenerator pressure, and the equilibrium loading is expected to be 10.47 at 40°C and the adsorber inlet operating pressure, only 1.62 additional g CO₂/100g sorbent would need to be adsorbed in the transport line to limited the delta loading in the adsorber to 5.4 g CO₂/100g sorbent. Thus, the overall working capacity between the regenerator outlet and adsorber outlet would be 7.0 g CO₂/100g sorbent (5.4 g CO₂/100g sorbent from the adsorber and 1.6 g CO₂/100g sorbent from the transport line), as expected from laboratory tests.

Figure 60. CO₂ flow during ADAsorb Pilot Testing.

The impact of sorbent flow on CO₂ removal is further illustrated by Figure 61 and Figure 62. In both Figures, the data set is divided into two groups by color, sorbent flow rates below 12,000 lb/hr in light blue, and sorbent flow rates above 12,000 lb/hr in dark blue. Figure 61 shows the variability of CO₂ removal over the range on sorbent flow rates tested. Figure 62 indicates that, in general, the results where the adsorber delta loading approached 5.4 g CO₂/100g sorbent coincided with lower sorbent flow rate. Although high CO₂ removal could be achieved with high sorbent circulation rates, increasing the circulation rate resulted in lower delta CO₂.

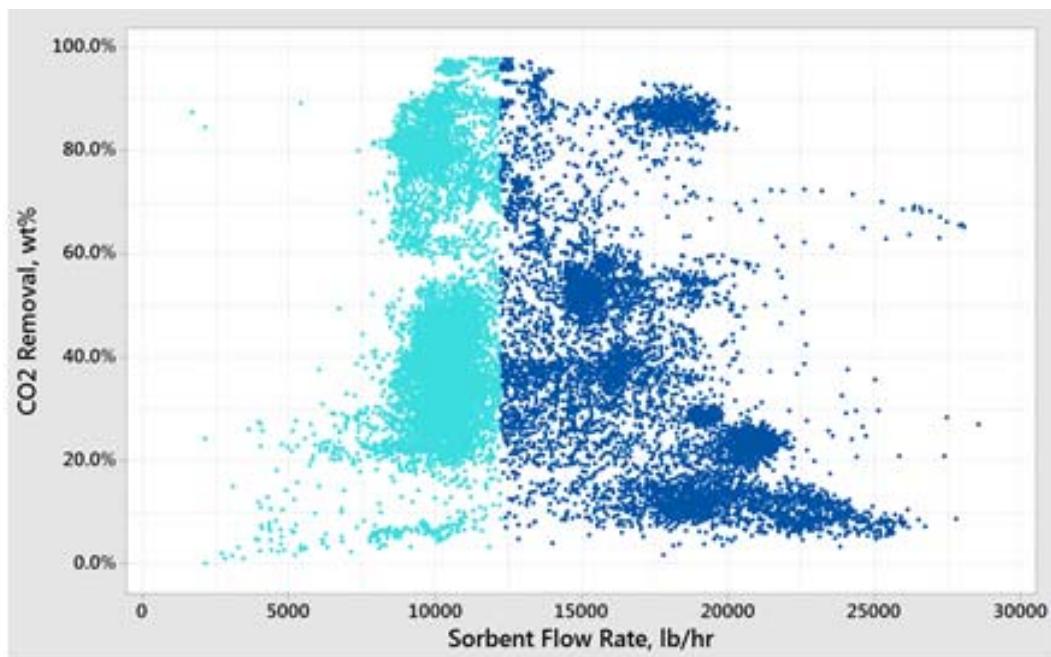
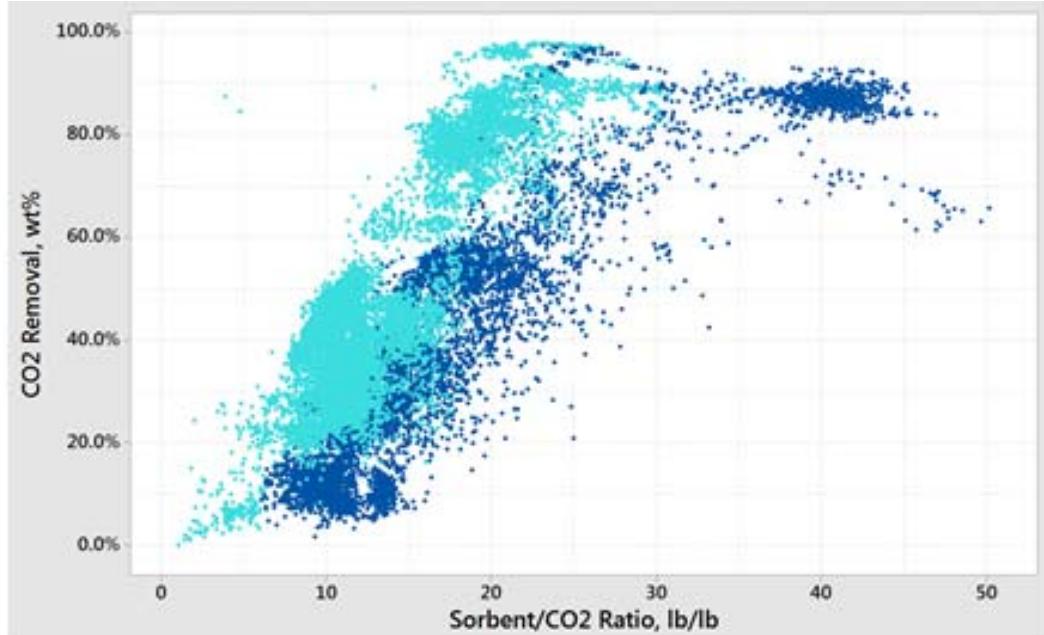
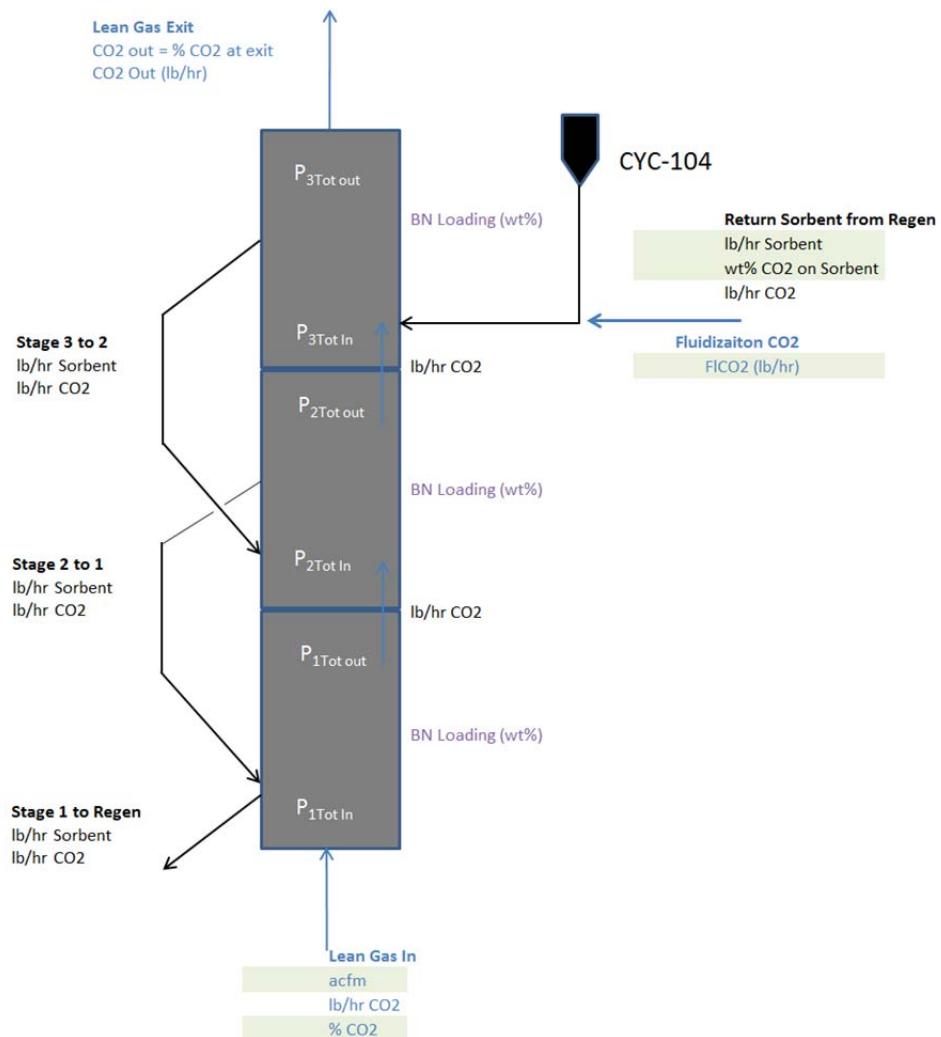


Figure 61. Plot of CO₂ Removal versus Sorbent Flow Rate




Figure 62. Plot of CO₂ Removal versus Sorbent/CO₂ Weight Ratio; colors indicate sorbent flow rate as shown in Figure 61.

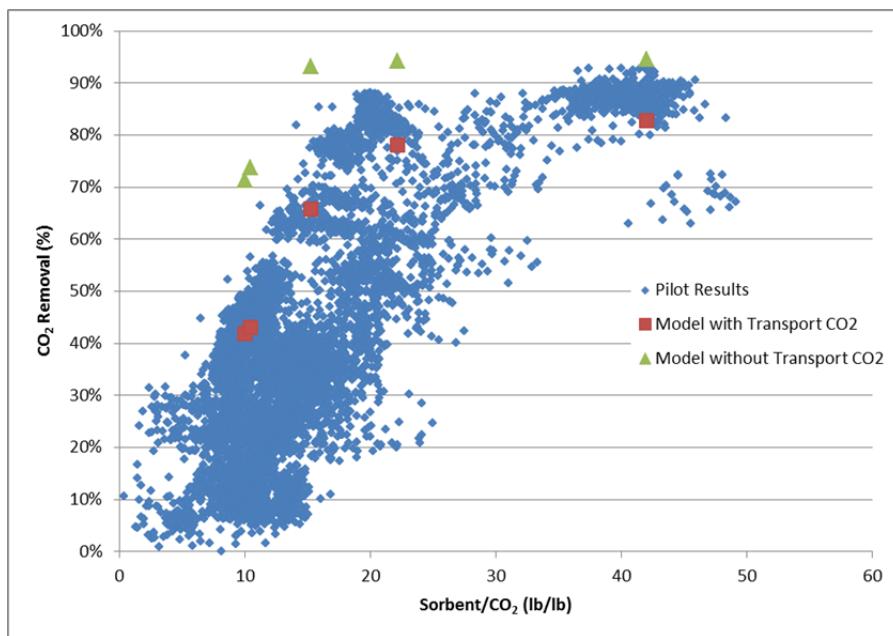
A model was developed to better understand the potential impact of CO₂ adsorption in the transport line between the regenerator and adsorber, and the resulting impacts on pilot performance. A sketch of the 3-stage reactor showing key model inputs (in green) and select calculated parameters, is shown in Figure 63. The simplified model assumed isothermal conditions in the adsorber at 40°C, and system pressures that were consistent with both the design conditions and operation. A curve fit of the 40°C sorbent isotherms from laboratory testing for the range of partial pressure expected in the adsorber was incorporated into the model, where

$$\text{CO}_2 \text{ loading} = 2.4565 \ln(P, \text{bar}) + 15.557, R^2 = 0.9923 \quad (15)$$

The flue gas flow, inlet CO₂ concentration, and sorbent recirculation rate were independent variables in the model. Data from pilot testing was used to calibrate the model for the amount of CO₂ that was entering the adsorber with the return sorbent. As noted previously in this section, the equilibrium loading based on the TGA analysis at the conditions in the transport line between the regenerator and the adsorber were nominally 75°C and 80% to 90% CO₂. At 75°C and 0.8 bar partial pressure is 8.5 g CO₂/100 g sorbent (note that this is total loading, not working capacity).

An output of the model compared to pilot results is presented in Table 20. As shown in the table, if the sorbent loading entering the adsorber is consistent for all conditions at 6.3 g CO₂/100 g sorbent, which is below the equilibrium loading for conditions in the transport line, the model output for CO₂ removal across the adsorber is in good agreement with actual pilot test results (see cases 2 through 4 in the table). For case 1, the sorbent circulation rate was near the limit of stable pilot operations. The low measured CO₂ removal in the pilot compared to model results suggests that a portion of the sorbent was recirculating back into the regenerator through cyclone 104, as discussed in Section 6.3.2.

Figure 63. Pilot Model Overview.


Two additional model runs are shown in Table 20. Case 5 shows the pilot design conditions for adsorber flow rate and sorbent circulation rate with the additional CO₂ added to the transport gas. Case 5b shows the design conditions without additional CO₂ collected in the transport line. As shown, greater than 90% CO₂ removal is expected at the pilot design conditions with sorbent BN if the CO₂ addition in the transport line is eliminated. These data are shown with the pilot results graphically in Figure 64. Recall that there were also handling issues associated with sorbent BN at elevated temperatures that would require physical modifications to the cyclone and dip leg at the outlet of the regenerator to accommodate issues associated with handling hot sorbent.

Complete characterization of each bed in the adsorber using field measurements was not possible due to sampling issues. Occasional spot checks could be performed with a portable CO₂ analyzer within the disengaging space between the bottom and middle beds and between the middle and top beds. These

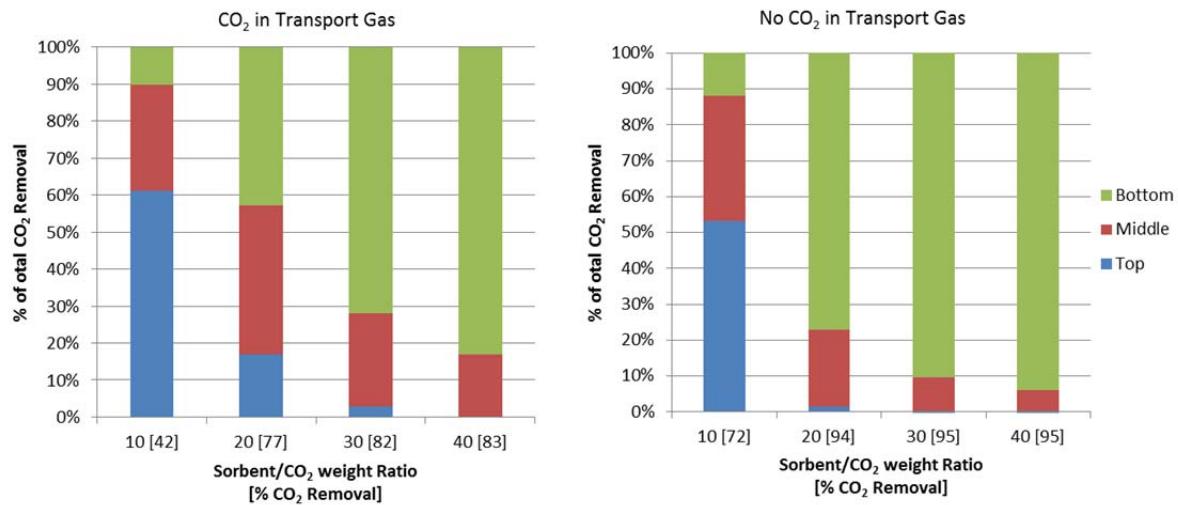

spot checks indicated that the majority, up to 80%, of the capture occurred in the top bed; however, the data is questionable as the analyzers sampled through an extraction system which could have had a pressure slightly higher than ambient and which did not cool the gas sample. Given the questionable nature of these readings and the fact that they were not continuous, it was not practical to determine a mass balance around each bed from actual measurements. The model developed does provide insights, however. When the sorbent recirculation rate compared to CO₂ entering the system is low, more CO₂ is captured in the top bed because the sorbent approaches capacity before cascading into lower beds. As the sorbent/CO₂ ratio increases, the fraction of CO₂ captured in the top bed approached zero because the CO₂ captured in the gas is adsorbed by the excessive sorbent prior to reaching the top bed. Furthermore, the model suggests that as the CO₂ removal increases, the benefit of three stages versus two stages declines because most of the removal is occurring in the lower two beds. These data are shown in Figure 65 for both the case with CO₂ in the transport gas from the regenerator to the adsorber contributing to the loading on the sorbent, and for the case where the no additional CO₂ from the transport gas is adsorbed by the sorbent.

Table 20. Pilot Model Output.

	Case 1	Case 2	Case 3	Case 4	Case 5	Case 5b
Pilot Results						
Gas Flow (acf m)	1600	850	400	380	1808	1808
Sorbent Recycle (lb/hr)	18000	10000	10000	18000	31107	31107
% CO ₂ Removal	15	40	80	88		
Model Results						
wt% CO ₂ on sorbent, transport (75C, 1 bar)	6.3	6.3	6.3	6.3	6.3	3.47
% CO ₂ Removal	42	43	78	83	66	93
lb/hr CO₂ on solids						
Into Stage 3	1134	630	630	1134	1960	1079
Stage 3 to 2	1694	936	701	1158	2520	1239
Stage 2 to 1	1943	1075	839	1216	3096	1969
Stage 1 to Regen	2031	1125	1020	1523	3426	3035
wt % CO ₂ loading on sorbent	11.3%	11.3%	10.2%	8.5%	11.0%	9.8%
lb/hr CO₂ in flue gas						
Into Stage 1	1804	958	451	428	2038	2038
Into Stage 2	1716	907	270	121	1708	972
Into Stage 3	1466	768	131	63	1132	242
Exit of Adsorber	932	488	86	64	597	108

Figure 64. Model Results Compared to Pilot Results, with and without CO₂ Adsorption in the Transport Line.

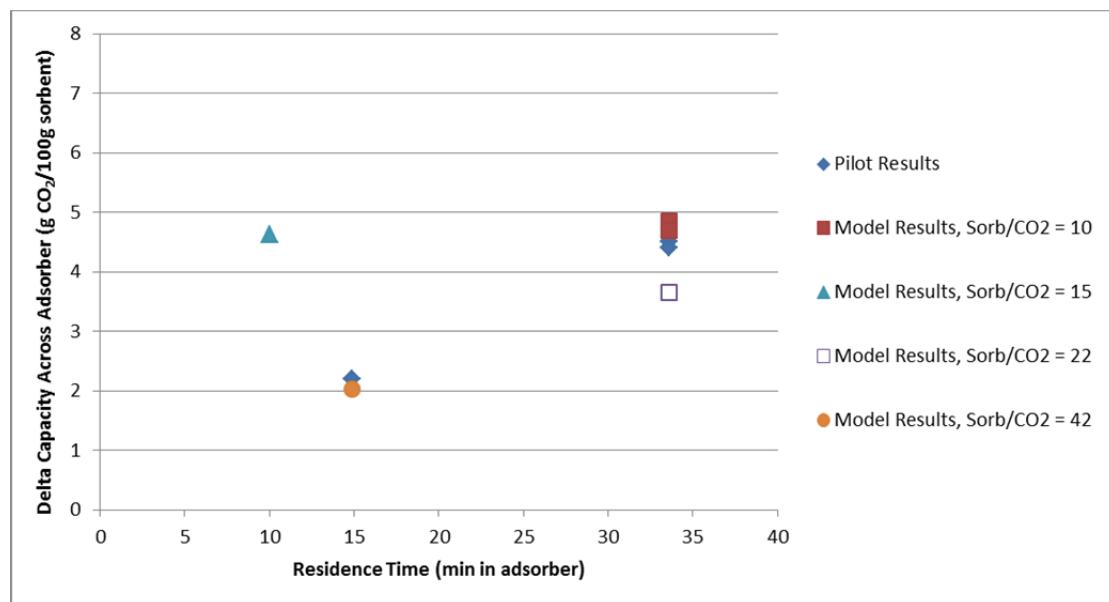


Figure 65. Model Results: Fraction of CO₂ removed in Each Stage, with and without CO₂ Adsorption in the Transport Line.

Additional analysis was conducted using the model in conjunction with the pilot data to determine the influence of sorbent residence time in the adsorber, or sorbent kinetics, on sorbent adsorption capacity.

From Figure 58, it appeared as if sorbent kinetics was a significant factor in the overall performance of the sorbent. However, when including the impact of CO_2 entering stage 3 of the adsorber as a function of sorbent recirculation rate, slow adsorption kinetics do not appear to be a factor in pilot performance, as indicated in Figure 66.

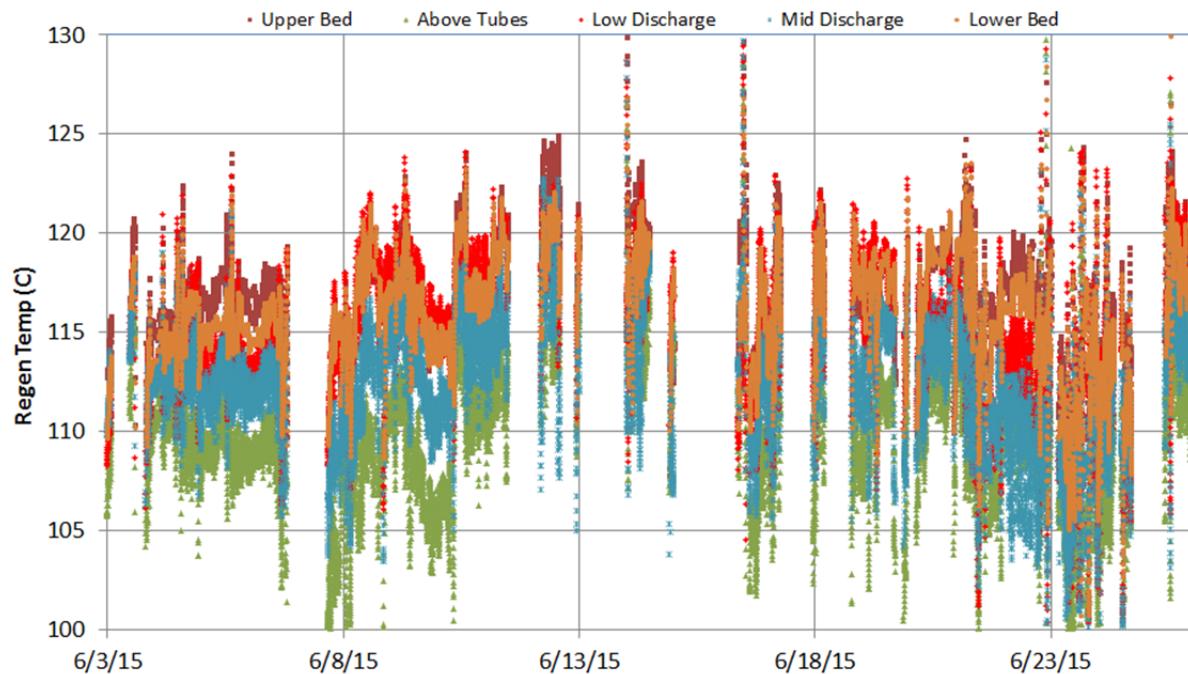

Using heated CO_2 to convey sorbent from the regenerator to the adsorber should mitigate adsorption in the conveying line. A short test was conducted early in the pilot testing effort to determine whether heating the carrier gas would result in improved performance. Unfortunately, this was done during the period when signal grounding issues were being experienced. No change in working capacity was noted during this test and the test was not repeated during the final parametric testing period after many of the operational issues had been resolved.

Figure 66. Model Results of Sorbent Capacity as a Function of Sorbent Residence Time in Adsorber and Sorbent/ CO_2 Flow Rate.

An alternate theory, suggested through modeling efforts by the CCSI team, was insufficient regeneration of sorbent due to non-isothermal conditions predicted in the regenerator could be a limiting factor on overall CO_2 removal. A trend graph of regenerator temperatures is presented in Figure 67. Although it was not possible to maintain the regenerator temperature at 120°C throughout parametric testing, data on June 25, 2015 during the 20-hour test at stable conditions indicates that it was possible to maintain the bed temperature within 10°C of the set point, which is much better than that predicted by the CCSI modeling team. However, the sorbent temperature most representative of the gas exiting the regenerator is the thermocouple identified as “Mid Discharge” in the figure, which was nominally 5°C below the set point temperature during the 20-hour continuous test. This temperature difference could account for approximately 1 g CO_2 /100 g sorbent being retained on the sorbent compared to the 120°C

equilibrium loading, which is 14% of the expected delta loading of 7 g CO₂/100g sorbent. Since the operating model described in the section was only for the adsorber, there is no effect on the results of the operating model whether the CO₂ is added in the transport line or retained from the regenerator. Therefore, both of these factors should be considered when assessing options to improve pilot performance.

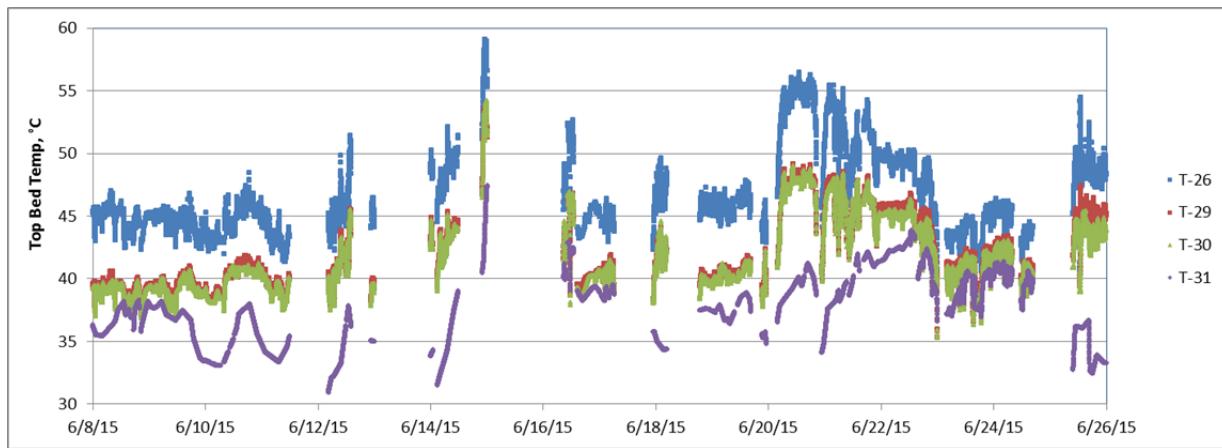


Figure 67. Variation in Regenerator Temperature During Testing.

6.4.3.4 Intermittent Operating Conditions

Most of the data analysis was conducted on the entire set of parametric data from round 2 of testing, with the caveats described at the beginning of this section. Some of the variability in the data set was from intermittent conditions. Many of these are discussed in this section.

The temperatures within each bed were measured at several points along the vertical axes to maintain adsorption conditions approaching isothermal. The measurements from the thermocouples in the top stage are shown for round 2 of parametric testing in Figure 68, with T-26 at the bottom of the bed, and T-31 at the exit of the bed. The isothermal conditions for testing were 40°C. It is clear from the trend graph that the bed was warmer at the bottom where sorbent from the regenerator was being added, and cooler at the top. It is also clear that it was difficult to maintain the temperatures much closer than within about 5°C of the set point in this dynamic system.

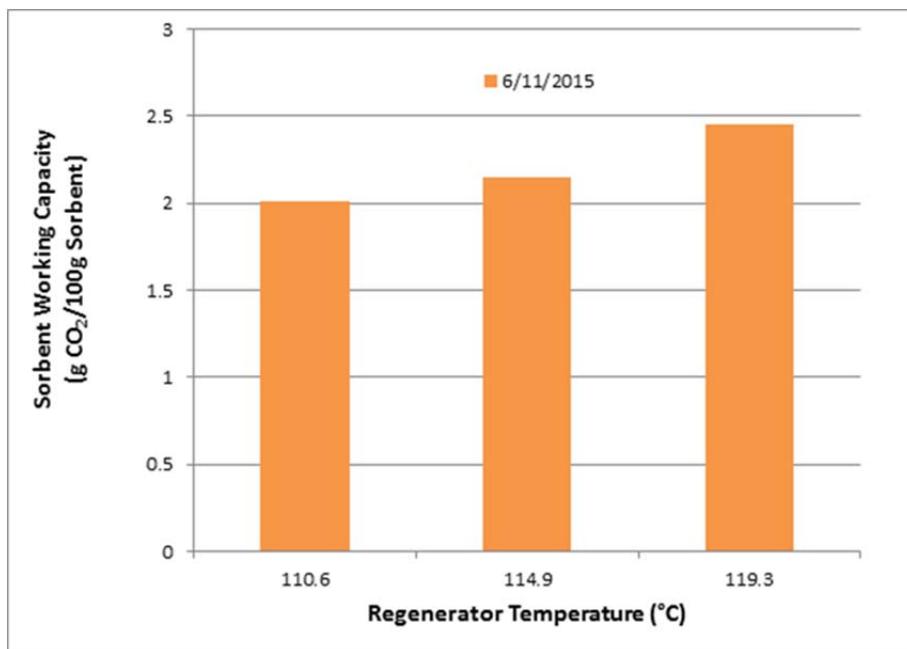


Figure 68. Temperature of Top Adsorber Bed during Parametric Testing.

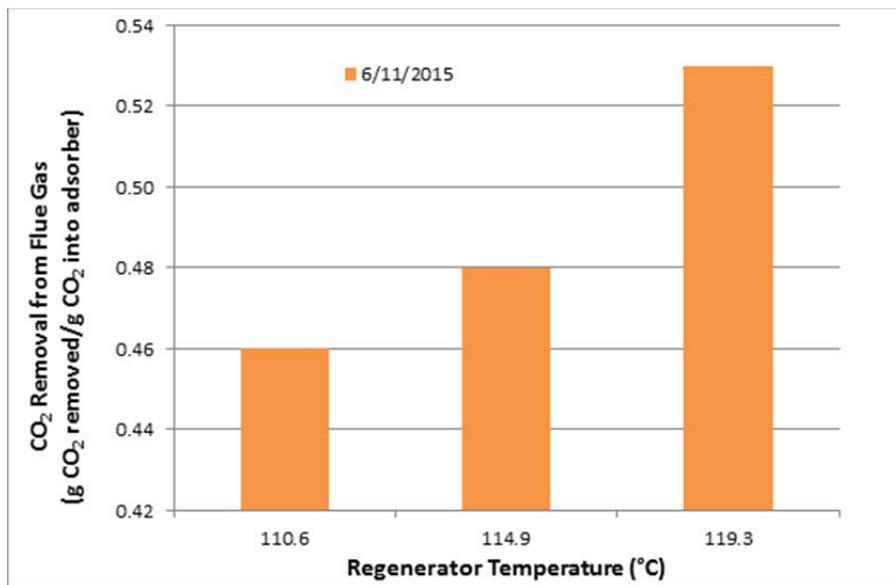

In an effort to assess the effect of regenerator temperature on the operating system, two additional regenerator temperatures, 110°C and 115°C, were tested. The regenerator test was conducted on 6/11/2015, the day prior to the fluidizing N₂ and CO₂ campaign discussed earlier in this section. The assumption has been made that the rate at which the sorbent was potentially bypassing the adsorber was constant during the regenerator temperature testing time period due to the relatively short, six-hour test. Table 21 indicates that as the regenerator temperature increased, the sorbent working capacity increased, resulting in increased removal within the adsorber. This is due to increased removal of CO₂ from the sorbent within the regenerator leading to increased working capacity. Figure 69 and Figure 70 graphically display the change in working capacity and CO₂ removal as the regenerator temperature changes.

Table 21. Effect of Regenerator Temperature on Adsorber CO₂ Removal.

Regenerator Temp	Sorbent Working Capacity	CO ₂ Removal	Sorbent Circulation	Flue Gas
°C	g CO ₂ /100g Sorbent	% mass	lb/hr	acf m
110.5	2.01	46%	10,893	457
115	2.15	48%	10,476	458
119.5	2.46	53%	10,141	458

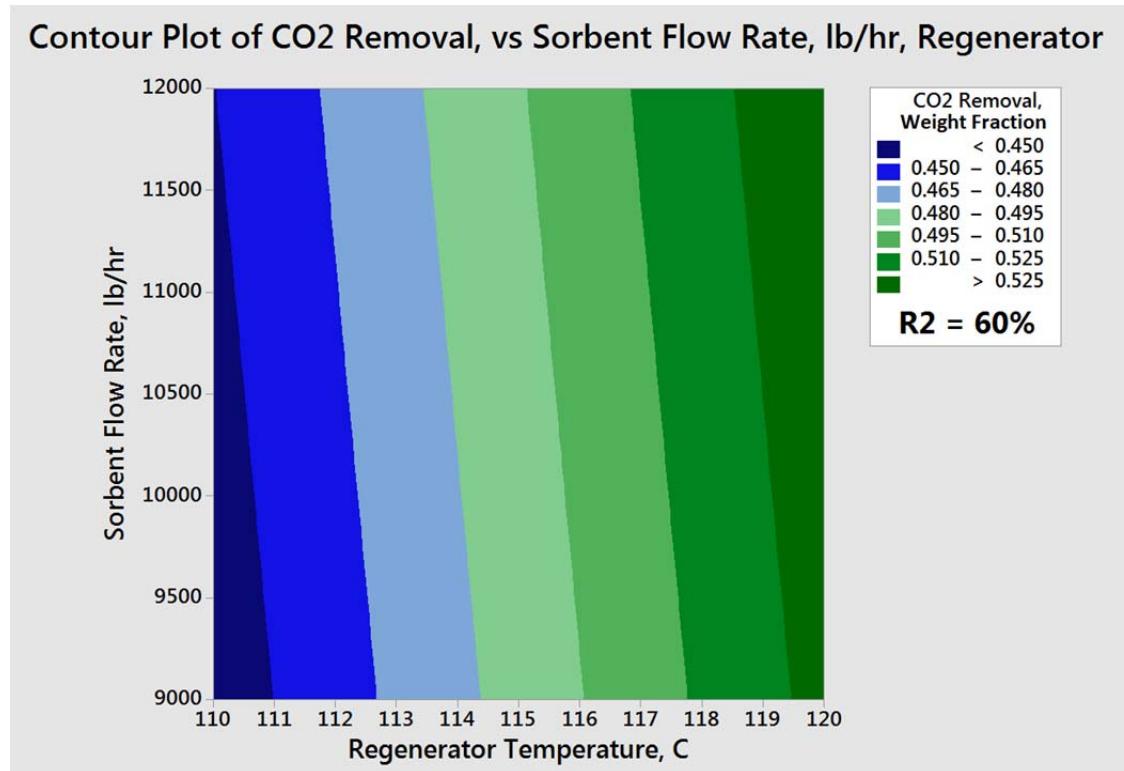

Figure 69. Plot of Sorbent Working Capacity versus Regenerator Temperature.

Figure 70. Plot of CO₂ Removal versus Regenerator Temperature.

As previously discussed, the sorbent circulation rate had the largest impact on the removal of CO₂ from the adsorber inlet flue gas stream. A statistical analysis of regenerator temperature and impacts on CO₂ removal is shown in Figure 70. The regeneration temperature also has a large impact for relatively low

changes in temperature. Note that the regeneration temperature of 120°C is the upper limit for regeneration of sorbent BN due to higher temperature regeneration degrading the sorbent over time, as discussed in Section 3.6.2, and the results presented in Figure 69 range between 110 and 119°C.

Figure 71. Effects of Regeneration Temperature and Sorbent Circulation Rate on CO₂ Removal.

The regenerator was designed and constructed with thermocouples located throughout the heat transfer surface and the free space above the tubes. It was observed that the temperature in the topmost location was slightly lower than the regenerator temperature, but that the total mass of sorbent in the regenerator was great enough, and close enough to the 120 °C equilibrium temperature to not experience the cooling effect as dramatically as predicted in the NETL CCSI study, as discussed in Section 3.7. Part of the effect could be attributed to sorbent circulation rates that were measured lower than design. Lower sorbent circulation allowed longer regenerator residence time, as well as less differential mass of incoming sorbent cooling the regenerator bed.

A number of times during operation, the regenerator bed slumped, or dropped to the bottom of the regenerator due to an equipment trip. During restart, significant difficulty was experienced in attempting to restart fluidization to the regenerator. The entrained moisture and subsequent cooling of the sorbent following a trip caused the sorbent to form concretions. Rapid flow fluctuation (pressure pulsation), and draining and reloading of sorbent was required to break loose the solidified sorbent.

Had the design incorporated direct injection of steam, as recommended in the NETL CCSI modeling report, it is likely that the solidification of sorbent would have been much worse, possibly ceasing all operations.

6.4.3.5 Moisture Uptake during Pilot Operation

Also of note is the measured moisture working capacity of the sorbent at each condition. The design value of 1.0 g H₂O/100 g sorbent was determined through experimental testing in a nitrogen atmosphere. Limitations of operation of the TGA did not allow for testing of selectivity between CO₂ and moisture. Pilot results from manual measurements show the average moisture uptake to be only 0.49 g H₂O/100 g sorbent, substantially lower than the design point. Manual measurement results are presented in Section 3.6.4.

6.4.3.6 CO₂ Product Purity

The CO₂ product purity from the pilot averaged 89.4% on a dry basis during 90% CO₂ removal from the flue gas.

Table 22. CO₂ Product Purity

		Design	Measured Values						
Operational Values	Flue Gas Flow Rate	1808	1611	779	824	428	415	350	acfm
	Sorbent Circulation Rate	31107	18439	15103	10070	13183	9876	17993	lb/hr
	CO ₂ Removed within Adsorber	2172	267	496	439	521	423	390	lbs/hr
Regenerator Outlet	CO ₂ (dry)	93.4	89	96.8	85.5	88.8	85.5	89.9	% (dry)
	O ₂	0.38	1.1	3.2	2.3	1.9	2.4	1.1	%
	H ₂ O	7.2		8.79	10.85	6.56	6.74		%

6.4.4 Review of Pilot Key Performance Parameters

Much was learned during the parametric and continuous operation periods that can be related to the key performance parameters previously presented.

- Reactor pressure drop: Bed levels in the adsorber and regenerator are dependent on the fluidization velocities, the mass of sorbent in the bed, and the temperature of the bed. The total mass of sorbent in the system was increased beyond the design capacity to compensate for the lower velocities and bed levels being used. Evidence of this is shown in the higher than design pressure drop through the adsorber, as measured at the exit of the flue gas blower (BLW-101). The design blower outlet pressure was 5.9 psi, as shown in Table 19, but operations maintained a pressure of 6-7 psi continuously.

- Successful isothermal operation of the adsorber and regenerator: Isothermal operation was approached in the adsorber during pilot operation. The uppermost fluidized bed was warmer at the bottom where sorbent from the regenerator was being added, and it was difficult to maintain the temperature from the bottom to the top of the uppermost bed much closer than within about 5°C of the set point in this dynamic system, as shown in Table 19. In the regenerator, the temperature in the topmost location was slightly lower than the regenerator temperature, but that the total mass of sorbent in the regenerator was close enough to the 120 °C design temperature.
- CO₂ delta loading: The delta CO₂ loading across the adsorber based on CO₂ measurements at the inlet and outlet of the adsorber appeared to be capped at 5.4 g CO₂/100 g sorbent. Results from pilot testing indicate that an overall working capacity of 7 g CO₂/100 g sorbent between the regenerator outlet and adsorber inlet was likely achieved, with the difference between the overall working capacity and the delta loading across the adsorber associated with CO₂ adsorbed from the CO₂-rich conveying gas used to transport sorbent from the regenerator to the adsorber.
- H₂O delta loading: Pilot results from manual measurements show the average moisture uptake to be only 0.49 g H₂O/100 g sorbent, substantially lower than the 1.0 g H₂O/100 g sorbent design point.
- Combined enthalpy of reaction/adsorption of CO₂ and H₂O: As described in previously in this section, the operating conditions during the 90% capture period were not representative of optimal conditions based on pilot testing, and the sorbent-to-CO₂ ratio was nearly four times the design conditions. However, there was excellent agreement between the mass flow observations, heat balance, and fundamental sorbent performance further strengthening conclusions drawn from these data.
- Reaction kinetics of sorbent BN: Results from laboratory tests indicate that initial adsorption occurs within seconds and the sorbent should reach 90% of the equilibrium capacity in less than 12 minutes, as shown in Section 3.6.3 and Table 8. After factoring in the impact of CO₂ adsorbed in the transport line from the regenerator, the working capacity and reaction kinetics observed during pilot tests was consistent with laboratory data. The residence time incorporated into the ADAsorb pilot design should be adequate.
- CO₂ partial pressure in the regenerator: The CO₂ partial pressure in the regenerator is a function of the product purity. The CO₂ product purity from the pilot averaged 89.4% on a dry basis during 90% CO₂ removal from the flue gas. Air in-leakage appeared to affect the CO₂ product purity. Assuming air in-leakage is reduced, the resulting flue gas average concentration can be calculated as 92.4% CO₂, which is considerably closer to the design value of 93.4%.

- Optimize process variables:
 - Temperature (adsorber and/or regenerator): As noted above, the top bed of the adsorber deviated the most from isothermal operation, because of the recycle of sorbent at a higher temperature than the design value of 40°C.
 - Sorbent Circulation Rate: Due to changes in material handling characteristics of the sorbent, it was impossible to maintain sorbent flow above about 20,000 lb/hr.
- Identify sorbent bed height required to maintain 90% CO₂ capture: As noted previously, 90% CO₂ capture was constrained because of CO₂ adsorption in the transport line between the regenerator and adsorber and/or non-isothermal conditions in the regenerator.

Bed levels in the adsorber and regenerator are dependent on the fluidization velocities, the mass of sorbent in the bed, and the temperature of the bed. Bed levels under different operating conditions are included in Table 19. From an operational perspective, the bottom adsorber bed was the most critical level to control in the system. If the bottom bed level dropped below the minimum level, the difference in pressures between the adsorber and regenerator would cause a flow of flue gas into the rich sorbent transport line to the regenerator. When that occurred, a large decrease in the adsorber exit flow corresponded to a high regenerator outlet flow, typically resulting in significant sorbent carryover from the regenerator cyclone to the baghouse. Maintaining bottom bed level became the most critical operator control variable for stable operation. Increasing the sorbent circulation rate between the adsorber and the regenerator tended to cause the bottom bed level to drop, as sorbent would exit the bottom bed faster than it could be replenished.

The highest continuous sorbent circulation rates tended to correspond to lower than design levels in the middle bed, which encouraged sorbent turbulence and filling of the middle to bottom bed drop tube. Setting the level control valve between the middle bed and bottom bed beyond approximately 50% open resulted in a reversal of flow through the drop tube, preventing sorbent flow between the middle bed and bottom bed of the adsorber. At times the reversal was substantial enough to cause the middle bed to fill beyond maximum level and starve the bottom bed of sorbent. In those situations, only a dramatic decrease in adsorber fluidization flow would break the stagnation and allow commencement of sorbent circulation.

The top adsorber bed level had a direct correlation to the level of sorbent in the lean sorbent cyclone dip leg (CYC-104). In order to promote flow out of the cyclone dip leg, and increase the sorbent circulation rate, the most effective sorbent levels were maintained at much lower than design (18 ft vs 29 ft design). When the adsorber was operated with a high level in the top bed, sorbent circulation rates decreased with a subsequent increase in the potential for sorbent carryover from the adsorber cyclone (CYC-101) to the baghouse.

- Confirm key fluid bed design parameters:
 - Bed density: Bed densities in the adsorber and regenerator are included in Table 19 and are dependent on factors such as fluidization velocities, mass of sorbent in the bed, and the temperature of the bed. During pilot testing, the bed density was higher than design, which corresponds to gas flow that was much lower than the design condition. The density in the regenerator was much lower than the design point, which is likely a result of different handling characteristics of the sorbent when hot compared to the design assumption, which was tested at ambient temperature.
 - Heat transfer coefficient (cooling in adsorber, heating in regenerator): The steam flow during parametric testing ranged from 3.2 to 3.8 lb high pressure steam/lb CO₂, compared to a design point of 1.4 lb steam/lb CO₂ for conditions with stable bed conditions. The increased steam requirement during pilot testing is likely a reflection of the lower-than-design regenerator bed density and the lower-than-design mass of sorbent in the regenerator.
 - Riser lift gas requirement: The carrier gas in the riser from the regenerator to the adsorber (Cyclone-104) was maintained at nominally design conditions. Due to changes in the handling characteristics of the sorbent when hot, pluggage in the cyclone occurred, especially at sorbent circulation rates near or above 20,000 lb/hr.
 - Standpipe aeration gas requirement: Fine tuning of the regenerator outlet CO₂ fluidization valves and the Cyclone-104 nitrogen fluidization valves was performed on 6/12/2015. Data indicates that sorbent flow into the adsorber was periodically limited during operation before the fluidization adjustments due to changes in sorbent handling properties at high temperature that was not factored into the system design.
- Assess the experimentally predicted number of adsorber stages (3) required for 90% CO₂ removal with BN sorbent: Based on the modeling and pilot results, three stages appear preferred for optimal operating conditions with sorbent BN. There are trade-offs between the circulation rate and the number of beds, which may factor into overall economics.
- Confirm the overall feasibility of using solid sorbent BN for CO₂ capture from power plant flue gas in a staged fluidized bed adsorber and fluidized bed regenerator: Because of the limitation on capacity, likely caused by using cold, CO₂-rich gas as the transport gas, the pilot did not achieve the full working capacity of sorbent BN. However, modeling suggests that this limitation could be eliminated by changing how the sorbent is conveyed back into the adsorber.

6.4.5 Energy Balance During 20-Hour, 90% Removal Test

The energy produced from the exothermic reaction of CO₂ and amines in the sorbent should equal the energy released in the endothermic reaction when CO₂ is released from the sorbent. Heat is removed from the ADAisorb system to offset the heat produced through reactions and maintain isothermal conditions in the adsorber. Heat is added to the regenerator to drive the CO₂ off the sorbent and overcome the energy required to break the bonds between the CO₂ and the amines and to drive off adsorbed water.

The energy balance for the ADAisorb System was assessed during the 20-hour period of nearly 90% CO₂ capture starting on June 25, 2015. As described in previously in this section, the operating conditions

during the 90% capture period were not representative of optimal conditions based on pilot testing, and the sorbent-to-CO₂ ratio was nearly four times the design conditions. The cooling duty across the adsorber during this period was 0.94 MMBtu/hr. The average energy input to the regenerator for the same period of time, based on the enthalpy difference of steam entering and water exiting the regenerator, was 1.1 MMBtu/hr, which represents a small difference. It is reasonable that the heat duty out of the adsorber would be slightly lower than the heat duty into the regenerator for the following reasons:

1. The fluidization gas into the regenerator was hot, recycled, CO₂. There was a negligible duty of heating for the recycled fluidization gas to the regenerator at 120°C (248°F);
2. The ADAsorb pilot is not truly adiabatic and there will be some heat loss.

The cooling duty of 0.94 MMBtu/hr in the adsorber with only 360 lb/hr of CO₂ removal indicates a very high mass throughput of sorbent (circulation rate) with substantial sensible heat duty to change the temperature of the relatively inert substrate and low heat of reaction duty resulting from CO₂ reacting with amines. This observation is very consistent with a low observed working capacity where the heat of reaction between the sorbent and CO₂ becomes a smaller component of the cooling duty requirements.

The observed energy penalty for regenerating the sorbent during this 20-hour testing period averaged 3,150 Btu/lb_m CO₂ captured. This was calculated based upon the mass and enthalpy of steam entering the regenerator and the mass and enthalpy of the condensate leaving the regenerator. Since the pressure, temperature, and phase of the steam and condensate are known, it is possible to calculate the enthalpy values of the steam and condensate. By using the measured flow rate of the steam and the difference in the calculated enthalpy values, it was possible to determine the heat rate in terms of Btu/hr. Taking this value and dividing by the average CO₂ captured rate of 360 lb/hr across the adsorber yielded the result of 3,150 Btu/lb_m of CO₂ captured.

The expected value based upon laboratory characterization of the sorbent and thermal modeling was 1,530 Btu/lb_m CO₂ captured. This laboratory value was calculated using the following equation:

$$Q = \Delta H_{ad,CO_2} + \Delta H_{ad,H_2O} + C_{p,bed}\Delta T + C_{p,CO_2}\Delta T + C_{p,H_2O}\Delta T \quad (16)$$

The sorbent was characterized using direct scanning calorimetry to determine the heat of reaction with CO₂, the heat of reaction with water, and the heat capacity of the sorbent. These parameters along with the CO₂ and moisture loading viewed at equilibrium in the laboratory were used to calculate an expected thermal requirement of 1,530 Btu/lb_m of CO₂ captured. The variance is due to the average working capacity used to calculate the energy penalty. A capacity of 7 g CO₂ / 100 g sorbent CO₂ by weight was used during the design process of the pilot and in the initial thermal energy requirement

calculation. Although the working capacity of the sorbent between the regenerator outlet and adsorber outlet is believed to have been 7 g CO₂ / 100 g sorbent, when including the negative impact of CO₂ adsorption in the transport line between the regenerator and adsorber, the working capacity across the adsorber was limited to 5.4 g CO₂/100 g sorbent, as indicated in Section 6.4.2.

When the sorbent working capacity was calculated using the average CO₂ removal in the adsorber divided by the average sorbent circulation rate for the 20-hour 90% CO₂ capture test, a value of 2.2 g CO₂ / 100 g sorbent was calculated. Using this sorbent working capacity, which was the average value, observed over this particular test duration, the recalculated thermal energy penalty was 3,000 Btu/lb_m, indicating that the thermal properties of the sorbent were well understood and characterized. This also indicated excellent agreement between the mass flow observations, heat balance, and fundamental sorbent performance further strengthening conclusions drawn from these data.

6.4.6 Measurement Uncertainties

Several measurement uncertainties were identified during the project. One of the largest uncertainties was related to the sorbent circulation rate, which was calculated rather than directly measured, and together with the location of the pressure taps used for calculations, left some uncertainty as to whether some sorbent was recirculating back into the regenerator rather than being transported into the adsorber. Another key uncertainty that required modeling to deduce probable behavior was the adsorption of CO₂ in the transport line between the regenerator and the adsorber.

The CO₂ analyzer used to measure the CO₂-rich gas stream required dilution to bring the measurement within range, and did not reliably hold calibrations, which also introduced uncertainty. The average values of CO₂ removed from the adsorber and CO₂ produced from the regenerator were within approximately 20%. This indicated that the data collected was suitable for analysis and for drawing of overall conclusions, but may not have been as precise as desired.

A potential explanation for the difference between the CO₂ removal rate across the adsorber and the CO₂ production rate is that the adsorber used traditional CEMS while the CO₂ product was monitored with a separate emissions monitor with a different calibration range and demonstrated reliability issues associated to calibrations. When the instrument was calibrated according to the manual, it would not accurately read known concentrations of gases. For this reason, a separate calibration procedure was set up to calibrate the instrument and apply a correction factor to the readings each day.

Using the pressure, actual flow rate measurement, temperature, and gas composition collected by the CEMs at the inlet and outlet of the adsorber, a mass flow rate could be calculated. Manual moisture measurements were taken to convert the dry gas CO₂ concentration measurements to wet gas readings for use with the flow meter data. Manual moisture measurements are another source of uncertainty as they can be affected by operators, length of sampling time, and quality of sampling preparation. This is another source of calculation error.

It was not possible to perform enough moisture measurements at a given time to have statistically significant error bars during the test since moisture measurements were taken at the same sampling port as the gas analyzers. This meant that during moisture sampling, the data from the pilot had to be ignored because it did not contain accurate gas compositions. This led to another potential contribution to uncertainty. The adsorber averaged a CO₂ removal rate of 360 lb/hr, while the CO₂ product averaged a production rate of 300 lb/hr. In addition to the uncertainties already described, air in-leakage also likely played a role in contributing to dilution of the CO₂ product on the suction side of the CO₂ blower which would lead to a lower calculated CO₂ mass flow rate. More detailed analysis of the air in-leakage contribution is discussed in Section 6.4.3.

Measurement in the high-concentration CO₂ stream was performed using a Testo 350 fitted with a CO₂ (NDIR) sensor, among other sensors. This sensor is designed to measure 0 to 50 vol% CO₂ with a resolution of 0.01 vol% using infrared measurement principle. Built into the sensor are an absolute pressure measurement, condensate container filling level monitoring and CO₂ absorption filter with filler pack. The Testo 350 has a built-in dilution which can be programmed and plumbed up to act upon any number of sensors. The CO₂ sensor was configured to incorporate a 2 to 1 dilution in order to have the ability to measure up to 100 vol% CO₂.

There are errors associated with the Testo CO₂ cell, the CO₂ calculation and the use of the dilution all within the Testo instrument. The calculated propagated error of the Testo system based on an 89.4% CO₂ product reading is +/-5.75 vol%.

6.4.7 Define and Collect Compression and Sequestration-Specific Information

The characteristics of the CO₂ at the outlet of the capture system, including the pressure and constraints on impurities, are dependent on the intended fate of the CO₂. For example, a low nitrogen content is important for CO₂ used in EOR because nitrogen can decrease oil recovery⁴¹. In 2012, NETL published “CO₂ Impurity Design Parameters” to provide guidance on a range of impurities in CO₂ for use in EOR or for storage⁴². The NETL-recommended design limit for nitrogen is 1%, if used for EOR and 4% if used for storage directly. Other recommendations for most of the primary gases expected to be present in the CO₂-rich gas from the ADAsorb System are included in Table 23.

The limit for H₂O is heightened when there is a possibility of forming sulfuric acid and of the associated corrosion risk of sulfuric acid. The SO₂ concentration at the inlet of the ADAsorb System is less than 5 ppm_v, which will limit the outlet SO₂ concentration and potential for sulfuric acid formation. The corrosion potential is also higher in the presence of free water. Since CO₂ is transported as a supercritical fluid, the solubility limit of CO₂ at 500 bar is 5000 ppm, which is an order of magnitude above the recommended range for water.

Table 23. Recommended Limits for CO₂-Rich Gas Streams⁴²

Component	Unit	Range in Literature	
		EOR	Sequestration in Saline Reservoir
CO ₂	Vol (%)	90-99.8	90-99.8
H ₂ O	ppm _{wt}	20-650	20-650
N ₂	Vol%	0.01-2	0.01-7
O ₂	Vol%	0.01-4	0.001-1.3
SO ₂	ppm _v	10-50,000	10-50,000
NOx	ppm _v	20-2,500	20-2,500

The purity of the CO₂-rich gas exiting the pilot system was presented in Table 24. As shown, the CO₂ and O₂ levels were within the recommended range. The elevated levels of water would require additional drying prior to compression and sequestration. If the balance of the gas at the regenerator outlet is nitrogen, there are indications that at some operating conditions, the N₂ content is above the recommended level.

The CO₂ product stream can potentially be diluted or contaminated by at least three mechanisms:

1. Air infiltration or in-leakage on low pressure side of CO₂ blower.
2. Sorption of O₂ and/or N₂ on the CO₂ sorbent.
3. Carryover of flue gas in interstitial spaces of sorbent flowing out of the bottom of the adsorber.

All three issues were investigated to the extent practical after completion of the pilot testing.

1. Leak checking of the pilot was not very practical after testing had concluded and the data were being analyzed. Given the mass balance discrepancy already discussed, it is likely that there was some air leakage. Leakage around the blower driveshaft is possible unless measures are taken to mitigate leakage. No special measures were taken on the pilot blower, so this is likely one source of dilution.
2. If the CO₂ stream dilution were due to only to flue gas carry-over, then the ratio of N₂ and O₂ would be similar in the CO₂ product and in the flue gas. The ratio of N₂ to O₂ in the flue gas was observed to be ~14, while the ratio in the CO₂ product was 8.2. Ambient air has a ratio of N₂ to O₂ of approximately 3.7. It is likely that both air in-leakage and flue gas carryover contributed to dilution of the CO₂ product and limited CO₂ concentration to ~90% on a dry basis.

Models had predicted some interstitial flue gas carryover in the process and determined a ratio of 13 for N₂:O₂ in the CO₂ product stream. The CO₂ product gas stream was predicted to be 94.5% CO₂ with ~5% N₂ on a dry basis. If we assume that the reason for the pilot N₂:O₂ ratio of 8.2, which is about the average of the ratios for air and flue gas, is due to a combination of air and flue gas infiltration, then it is possible to determine their relative contributions. Respectively, these contributions are 55% air and

45% flue gas ingress. Assuming air in-leakage is resolved, the resulting flue gas average concentration can be calculated as 92.4% CO₂, 0.51% O₂, and 7.0% N₂, which is considerably closer to the performance expected.

6.5 Environmental Considerations

The as-produced sorbent selected for use in this project is considered nonhazardous by the OSHA Hazard Communication Standard. Throughout the operation of the pilot samples were extracted from the system and analyzed for RCRA 8 metals to monitor for any accumulation of metals that could lead to reclassification of the used material. The results of this testing, as seen in Table 24, show that no significant accumulation of metals occurred and that the majority of the monitored constituents were below the recordable limit of the testing method.

Table 24. Results of RCRA 8 Testing of Used Sorbent.

Date	Minimum Recordable Limit	10/2/14	4/8/15	5/22/15	5/22/15	5/26/15	5/29/15	6/10/15	6/10/15	Units
Location		ADS	ADS	ADS	REG	ADS	ADS	ADS	REG	
Arsenic	5	-	-	-	-	-	-	-	-	mg/kg
Barium	0.5	2.06	-	-	0.528	-	-	0.046	0.011	mg/kg
Cadmium	1	-	-	-	-	-	-	-	-	mg/kg
Chromium	2.5	-	-	-	-	-	-	0.005	-	mg/kg
Lead	2.5	-	-	-	-	-	-	-	-	mg/kg
Mercury	0.05	-	-	-	-	-	-	-	-	mg/kg
Selenium	2.5	-	-	-	-	-	-	-	-	mg/kg
Silver	2.5	-	-	-	-	-	-	-	-	mg/kg

Total liquid discharge of the system was monitored for total suspended solids, HEM (oil and grease), as well as RCRA metals. The total discharge was the combined discharge of the SO₂ scrubber blowdown, the flue gas cooler condensate, CO₂ cooler condensate, as well as the steam condensate. Results from this testing, seen in Table 25, also indicated that no significant accumulation occurred and that the majority of the monitored constituents were below the recordable limit of the testing method.

Table 25. Results from Environmental Testing of Total Liquid Discharge.

Date	Minimum Recordable Limit			
		6/10/2015	6/10/2015	Units
Location		D-101	Scrubber	
Arsenic	0.05	-	-	mg/L
Barium	0.005	0.01	0.011	mg/L
Cadmium	0.005	-	-	mg/L
Chromium	0.005	-	-	mg/L
Lead	0.02	-	-	mg/L
Mercury	0.0002	-	-	mg/L
Selenium	0.02	0.02	-	mg/L
Silver	0.005	-	-	mg/L
Zinc	0.01	0.01	-	mg/L
Total S. Solids	4	8.8	9	mg/L
HEM	6	-	-	mg/L

Pilot testing indicates that no special consideration for process waste is required.

6.6 General Observations and Lessons Learned from Pilot Operations

During the parametric testing, it became clear that 90% CO₂ capture at 1 MWe was not achievable with this sorbent in the pilot unit as designed and operated. Unfortunately, the importance of a critical operating condition, using CO₂-rich gas that was cooler than the regenerated sorbent to transport sorbent from the regenerator to the adsorber, was underestimated during pilot testing because of the misinterpretation of laboratory data concerning sorbent kinetics. Without reducing the impact of CO₂ in the sorbent transport line between the regenerator and the adsorber, no variation of any other parameters that were tested led to substantial improvements in performance. A summary of general observations and considerations for improvements during subsequent testing are provided below.

1. The CO₂ removal rate across the adsorber was limited due to adsorption of CO₂ in the conveying gas between the regenerator and the adsorber. It is possible that significant improvements in performance may be achieved through either heating the carrier gas between the regenerator and adsorber, or using a low-CO₂ carrier gas. As noted, the initial design identified CO₂-lean flue gas as the carrier gas. The risk of oxidation and permanent damage to the amines in the sorbent when amines are exposed to oxygen at elevated temperatures was demonstrated during laboratory testing.
 - *Elevating the regenerator above the sorbent return in the adsorber would allow for gravity feed and eliminate the need for carrier gas between the regenerator and adsorber.*

2. The sorbent flow properties changed as regenerator temperature increased. As the regenerator temperature approached the design set point of 120°C (248°F), various sorbent handling characteristics became apparent such as disruption of consistent sorbent circulation rate as indicated by varying levels of sorbent level in the downcomer of the sorbent return to adsorber cyclone and a “slugging” flow of sorbent back into the adsorber from the regenerator.
 - *Modifying the design of the sorbent outlet of the regenerator to incorporate gravity feed and larger conveying lines could mitigate handling issues associated with elevated temperature sorbent.*
3. Cyclones, loop seals, did legs, and downcomers did not always operate smoothly. Sorbent carryover and reverse flow through the cyclones happened on numerous occasions during periods of operational instability. Additional fluidization installed in the downcomer, which returned sorbent from the regenerator, aided in minimizing sorbent circulation challenges. At times, sorbent was also found plugging the gas return line after Cyclone-104, the cyclone responsible for separating regenerated sorbent from conveying CO₂ and directing the sorbent to the adsorber. The presence of sorbent within this line is indicative of sorbent recirculation to the regenerator having bypassed the adsorber. All cyclones were bypassed at some point due to upset conditions.
4. Automatic blower shutoff programming was added to the PLC as well. This proved very valuable as the PLC would detect pressure drop across the sorbent baghouses and automatically shut down the main flue gas blower and/or the CO₂ recycle blower for the regenerator prior to exceeding the deflagration panel burst pressure of 1.0 psig. On two occasions, excessive sorbent carryover through cyclones and into the baghouses resulted in the release of deflagration panels and subsequent release of sorbent. Reinstallation of the panels was costly and time consuming. With the automatic shutdown programming, system instability that could have led to another panel rupture was safely mitigated.
5. Attempts to increase sorbent inventory were unsuccessful due to an inability to maintain a sorbent inventory of greater than approximately 8,500 lb in the system. Occasionally, it was possible to operate close to 9,000 lb, but often additional sorbent would then be carried out of the system to the baghouse. The designed sorbent capacity of the system is 9,900 lb. The inability to increase the sorbent inventory is likely due to the material handling characteristic changes of the heated sorbent at the exit of both vessels, adsorber and regenerator, where heated sorbent is handled. Sorbent inventory was calculated using a dP measurement across each bed to determine density of each bed and then calculating total mass as a function of bed height and vessel diameter.
6. Due to the upper limit threshold of CO₂ removed across the adsorber in terms of lb/hr, it was determined that in order to execute testing at 90% CO₂ removal, adsorber flow would have to be reduced significantly from 1 MWe to 0.2-0.25 MWe.
7. The Testo multigas combustion tuning analyzers measuring CO₂ and O₂ concentration at the adsorber inlet and outlet were replaced with conventional CEMS on loan and maintained by the National Carbon Capture Center. Data from the Testo analyzers was difficult to accurately record in data logs and did not provide long term continuous reliable readings.

General recommendations for scaling sorbent-based CO₂ capture technologies from the laboratory to the pilot-scale include the following.

- Plan for more balance of plant issues on first-of-a-kind pilots than expected. Challenges during this program included
 - Inherent instability of fluidized beds
 - SO₂ scrubber operation and subsequent blower issues
 - Electrical grounding issues
 - Unseasonably cold weather and inadequate freeze protection
 - Supply water contamination
 - Analyzer reliability
 - Insufficient fluidization within transfer lines, sorbent carryover
- Conduct additional lab tests, extrapolate performance, and build in contingency. Unique challenges on this program included:
 - Changes in sorbent behavior at high temperatures
 - Misinterpretation of sorbent kinetics from laboratory data, which resulted in overlooking the potential adsorption of CO₂ when using CO₂-rich gas to transport sorbent from the regenerator to the adsorber.

7. Techno-Economic Analysis

Two high level techno-economic assessments (TEA) were completed: one prior to pilot testing using design conditions and one following pilot testing using data collected during the 20-hour, 90% CO₂ capture test. The objective of the TEAs was to determine the economic viability of the emerging solid sorbent technology by comparing it to an established absorption technology at full-scale commercialization. For the TEAs, the benchmark technology selected for comparison was the Fluor Econamine FG PlusSM (Econamine) process. The core equipment costs for the cases Econamine1 and Econamine2, and Sorbent1 and Sorbent2 were identical, respectively, but the method of calculating indirect costs for the final BEC cost of the CO₂ capture facility differed. The “1” options utilized the DOE method to build up costs and indirects⁴⁰. The “2” options began with the same core costs, but built up the estimate using a more comprehensive estimate of indirect costs, based on recent vendor quotations and construction experience. The methodology provided by DOE/NETL was used to calculate a cost of energy (COE) and a leveledized COE (LCOE)⁴⁰ for case Sorbent1 (note that Econamine1 was taken directly from the DOE report with inflation taken into account).

A comparison of all case studies is provided in Table 27. Based on the results from pilot testing, and extrapolations using the operating model for conditions where adsorption of CO₂ in the transport line between the regenerator and adsorber was mitigated, the TEA utilizing pilot design parameters is valid. For this case, the sorbent-based CO₂ capture resulted in lower cost of electricity increases (as compared to the base case) than the benchmark Econamine based CO₂ capture.

Preliminary estimates indicate that a PC plant featuring the ADAsorb Process could lead to improved economic viability as well as a greater technical performance than that of the MEA process published in the DOE Cost and Performance Baseline for Fossil Energy Plants Volume 1: Bituminous Coal and Natural Gas to Electricity, Rev. 2.23. The COE is lowered by three percent and the net plant efficiency is

increased by 13 percent for the initial study. Compared with the PC plant without carbon capture (Case 9) published in the DOE report, the PC plant featuring ADA's solid sorbent technology results in a COE increase by 80 percent from 67.6 (escalated to 2015 dollars) to 121.8 mills/kWh, which is greater than the DOE target of 35 percent increase in COE.

The following list was generated to highlight the comparison of the key economic considerations.

- Capital costs, fuel costs and CO₂ transport, storage, and monitoring costs of the sorbent-based process were lower than those of the MEA case, respectively. Specifically, to generate 550 MW_{net} with 90% CO₂ capture, the gross power plant was smaller when sorbent-based CO₂ capture was used due to the lower thermal input required to operate the CO₂ capture facility.
- The operating and maintenance costs of the sorbent-based CO₂ capture process were higher than those of the MEA process, mostly as a result of a high sorbent cost and consumption for an initial fill.
- The electric requirement for the compression of CO₂ is significant for both aqueous amine and sorbent-based CO₂ capture. However, because the gross power plant with sorbent-based capture is smaller, less CO₂ must be compressed and the related costs are nominally less.
- COE and LCOE of the sorbent-based process were lower than those of the aqueous MEA system due to a lower capital costs, fuel costs, and CO₂ TS&M costs, offsetting higher O&M costs.
- The cost of electricity and levelized cost of electricity with sorbent-based CO₂ capture were calculated to be 113.3 and 143.6 mills/kWh, respectively.

A complete equipment list including CO₂ capture process equipment, sorbent handling, and CO₂ compression equipment was compiled. Additionally, a process flow diagram was developed and illustrated requirements for integration with an existing coal-fired power plant. These details can be found in the report included in the appendix.

In addition to costs, there are also environmental benefits for the sorbent-based CO₂ capture. For example, the coal supply to the PC plant is linearly related to the power plant gross thermal output. Because the gross thermal output for the power plant with sorbent-based CO₂ capture is ~11 percent less than that for the Econamine process, less coal is burned and thus, less Hg, SO₂, SO₃, NO_x, etc. are created.

Similarly, the raw water consumption of the power plant with the solid based process (~6.5M gallon/D) is 20 percent lower than that of the Econamine process (~8.1M gallon/D). This can be attributed to the fact that the gross power plant is smaller when the sorbent-based CO₂ capture process is implemented. Because water is likely to become an increasingly scarce resource in the future, less water consumption could play an important role in the CO₂ capture technology selection process.

A significant environmental concern is related to the volatile emissions of amines. At the regeneration temperature of 120°C, the vapor pressure of 3.5 M aqueous MEA is approximately 0.0725 psi; emissions of amines could be a significant environmental concern for aqueous CO₂ capture systems. Although the sorbent has been degraded in the laboratory using excessively high temperatures, no measureable

volatile emissions were recorded using a mass spectrometer, and no degradation of sorbent exposed to flue gas and temperature cycles was noted from sorbent samples removed from the pilot. It is possible that the amine on the selected sorbent remains covalently attached to the surface of the substrate even when being converted to urea, heat stable salts, or being otherwise degraded.

Solid waste disposal in the sorbent-based process was determined to be non-hazardous as a result of EPA Method 1311 screening which indicated that heavy metals including mercury and selenium were not concentrated in the sorbent. As a result, no special handling or additional costs or equipment was determined to be necessary for sorbent disposal. These results are provided in Section 6.6. Thus, if Sorbent BN were to spill either in transport or at the power plan, unlike an aqueous solution the sorbent will not seep into the soil. The sorbent could more easily be cleaned up without serious environmental consequences. The sorbent is not considered hazardous by the OSHA Hazard Communication Standard, thus waste disposal should be in accordance with the plants locale environmental controls.

Alternative heating and cooling options were also assessed. For example waste heat from compressors and other equipment, use of low quality steam, and potential benefits from alternate sources of heat were evaluated. Incorporating a heat exchanger for the sensible heat of the sorbent and utilizing all heat integration options it was determined that the heat rate could be reduced by 13% from the base design case. In general, the capital costs of these modifications almost always outweighed the benefits with the exception of a cross heat exchanger. Results of individual parameter changes which resulted in decreased heat rate are displayed in Table 26. More detail may be found in the final report for DOE project DE-FE0012914.

Table 26. Heat Rate, COE, and LCOE Changes Resulting from Thermal Optimization

Parameter	Heat Rate	Δ Heat Rate (% from Base Design)	Cost of Electricity (\$/MWh)	Δ Cost of Electricity (% from Base Design)	Levelized Cost of Electricity (\$/MWh)	Δ Levelized Cost of Electricity (% from Base Design)
Base Design	13364	0.00%	154	0.00%	195	0.00%
FG FWH	13302	-0.46%	170	10.39%	215	10.26%
FG Air	13259	-0.79%	155	0.65%	195	0.00%
Comp FWH	12927	-3.27%	156	1.30%	197	1.03%
Comp REG	12472	-6.67%	150	-2.60%	189	-3.08%
XHTX	12156	-9.04%	148	-3.90%	187	-4.10%
All HI	11625	-13.01%	162	5.19%	205	5.13%
XHTX & Comp REG			147	-4.55%	186	-4.62%

The abbreviations included in Table 26 include the following.

- Base Design: Case without XHTX or heat integration at optimal adsorber and regenerator operating temperatures.
- FG FWH: Heat integration option where heat from the flue gas cooler is used to heat boiler feedwater through the addition of FWH0 upstream of the existing FWH1.
- FG AIR: Heat integration option where heat from the flue gas cooler is used to pre-heat boiler combustion air.

- Comp FWH: Heat integration option where heat from the CO₂ compressors is utilized in heating the boiler feedwater through the addition of a feedwater heater (FWH0) upstream of the existing FWH1.
- Comp REG: Heat integration option with heat from the CO₂ compressors being utilized in heating the sorbent entering the regenerator.
- XHTX: Addition of a cross heat exchanger with an effectiveness of 75%, operating between the hot and cool sorbent conveying lines to preheat and precool sorbent before it enters the regenerator and adsorber respectively.
- All HI: All five heat integration options were considered simultaneously.

If data from the 20-hr, 90% capture test is utilized for the TEA, solid sorbents are not competitive with the Econamine. The major causes for poor results are due to low working capacity of the sorbent as previously discussed. A low working capacity means that the difference in loading between rich and lean sorbent is reduced, thus the amount of sorbent required for 90% capture of emitted CO₂ grows. This leads to multiple equipment trains for absorption and regeneration, resulting in very high capital costs.

The TEAs for both the design case and the 20-hr, 90% CO₂ removal case are included in the appendix.

Table 27. Performance and Economic Comparison, 2015 Dollars

Description	Unit	Econamine1 BEC as per DOE	Econamine2 BEC based on experience	Sorbent1 BEC as per DOE	Sorbent2 BEC based on experience	20-hr Pilot Test BEC as per DOE					
Gross Power Output	kW _e	672,700	672,700	656,125	656,125	718,738					
Electrical Output – BP Turbine	kW _e	0	0	47,369	47,369	32,525					
Auxiliary Load Summary	kW _e	122,740	122,740	153,534	153,534	201,293					
Net Power Output	kW _e	549,960	549,960	549,960	549,960	549,970					
Thermal Input	kW _{th}	2,102,644	2,102,644	1,865,320	1,865,320	2,383,129					
Coal Flow Rate	lb/hr	614,994	614,995	545,581	545,581	697,032					
Net Plant HHV Efficiency	%	26.2	26.2	29.5	29.5	23.1					
Net Plant HHV Heat Rate	Btu/kWh	13,046	13,046	11,573	11,573	14,785					
CO ₂ Capture Profile											
•CO ₂ Produced	lb/hr	1,459,838	1,459,838	1,295,067	1,295,067	1,651,831					
•CO ₂ Captured	lb/hr	1,313,960	1,313,960	1,165,561	1,165,561	1,486,648					
•CO ₂ Emission	lb/hr	145,878	145,878	129,507	129,507	165,183					
Circulating Cooling Water Demand†	gpm	540,000	540,000	399,276	399,276	487,120					
Raw Water Consumption	1000 gal/D	8,081	8,081	6,460	6,460	7,802					
CO ₂ Capture Facility											
•Regen. Energy	Btu/lb CO ₂	1,530	1,530	1,139	1,139	2,042					
•Total Energy	MMBtu/hr	2,010	2,010	1,328	1,328	3,036					
•Steam Flow	lb/hr	2,219,454	2,219,454	1,429,730	1,429,730	2,709,721					
•Sorbent Amount	lb/hr	N/A	N/A	16,610,220	16,610,220						
Capital Cost											
Bare Erected Cost	\$	1,415,831,000	1,931,818,999	1,294,480,737	1,662,613,151	3,377,994,721					
Total Plant Cost	2015\$	1,847,389,582	2,613,159,050	1,673,687,989	2,218,697,156	4,724,953,270					
Total Overnight Cost	2015\$	2,266,414,272	3,204,167,189	2,071,764,559	2,741,840,062	5,991,041,269					
Total As-Spent Cost	2015\$	2,583,712,271	3,652,750,595	2,361,811,597	3,125,697,670	6,355,138,125					
Operating & Maintenance Cost		Initial Cost	Annual Cost	Initial Cost	Annual Cost	Initial Cost					
Total Fixed Op Costs	\$M		61.0		81.2		56.8		71.2		141.3
Total Var. Op. Costs	\$M	3.1	42.8	3.1	51.2	13.0	73.2	13.0	62.9		132.0
Fuel Costs	\$	99,798,307		99,798,307		87,671,276		88,534,219		113,110,975	
CO ₂ TS&M Costs	\$	27,112,268		27,112,268		23,815,777		24,050,194		30,675,509	
COE contribution (2015\$)	mills/kWh	125.0		160.3		121.8		143.3		283.9	
•Capital Costs	mills/kWh	68.7		97.0		62.8		83.1		181.4	
•Fixed Op. Costs	mills/kWh	14.9		19.9		13.9		17.4		34.5	
•Variable Op. Costs	mills/kWh	10.4		12.5		17.8		15.4		32.9	
•Fuel Costs	mills/kWh	24.4		24.4		21.4		21.6		27.6	
•CO ₂ T&SM Costs	mills/kWh	6.7		6.7		5.8		5.9		7.5	
LCOE (2015\$)	mills/kWh	158.7		203.2		154.3		181.6		359.9	

8. Market Analysis

8.1 Market Drivers

CO₂ capture or avoidance is only pursued in two cases:

1. Forced emissions regulation currently pending;
2. CO₂ production as a bulk commodity product.

In the post-combustion CO₂ capture market, the predominant market driver will be CO₂ emissions regulations. With the recently concluded COP21 meetings in Paris and proposals including the EPA's Clean Power Plan, regulation of CO₂ seems inevitable; however, it is not yet law in the United States as of December, 2015. For this reason, there currently does not exist a market driver for CO₂ capture as it is far cheaper to emit CO₂ than to capture it.

However, regulation will certainly be finalized at some point in time. Exactly when and how is not yet clear. Various potential market drivers could spur development or drive markets towards other technical solutions depending upon how the regulatory framework of CO₂ emissions is ultimately promulgated.

In the meantime, the only current market driver for CO₂ capture is subsequent sale of the CO₂ as a commodity chemical. The market for CO₂ as a bulk chemical product is found in industries such as enhanced oil recovery (EOR), pulp and paper, welding, food and beverage, and medical applications. According to Ibis World's CO₂ market report, this market provides an average price of \$40/ton of CO₂ consumed with an annual domestic market of over \$600 million per year not including geologic extraction.

In addition, with a contracting food and beverage industry reducing soda production and the bulk of CO₂ for enhanced oil recovery (EOR) currently provided from geologic reservoirs, this market for CO₂ as a product is likely a shrinking market. This is further exacerbated by a current WTI price of \$38/barrel greatly reducing the demand for CO₂ for EOR.

8.2 Applicability of the ADAsorb Technology

The ADAsorb technology is most applicable in post-combustion capture situations where an existing plant would be retrofit for CO₂ capture or for construction of a new power plant where only partial slipstream capture was required. In these applications, the technology may be integrated with the plant to achieve from 0% to 90% CO₂ capture and may be tailored to the needs of any given carbon-fueled power plant, including natural gas-fired units if a sorbent suited for low CO₂ concentrations is selected.

In one example, if partial capture of 30% is required for an existing plant under future regulations such as the Clean Power Plan, the ADAsorb technology with a sorbent that utilizes a 5 g CO₂ / 100 g sorbent working capacity and 12 minute adsorption time and costs \$5 per lb, may facilitate compliance for as

low as \$25/ton of CO₂ avoided. Depending upon carbon taxes or future regulation, such slipstream partial capture opportunities may have significant applicability if sorbent technology also improves.

Other potential applications include CO₂ separation from natural gas. Natural gas cleanup is the primary energy-related market for CO₂ separation and certainly the largest in terms of tons of CO₂ processed or removed as a contaminant. While not the focus of this particular program, the technology may potentially be of use in other fields as markets develop.

8.3 Market Potential

As discussed, the current market potential is very limited for CO₂ capture from electric generating stations until regulations are in place. In the meantime, the natural gas clean-up market may be examined as a potential use for the CO₂ separation technology.

Data on CO₂ separation and venting is very difficult to obtain and not readily advertised by industry. Separation and venting is also very dependent upon gas composition as some fields do not require CO₂ removal to meet CO₂ pipeline quality specifications of less than 2% by volume, while other fields may produce gas that is to 30% to 40% CO₂ by volume. In order to assess the size of the market, some assumptions had to be made. Historic data from 2005 indicated that approximately 1.6% of the volume of natural gas produced in the U.S. was CO₂ that was vented to the atmosphere. This is a reasonable approximation as the IPCC assumes that 1.5% to 2% of natural gas produced is CO₂ that is vented to the atmosphere.

Given the assumptions that 1.6% of natural gas produced is CO₂ that is eventually vented and using current natural gas production according to IEA, the approximate amount of CO₂ separated and vented is 31 million tons per year.

In order to determine the market size of the current CO₂ separation market for natural gas, economic assumptions had to be made. Adapting data provided by the National Energy Technology Laboratory for post-combustion capture using MEA to estimate the operational costs of separation of CO₂ from flue gas yields a result of \$17.41/ton of CO₂ separated. This is likely a reasonable assumption because MEA separation processes were developed for this application and later adapted to post-combustion CO₂ capture. This assumption does not include the additional capital cost of the equipment. Thus, it is reasonable to assume that the CO₂ separation market for natural gas substantially exceeds \$540 million/year domestically when equipment costs are included.

9. Conclusions

Overall, following start-up and commissioning challenges that are often associated with first-of-a-kind pilots, the pilot plant operated as designed and expected with a few key exceptions. The two primary exceptions were associated with handling characteristics of the hot sorbent that were outside of design specifications, which were collected at ambient temperature and CO₂ adsorption in the transport line

between the regenerator and adsorber that pre-loaded the sorbent with CO₂ prior to entering the adsorber. In general, the pilot program was a success and indicates that solid sorbent-based post-combustion capture can be utilized to achieve 90% CO₂ capture from coal-fired power plants. Specific conclusions regarding the ADAsorb pilot system operating with Sorbent BN include:

- The ADAsorb pilot could not be operated at the design sorbent circulation rate with the regenerator at design temperature. The key limitation was pluggage in the sorbent outlet of the regenerator, and the cyclone and conveying lines between the regenerator and adsorber. During circulation tests with the regenerator operating at adsorption temperature, sorbent circulation could be maintained, thus, the operational challenges seem to be caused by changes in sorbent handling characteristics when the sorbent was heated.
- Pilot results in conjunction with laboratory studies of sorbent kinetics and an operational model of the adsorber suggest that the sorbent was adsorbing CO₂ from the CO₂-rich gas used to convey sorbent between the regenerator and adsorber. It is also possible that minor non-isothermal conditions (5°C below design condition) in the regenerator could have contributed to the higher than expected CO₂ loading on the sorbent entering the adsorber. The operating model indicated that design performance could be achieved if regeneration at 120°C could be achieved, pre-loading of CO₂ onto the sorbent could be eliminated and operations weren't constrained by sorbent handling issues.
 - *Pilot performance could be validated through additional pilot tests with a focused plan and minor modifications to the pilot to accommodate sorbent handling issues.*
- Preliminary TEA estimates indicate that a PC plant featuring the ADAsorb Process could lead to 3% reduction in COE and an increased net plant efficiency of 13% compared to the benchmark MEA. Compared with the PC plant without carbon capture (DOE's Case 9), the PC plant with an ADAsorb Process results in a COE increase by 80 percent from 67.6 (escalated to 2015 dollars) to 121.8 mills/kWh, which is greater than the DOE target of 35% increase in COE.
- An additional reduction in the COE of 4.55% could be achieved through heat from the CO₂ compressors being utilized in heating the sorbent entering the regenerator, and the addition of a cross heat exchanger with an effectiveness of 75%, operating between the hot and cool sorbent conveying lines to preheat and precool sorbent before it enters the regenerator and adsorber respectively.
 - *The addition of a cross heat exchanger could also mitigate the potential impact on isothermal operation of the regenerator, as modeled by the CCSI team, and potential desorption of CO₂ in the top bed of the adsorber through localized heating from hot sorbent returning from the regenerator.*
- Laboratory data can be very valuable for predicting performance of larger scale systems when appropriately applied. Interpretation of kinetic rates, mass loading, and sorbent performance including changes in handling characteristics can be well characterized across a wide variety of

laboratory conditions. However, it is critical that appropriate metrics be used to scale up laboratory performance to practical system performance.

- Handling characteristics of sorbents may change under temperature, pressure, loading, and handling conditions and should therefore be examined under bench scale conditions before piloting.
- Sorbent thermal properties such as heat of reaction, sensible heat capacity, etc. can be effectively measured in a laboratory and then used for design or predictive heating/cooling requirements in a full scale system.
- Kinetics of adsorption or desorption can be observed in the laboratory, but laboratory conditions must reproduce expected full-scale conditions in order for laboratory kinetic data to be quantitatively used for design and scale-up.
- The solid sorbent tested during this program adsorbed CO₂ selectively from coal-derived flue gas without concentrating other harmful trace elements such as mercury or selenium.
- The market is unclear, but the process has been validated as a basic level. If the market develops, further process improvement and sorbent development is warranted.

10. References

1. Ramezan M.; Skone T.J.; Nsakala N.; Liljedahl G.N. "Carbon Dioxide Capture from Existing Coal-Fired Power Plants", Final Report DOE/NETL-401/110907, December, 2007.
2. Birbara P.J.; Filburn T.P.; Nalette T.A. United Technologies Corporation. Regenerable Solid Amine Sorbent. US 5,876,488, 1999.
3. Gray M.L.; Champagne K.J.; Fauth D.; Baltrus J.P.; Pennline, H. Performance of Immobilized Tertiary Amine Solid Sorbents for the Capture of Carbon Dioxide. *International Journal of Greenhouse Gas Control* **2008**, 2, 3-8.
4. Drage T.C., Arenillas A., Smith K.M., Snape C.E. Thermal Stability of Polyethylenimine Based Carbon Dioxide Adsorbents and its Influence on Selection of Regeneration Strategies, *Microporous and Mesoporous Materials* **2008**, 116, 506-512.
5. Siriwardane R.V. The United States Department of Energy, Solid Sorbents for Removal of Carbon Dioxide from Gas Streams at Low Temperatures. US 6,908,497, 2005.
6. Harlick P.J.E.; Sayari A. Applications of Pore-Expanded Mesoporous Silica. 5. Triamine Grafted Material with Exceptional CO₂ Dynamic and Equilibrium Adsorption Performance. *Ind. Eng. Chem. Res.* **2007**, 45, 446-458.
7. Kim S.; Ida J.; Gulants V.V.; Lin J.Y.S. Tailoring Pore Properties of MCM-48 Silica for Selective Adsorption of CO₂. *J. Phys. Chem. B* **2005**, 109, 6287-6293.
8. Hicks J.C.; Drese J.H.; Fauth D.J.; Gray M.L.; Qi G.; Jones C.W. Designing Adsorbents for CO₂ Capture from Flue Gas - Hyperbranched Aminosilicas Capable of Capturing CO₂ Reversibility. *J. Am. Chem. Soc.* **2008**, 130, 2902-2903.
9. Drage T.C.; Arenillas A.; Smith K.M.; Pevida C.; Piippo S.; Snape C.E. Preparation of Carbon Dioxide Adsorbents from the Chemical Activation of Urea-Formaldehyde and Melamine-Formaldehyde Resins. *Fuel* **2007**, 86, 22-31.
10. Plaza M.G.; Pevida C.; Arenillas A.; Rubiera F.; Pis J.J. CO₂ Capture by Adsorption with Nitrogen Enriched Carbons. *Fuel* **2007**, 86, 2204-2212.
11. Radosz M.; Hu X.; Krutkramelis K.; Shen Y. Flue-Gas Carbon Capture on Carbonaceous Sorbents: Toward a Low-Cost Multifunctional Carbon Filter for "Green" Energy Producers. *Ind. Eng. Chem. Res.* **2008**, 47, 3783-3794.
12. Lu C.; Bai H.; Wu B.; Su F.; Hwang J.F. Comparative Study of CO₂ Capture by Carbon Nanotubes, Activated Carbons, and Zeolites. *Energy & Fuels* **2008**, 22, 3050-3056.
13. Nelson T.; Coleman L.; Anderson M.; Herr J.; Pavani M. The Dry Carbonate Process: Carbon Dioxide Recovery from Power Plant Flue Gas. In Proceedings of the Annual NETL CO₂ Capture Technology for Existing R&D Meeting, Pittsburgh, PA, March 2009.
14. Shigemoto N.; Yanagihara T.; Sugiyama S.; Hayashi H. Material and Energy Consumption for CO₂ Recovery from Moist Flue Gas Employing K₂CO₃-on-Activated Carbon and Its Evaluation for Practical Adaptation. *Energy & Fuels*, **2006**, 20, 721-726.
15. Siriwardane R.V.; Shen M.S.; Fisher E.P.; Poston J.A. Adsorption of CO₂ on Molecular Sieves and Activated Carbon. *Energy & Fuels*, 2001, 15, 279-284.
16. Li, H.; Eddaoudi, M.; O'Keeffe, M.; Yaghi, O. M. *Nature* **1999**, 402,276.
17. Eddaoudi, M.; Kim, J.; Rosi, N.; Vodak, D.; Wachter,J.; O'Keeffe, M.; Yaghi, O.M. *Science* **2002**, 295, 469.
18. Li, D.; Kaneko, K. *Chemical Physics Letters* **2001**, 335, 50.
19. Bae, Y.S.; Mulfort, K.L.; Frost, H.; Ryan, P.; Punnathanam, S.; Broadbelt, L.J.; Hupp, J.T.; Snurr, R. Q. *Langmuir* **2008**, 24, 8592.

20. NETL, *Cost and Performance Baseline for Fossil Energy Plants, Volume 1: Bituminous Coal and Natural Gas to Electricity*, Revision 2, November 2010, www.netl.doe.gov, accessed September 2012.
21. Li, C.H.; Finlayson, B.A. Heat transfer in packed beds – a reevaluation. *Chem. Eng. Sci.* **1977**, *32*, 1055.
22. Choi, S.; Dreste, J.; Jones, C.W. Adsorbent materials for carbon dioxide capture from large anthropogenic point sources. *Chem SUS Chem* **2009**, *2*(9), 796-854.
23. Gray, M. L.; Hoffman, J. S.; Hreha, D. C.; Fauth, D. J.; Hedges, S. W.; Champagne, K. J.; Pennline, H. W. Parametric study of solid amine sorbents for the capture of carbon dioxide. *Energy & Fuels* **2009**, *23*, 4840-4844.
24. Alesi, W.R.; Kitchin, J.R. Evaluation of a primary amine-functionalized ion-exchange resin for CO₂ capture *Ind. & Eng. Chem. Res.* **2012**, *51* (19), 6907-6915.
25. Samanta, A.; Zhao, A.; Shimizu, G.K.H; Sarkar, P.; Gupta, R., Post-combustion CO₂ capture using solid sorbents: a review. *Ind. & Eng. Chem. Res.* **2011**, *51*(4), 1438-1463.
26. Zenz, F.A.; Othmer, D.F. *Fluidization and Fluid-Particle Systems*, Reinhold Publishing Corp., New York, 1960.
27. Leva, M.; Grummer, M. A correlation of solids turnovers in fluidized systems. *Chem. Eng. Prog.* **1952**, *48*, 307.
28. Urie, R.W. MS Thesis, Cambridge, Massachusetts Institute of Technology, 1948.
29. Xavier, A.M.; King, D.F.; Davidson, J.F.; Harrison, D. Surface-bed heat transfer is a fluidized bed at high pressure. In *Fluidization*, eds. Grace, J.R.; Matsen, J.M., Plenum, New York, p.209.
30. Davidson, J.F.; Clift, R.; Harrison, D. *Fluidization*, 2nd ed., Academic Press, Orlando, FL, 1985.
31. Peters, M.S.; Timmerhaus, K.D. *Plant Design and Economics for Chemical Engineers*, Fourth ed., McGraw Hill, New York, 1991.
32. Flagan, R.C.; Seinfeld, J.H. *Fundamentals of Air Pollution Engineering*. Prentice Hall, Englewood Cliffs, NJ, 1988, pp. 35-36.
33. Fogler, H. S. Elements of Chemical Reaction Engineering, 4th Edition, Prentice Hall, 2006.
34. Krutka, H.; Starns, T.; Richard, M.; Thitakamol, B. *Evaluation of Solid Sorbents as a Retrofit Technology for CO₂ Capture: Preliminary Techno-Economic Assessment of Solid Sorbents for Post-Combustion CO₂ Capture*. ADA-ES, Highlands Ranch, CO: U.S. Department of Energy Topical Report, 2011.
35. Berger, A.H.; Bhowm, A.S. Comparing physisorption and chemisorption solid sorbents for use separating CO₂ from flue gas using temperature swing adsorption. *Energy Procedia* **2011**, *4*, 562-567.
36. Krishnan, G. Development of advanced carbon sorbents for CO₂ capture, presented at the NETL CO₂ Capture Technology Meeting, Pittsburgh, July 2012, <http://www.netl.doe.gov/publications/proceedings/12/co2capture/index.html#pres>, accessed online September 2012.
37. Rochelle, G.; Chen, E.; Dombrowski, K.; Sexton, A.; Lani, B. Pilot plant testing of piperazine with high T regeneration, presented at the NETL CO₂ Capture Technology Meeting, Pittsburgh, July 2012, <http://www.netl.doe.gov/publications/proceedings/12/co2capture/index.html#pres>, accessed online September 2012.
38. Krutka, H.; Starns, T.; Wilson, C. *Evaluation of Solid Sorbents as a Retrofit Technology for CO₂ Capture*. ADA-ES, Highlands Ranch, CO: U.S. Department of Energy Topical Report. 2011.
39. Richard, M.; Thitakamol, B. *Solid Sorbent Concept Cost of Electricity Report: 550 MW Pulverized Coal-Fired Power Plant, Regina, Saskatchewan*: U.S. Department of Energy Topical Report, 2011.

40. *Final report – Carbon Dioxide Capture from Existing Coal-Fired Power Plants*, DOE/NETL-401/110907, November 2007.
41. IPCC, 2005. Metz, B.; Davidson, O.; de Coninck, H.; Loos, M.; Meyer, L. (Eds.). Cambridge University Press, Cambridge, UK, p 431.
42. http://www.netl.doe.gov/File%20Library/Research/Energy%20Analysis/Publications/QGESS_CO2Purity_Rev3_20130927_1.pdf.

11. Appendix: Techno-Economic Analysis

**EVALUATION OF SOLID SORBENTS AS A RETROFIT TECHNOLOGY
FOR CO₂ CAPTURE: PRELIMINARY TECHNO-ECONOMIC
ASSESSMENT OF SOLID SORBENTS FOR POST-COMBUSTION CO₂
CAPTURE**

**Topical Report
Reporting Period: 10/1/2010 – 12/31/2011**

Principal Author(s): Krutka, H., Starns, T., Richard, M., Thitakamol, B.
December 2011

DOE Award Number: DE-FE0004343

**SUBMITTED BY:
ADA-ES, Inc.
8100 SouthPark Way, Unit B
Littleton, CO 80120**

**PREPARED BY:
ADA-ES, Inc.
8100 SouthPark Way, Unit B
Littleton, CO 80120**

**Stantec Consulting Ltd.
Clean Coal Centre of Excellence
701-2010-11th Avenue
Regina, Saskatchewan
Canada, S4P 0J3**

PRELIMINARY TECHNO-ECONOMIC ASSESSMENT

Disclaimer

December 13, 2011

Acknowledgement: This material is based upon work supported by the Department of Energy under Award number DE-FE0004343.

Disclaimer: This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

PRELIMINARY TECHNO-ECONOMIC ASSESSMENT

Abstract

December 13, 2011

Abstract

Capturing and geologically storing the carbon dioxide (CO₂) from point source emitters may be one of the best options for controlling anthropogenic CO₂ emissions. However, currently there are no commercially available options for post-combustion CO₂ capture; in addition, the industry benchmark, aqueous monoethanolamine (MEA) used in a temperature swing process, may be excessively energy intensive and expensive. Therefore, the US Department of Energy National Energy Technology Laboratory is supporting the development of alternative CO₂ capture technologies.

Under cooperative agreement DE-FE0004343 development of a CO₂ capture process based on temperature swing adsorption using solid sorbents is being continued. The goals for the sorbent-based process are to significantly reduce the costs, energy penalty, and environmental impacts of CO₂ capture. One of the first steps of the project was to identify a potential commercial-scale process for CO₂ capture with solids and complete a high level assessment of the techno-economic feasibility; the results of this effort are the focus of this topical report. Based on the commercial-scale process a 1 MW pilot will be designed, built, and operated. Once pilot testing is complete a more in depth techno-economic analysis will be completed based on the pilot-scale test results.

The high level techno-economic assessment was completed. The sorbent based CO₂ capture resulted in lower cost of electricity increases than the benchmark Econamine based CO₂ capture. The following list was generated to highlight the comparison of the key economic considerations:

- Capital costs, fuel costs and CO₂ transport, storage, and monitoring costs of the sorbent-based process were lower than those of the MEA case, respectively. Specifically, to generate 550 MW_{net} with 90% CO₂ capture, the gross power plant was smaller for when sorbent-based CO₂ capture was used due to the lower thermal input required to operate the CO₂ capture facility.
- The operating and maintenance costs of the sorbent-based CO₂ capture were higher than those of the MEA process, mostly as a result of a high sorbent cost and consumption for an initial fill. With the data that will be collected during 1 MW pilot testing it may be possible to reduce the overall mass of sorbent required in the system and, thus, reduce the initial fill.
- The electric requirement for the compression of CO₂ is significant for both aqueous amine and sorbent-based CO₂ capture. However, because the gross power plant with sorbent-based capture is smaller, less CO₂ must be compressed and the related costs are nominally less.
- COE/LCOE of the sorbent-based process were lower than those of the aqueous MEA system due to a lower capital costs, fuel costs, and CO₂ TS&M costs, offsetting higher O&M costs.

PRELIMINARY TECHNO-ECONOMIC ASSESSMENT

Abstract

December 13, 2011

- The cost of electricity and levelized cost of electricity with sorbent-based CO₂ capture was calculated to be 113.3 and 143.6 mills/kWh, respectively.

In addition to costs there are also environmental benefits for the sorbent-based CO₂ capture. For example, the coal supply to the PC plant is linearly related to the power plant gross thermal output. Because the gross thermal output for the power plant with sorbent-based CO₂ capture is ~11 percent less than that of the Econamine process less coal is burned and thus, less Hg, SO₂, SO₃, NO_x, etc. are created.

Similarly, the raw water consumption of the power plant with the solid based process (~6.5M gallon/D) is 20 percent lower than that of the Econamine process (~8.1M gallon/D). This can be attributed to the fact that the gross power plant is smaller when the sorbent-based CO₂ capture process is implemented. Because water is likely to become an increasingly scarce resource in the future, less water consumption could play an important role in the CO₂ capture technology selection process.

Another significant environmental concern is related to the volatile emissions of amines. At the expected regeneration temperature the vapor pressure of 3.5 M aqueous MEA is approximately 0.0725 psi; emissions of amines could be a significant environmental concern for aqueous CO₂ capture systems. Although the sorbent has been degraded in the laboratory using excessively high temperatures, no measureable volatile emissions were recorded using a mass spectrometer. It is possible that the amine on the selected sorbent remains covalently attached to the surface of the substrate even when being converted to urea, heat stable salts, or being otherwise degraded.

Another environmental consideration is related to potential spills. If the proposed sorbent were to spill either in transport or at the power plan, unlike an aqueous solution the sorbent will not seep into the soil. The sorbent could more easily be cleaned up without serious environmental consequences. The sorbent is not considered hazardous by the OSHA Hazard Communication Standard, thus waste disposal should be in accordance with the plants locale environmental controls.

The sorbent-based CO₂ capture process resulted in a lower energy penalty and lower overall increase in the cost of electricity. However, the improvements versus aqueous MEA are not enough to meet the DOE's cost and COE goals. With further improvements it is possible that the sorbent-based CO₂ capture process may be able to make significant progress towards the DOE goals. Potential areas of improvement include:

PRELIMINARY TECHNO-ECONOMIC ASSESSMENT

Abstract

December 13, 2011

- Heat integration
 - Heat recovery between the rich and lean sorbent – this must be accomplished in such a way that the energy recovery is significant enough to offset the added capital costs for the heat exchangers
 - Integration within the power plant – using heat from the power plant or the CO₂ compression system to reduce the overall energy penalty
- Reduce capital costs
- Improve sorbent performance and characteristics
 - Working CO₂ capacity
 - Attrition resistance
 - Cost
 - Thermal conductivity
 - Moisture loading
 - Etc.
- Optimize steam condition at IP/LP crossover to eliminate a need of the BP turbine and to integrate into the steam cycle in a more efficient manner.

A unique process for CO₂ capture using solid sorbents has been developed. In the absence of large scale (i.e. pilot-scale) testing to date, it was necessary to use laboratory results or make assumptions regarding the equipment and sorbent performance under the expected operating conditions. To fully capture the true range of operation and fully assess synergistic effects of the entire system it is important to continue this work to the 1 MW pilot scale to validate the following key performance parameters:

- CO₂ delta loading
- H₂O delta loading
- Enthalpy of reaction/adsorption of CO₂
- Enthalpy of reaction/adsorption of H₂O
- Reaction kinetics
 - CO₂ uptake limited by kinetics in the adsorber
 - CO₂ release limited by mass diffusion in the regenerator
- Effective heat transfer coefficients
 - Cooling water requirements
 - Steam requirements
- CO₂ partial pressure in the regenerator
- Reactor pressure drop
- Physical attrition rate
- Successful isothermal operation
- Optimize process variables:
 - Temperature
 - Sorbent Circulation Rate
- Identify sorbent bed height required to maintain 90% CO₂ capture

Using results from the 1 MW pilot test a more in depth techno-economic assessment can be completed. If the process will not meet the DOE's goals related to the cost of electricity increase as described in this report, sorbent properties and process conditions that would result in an acceptable cost increase will be identified.

Preliminary Techno-Economic Assessment

Table of Contents

December 13, 2011

Table of Contents

ABSTRACT	E.1
1.0 EXECUTIVE SUMMARY.....	1
2.0 INTRODUCTION.....	2
3.0 METHODOLOGY	3
3.1 PLANT AND PROCESS DESCRIPTIONS	3
3.1.1 Power Plant Description	3
3.1.2 Aqueous Amine Benchmark CO ₂ Capture Process (Econamine).....	5
3.1.3 Solid Sorbent CO ₂ Capture Process	6
3.2 ECONOMIC ASSESSMENT METHODOLOGY AND ASSUMPTIONS	11
3.2.1 Capital Costs	11
3.2.2 Operating and Maintenance Cost Estimates.....	14
3.2.3 CO ₂ Transport, Storage, and Monitoring Costs.....	14
3.2.4 Cost of Electricity	14
3.3 TECHNICAL ASSESSMENT METHODOLOGY AND ASSUMPTIONS	17
3.3.1 Energy Penalty	17
3.3.2 Environmental Considerations	17
4.0 RESULTS	19
4.1 ECONOMIC ASSESSMENT AND COMPARISON	19
4.2 TECHNICAL ASSESSMENT AND COMPARISON	23
4.2.1 Energy Penalty	23
4.2.2 Environmental Considerations	25
5.0 DISCUSSION AND CONCLUSIONS	27
6.0 LIST OF ABBREVIATIONS	29
7.0 REFERENCES.....	31

Preliminary Techno-Economic Assessment

Executive Summary

December 13, 2011

1.0 Executive Summary

Under cooperative agreement DE-FE0004343 development of a CO₂ capture process based on temperature swing adsorption using solid sorbents is being continued. A preliminary techno-economic assessment was completed based on the developing sorbent-based CO₂ capture process. From an economic standpoint the sorbent-based CO₂ capture process outperformed the benchmark aqueous monoethanolamine (MEA) process. Note that the Fluor Econamine FG PlusSM was used as the benchmark MEA-based process. Specifically, the capital costs, fuel costs and CO₂ transport, storage, and monitoring costs of the sorbent-based process were lower than those of the aqueous amine case. This can be attributed to the fact that to generate 550 MW_{net} with 90% CO₂ capture, the gross power plant was smaller for when sorbent-based CO₂ capture was used due to the lower thermal input required to operate the CO₂ capture facility.

In addition to costs there are also environmental benefits demonstrated by the sorbent-based CO₂ capture. Because the gross thermal output for the power plant with sorbent-based CO₂ capture is 11 percent less than that of the Econamine process less coal is burned and thus, less Hg, SO₂, SO₃, NO_x, etc. will be created. Similarly, the raw water consumption of the solid based process (~6.5M gallon/D) is 20 percent lower than that of the Econamine process (~8.1M gallon/D). Another potential environmental concern is related to the volatile emissions of amines. At the expected regeneration temperatures the vapor pressure of 3.5 M aqueous MEA is approximately 0.0725 psi. Although the sorbent has been degraded in the laboratory using excessively high temperatures, no measureable volatile emissions were recorded using a mass spectrometer.

Although the sorbent-based CO₂ capture process outperformed aqueous MEA in several key areas, the costs are projected to be higher than the goals set forth by the US Department of Energy (DOE). Therefore, several potential improvements have been identified. The potential feasibility for these improvements will be assessed by operation of a 1 MW pilot and a follow up techno-economic analysis based on the pilot results.

Preliminary Techno-Economic Assessment

Introduction

December 13, 2011

2.0 Introduction

Capturing and geologically storing the carbon dioxide (CO₂) from point source emitters may be one of the best options for controlling anthropogenic CO₂ emissions. Aqueous monoethanolamine (MEA) is generally accepted as benchmark to which developing CO₂ capture technologies can be compared. While it has not been demonstrated on pulverized coal (PC) fired flue gas at the commercial scale, aqueous MEA has been used extensively for CO₂ removal from natural gas and flue gas with the intention of using it for food applications, enhanced oil recovery, etc. Although commercial-scale CO₂ capture from coal-fired power plant flue gas with MEA is likely to be technically feasible, it will also likely be expensive and energy intensive.¹ The DOE, specifically the National Energy Technology Laboratory (NETL), is supporting research and development efforts for CO₂ capture technologies that may offer technical and/or economic advantages when compared to aqueous MEA.

Under cooperative agreement DE-FE0004343 development of a CO₂ capture process based on temperature swing adsorption using solid sorbents is being continued. The goals for the sorbent-based process are to significantly reduce the costs, energy penalty, and environmental impacts of CO₂ capture. One of the first steps of the development project was to identify a potential commercial-scale process for CO₂ capture with solids and complete a high level assessment of the techno-economic feasibility; the results of this effort are the focus of this topical report. Based on the commercial-scale process a 1 megawatt (MW) pilot will be designed, built, and operated. Once pilot testing is complete a more in depth techno-economic analysis will be completed based on the pilot-scale test results.

This report includes both economic and technical considerations related to two potential CO₂ capture processes. For the purposes of this report the Fluor Econamine FG PlusSM (Econamine) process will serve as a benchmark to which the sorbent-based process is compared. The CO₂ capture processes were compared using the assumption that they were implemented at a 550 MW_{net} coal-fired power plant. An engineering firm was subcontracted to complete the economic assessment, during which it was ensured that all assumptions related to economics were identical for both processes. While the sorbent based capture process is still in the early stages of development there are potential economic and technical advantages, which are identified and explored in this report.

Preliminary Techno-Economic Assessment

Methodology

December 13, 2011

3.0 Methodology

3.1 PLANT AND PROCESS DESCRIPTIONS

A potential CO₂ capture process using solid sorbents was developed. Detailed engineering and an independent techno-economic assessment was completed by an external engineering firm. Ultimately, the widespread implementation of any capture technology will hinge on favorable operability and cost competitiveness. To determine whether the sorbent-based CO₂ capture process could offer economic benefits compared to the benchmark aqueous amine systems, the engineering firm completed a high level economic assessment and comparison of the two processes. Two different cost estimates were used to determine the cost of electricity increase associated with these CO₂ capture technologies. One cost approach was provided by the DOE,¹ while the other estimate was based upon a database of cost information received by the engineering firm in evaluating multiple CO₂ capture technologies for other retrofit projects.

In addition to costs, the operability, energy usage, and other performance factors were evaluated for the sorbent based CO₂ capture process. Potential improvements in the sorbent-based CO₂ capture process have been identified. The following sections describe the base power plant used for the analysis, the two CO₂ capture technologies, and the cost calculation methodologies utilized the engineering firm.

3.1.1 Power Plant Description

The techno-economic assessment was applied to the sorbent based CO₂ capture process as if it was implemented at the same power plant as the Econamine process in the cited DOE report.¹ The PC power plant was equipped with the best available control technology (BACT) to comply with environmental targets as summarized in Table 2-1. The flue gas desulfurization (FGD) system used for sulfur dioxide (SO₂) removal was a wet limestone forced oxidative absorber, producing gypsum as a byproduct. A fabric filter was used to control particulate matter (PM). The nitrogen oxides (NO_x) concentration was reduced using a combination of low NO_x burners (LNBs) and over-fire air (OFA) systems in the boiler as well as installing selective catalytic reduction (SCR) upstream of the air heater.

Table 2-1 Case Descriptions

Case	SO ₂ Removal	PM Control	NOx Control	CO ₂ Capture	CO ₂ Sequestration
Econamine	Wet FGD/Gypsum	Fabric Filter	LNBs with OFA and SCR	Amine Absorber	Off-site
Sorbent	Wet FGD/Gypsum	Fabric Filter	LNB with OFA and SCR	Solid Sorbent Fluidized Bed Adsorber	Off-site

Preliminary Techno-Economic Assessment

Methodology

December 13, 2011

Ambient conditions and characteristics of the comparison basis PC plant located for the generic plant in the Midwestern U.S. are listed in Table 2-2. These values were obtained from the DOE/NETL report.¹ Please refer to the complete report for a full description of the power plant.

Table 2-2 Site Ambient Conditions and Characteristics

Parameters	Description
Location	Greenfield, Midwestern U.S.
Elevation (ft)	0
Barometric Pressure (psia)	14.7
Design Ambient Temperature, Dry Bulb (°F)	59
Design Ambient Temperature, Wet Bulb (°F)	51.5
Design Ambient Relative Humidity, %	60
Topography	Level
Size (acres)	300 (30 acres for the PC plant)
Transportation	Rail
Steam Cycle – Single Reheat (psig/°F/°F)	2,400/1,050/1,050
Oxidant	Air
Coal Type	Illinois No. 6
High Heating Value (Btu/lb)	11,666 (as received)
Ash/Slag Disposal	Off-site
Water (H ₂ O)	Municipal (50%)/Groundwater (50%)
Access	Land locked (having access by rail and highway)
CO ₂ Storage	Compressed to 2,215 psia, transported 50 miles and sequestered in a saline formation at a depth of 4,055 feet

One potential advantage of solid sorbents is a reduction in the input of energy required for regeneration, which is discussed in detail in 3.3.1. Since both cases were evaluated on a common 550 MW_{net} output basis, the gross steam turbine output was varied to account for different auxiliary and heat power demand for the two cases. Thermal input generated by burning coal was kept sufficient to supply the steam and electricity demand for both PC plant and CO₂ capture facility (including the energy requirement for solvent/sorbent regeneration).

Preliminary Techno-Economic Assessment

Methodology

December 13, 2011

3.1.2 Aqueous Amine Benchmark CO₂ Capture Process (Econamine)

The Econamine process utilizes aqueous MEA with a proprietary corrosion inhibitor. The solvent captures and releases CO₂ via a temperature swing. To minimize the formation of heat stable salts (HSS) in the solvent, a SO₂ polishing unit using 20% (by weight) sodium hydroxide (NaOH) reduces the flue gas SO₂ concentration to 10 ppmv or less. The flue gas exiting the SO₂ polishing scrubber is pressurized by a fan to overcome a 2 psi pressure drop across the absorber.

The flue gas, with a temperature of approximately 135°F, enters the CO₂ capture equipment downstream of the SO₂ polishing unit and travels upward so that it contacts the MEA solvent counter-currently. At the bottom of the absorber, the rich MEA-based solution is collected and pumped to the regenerator. The CO₂ lean flue gas exits the top of the adsorber and is directed to the power plant stack from the top of the absorber. The CO₂ rich solution is preheated by the CO₂ lean solution from the solvent stripper in the lean/rich cross heat exchanger which significantly reduces the sensible heat requirements of the solvent-based CO₂ capture process. Downstream of the rich/lean heat exchanger the cooled CO₂ lean solution is directed to the absorber, whereas the heated rich solution is directed to the solvent stripper (i.e. regenerator) for CO₂ stripping/solvent regeneration using steam from the intermediate pressure/low pressure (IP/LP) crossover pipe of steam turbine. For sequestration purposes, the CO₂ product gas is compressed to 2,215 psia by a six-stage compressor and dehydrated by using triethylene glycol to lower the CO₂ temperature to 40°F.

There are several concerns related to the use of the aqueous MEA for post-combustion CO₂ capture (note that the list below is not considered to be comprehensive):

- Economic
 - Capital costs
 - Operating costs
- Technical
 - Energy Penalty
 - Sensible heat – partially addressed by implementation of the lean/rich heat exchanger
 - Latent heat of reaction
 - Latent heat of vaporization
 - Environmental Considerations
 - Water usage
 - Corrosivity
 - Fouling, poisoning, and oxidation
 - Volatile emissions

For these reasons it is important to develop alternative options for CO₂ capture. With continued development it is possible that the sorbent-based CO₂ capture process being developed could address several of the concerns listed.

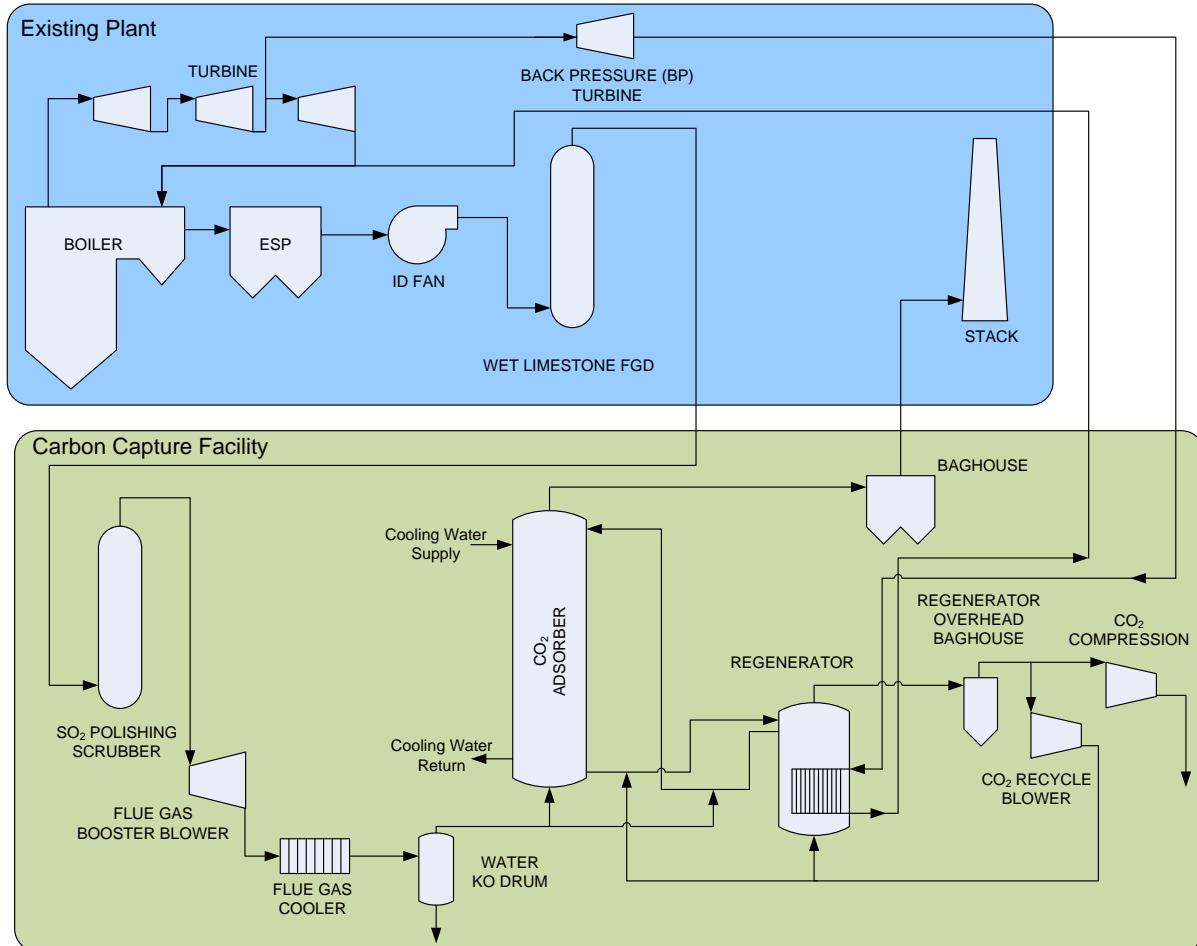
Preliminary Techno-Economic Assessment

Methodology

December 13, 2011

3.1.3 Solid Sorbent CO₂ Capture Process

The solid sorbent-based CO₂ capture process employs the use of a dry sorbent characterized by amine functionalization. Under the current project (DE-FE0004343), this technology will be tested at the 1 MW scale. However, because those tests have yet to be completed the high level preliminary techno-economic assessment was conducted using several assumptions based on public literature and laboratory testing, including:


- Particles physically resemble polystyrene beads with respect to size
- Particle density: 36.6 lb/ft³
- Heat of reaction is 587 Btu/lb CO₂ adsorbed
- Adsorption temperature is 104°F
- Regeneration temperature is 248°F
- Flue gas temperature after the SO₂ polishing unit is 135°F

The sorbent based process integrated into the PC plant is shown in Figure 2-1. Similar to the Econamine process, the sorbent-based CO₂ capture process is implemented immediately upstream of the power plant stack.

Preliminary Techno-Economic Assessment

Methodology

December 13, 2011

Figure 2-1 Process Flow Diagram of the Subcritical PC Power Plant Retrofitted with a Solid-Based CO₂ Capture Process

The sorbent-based CO₂ capture equipment configuration is provided in Figure 2-2. Flue gas is routed from the existing plant through ductwork to the CO₂ capture facility. The amine functionalization on the sorbent can react to form HSS similar to aqueous amines. Therefore, the SO₂ concentration in the flue gas before entering the CO₂ capture facility must be reduced to levels comparable to those observed in the Econamine process via a similar SO₂ polishing unit. It should be noted an alternative process design which does not require the use of a SO₂ polishing scrubber is also being evaluated. A flue gas blower is necessary to provide sufficient pressure to pass the flue gas through the CO₂ capture equipment, and return it via ductwork back to the stack. In the pilot unit, the flue gas blower increases the pressure of the flue gas by approximately 7 psi, which also causes the flue gas temperature to rise from 135°F to 219°F. It should be noted, the pilot plant is overdesigned to accommodate a series of tests which will be used to quantify the amount of sorbent needed to remove 90% CO₂. Only after the completion of testing, will the full-scale pressure drop of the adsorber be accurately estimated. The flue gas

Preliminary Techno-Economic Assessment

Methodology

December 13, 2011

is then directed through a cooler, where the temperature is decreased to 104°F. Water vapor is separated from the flue gas in a knockout (KO) drum.

After the KO drum, the cooled flue gas enters a three-stage fluidized bed adsorber. Each stage in the adsorber is equipped with a bundle of serpentine cooling tubes to maintain isothermal operation. The top bed of the adsorber is responsible for cooling the sorbent from the regeneration temperature (248°F) to the adsorption temperature (104°F), removing the heat generated from the exothermic reaction between CO₂ and the sorbent, and removing the exothermic heat due to the adsorption of the remaining moisture in the flue gas. The cooling coils in the bottom two fluidized beds are responsible only for removing the heat of reaction between CO₂ and the sorbent and the heat adsorption of moisture. Due to this added sensible heat requirement, the top bed depth is larger than the bottom two. The stages are separated by horizontal steel sections, which allow the flue gas entering at the bottom to flow through the adsorber and fluidize the sorbent. The treated flue gas is released at the adsorber top and routed to a series of cyclones followed by a baghouse, which collects any entrained sorbent. Pilot testing will be used to better understand the full-scale requirements for particulate removal downstream of the adsorber and regenerator modules.

The staged fluidized bed was selected for several key performance characteristics, including:

- Maximizing the driving force for mass transfer (i.e. CO₂ uptake) by approaching counter-current gas/solids contacting
- Isothermal operation
- Operation of fluidized bed reactors has been successfully demonstrated in other industries

Standpipes function as passages for sorbent to cascade down from one fluidized bed to the next (top to the bottom), while adsorbing CO₂ from the flue gas flowing upward. As the CO₂ rich sorbent is withdrawn at the bottom, lean sorbent is simultaneously added at the top of the adsorber. The amount of the rich sorbent discharged is controlled by a sorbent slide valve. The CO₂ rich sorbent is pneumatically conveyed with CO₂ to the regenerator via a rich sorbent riser.

In an isothermal (248°F) single-stage fluidized bed regenerator, the rich sorbent releases CO₂ by means indirect steam in an internal heat exchanger. Since the temperature of steam (306°F) extracted from IP/LP crossover section of the PC plant steam turbine is hotter than the regeneration temperature of the solid sorbent (248°F), the expansion of the steam through a back pressure (BP) turbine before entering the exchanger is required to prevent the thermal degradation of the amines impregnated in the solid sorbent and also to generate additional electricity. Saturated steam at 45 psia is obtained at the BP turbine exit where the temperature and pressure of the steam will adjusted accordingly to ensure the amine functional groups are not damaged during the regeneration process.

The higher temperature in the regenerator reverses the reaction between the amine functional groups and the CO₂, thus releasing the CO₂ into the gas phase. The released CO₂ exits the top of the regenerator and is directed through a baghouse. A portion of the CO₂ is routed to the

Preliminary Techno-Economic Assessment

Methodology

December 13, 2011

CO₂ recycle blower, while the remaining CO₂ is sent to the compression plant similar to the Econamine process. The CO₂ recycle blower provides enough pressure for the CO₂ to promote adequate fluidization inside the regenerator and to convey sorbent from the adsorber discharge to the regenerator in the rich sorbent riser. To complete the cycle, the CO₂ lean sorbent from the regenerator is transferred via a sorbent riser, using the conveying media of CO₂ lean flue gas. Four adsorption/regeneration trains are required to process all the flue gas being exhausted from a 550 MW_{net} subcritical coal fired power plant.

Preliminary Techno-Economic Assessment

Methodology

December 13, 2011

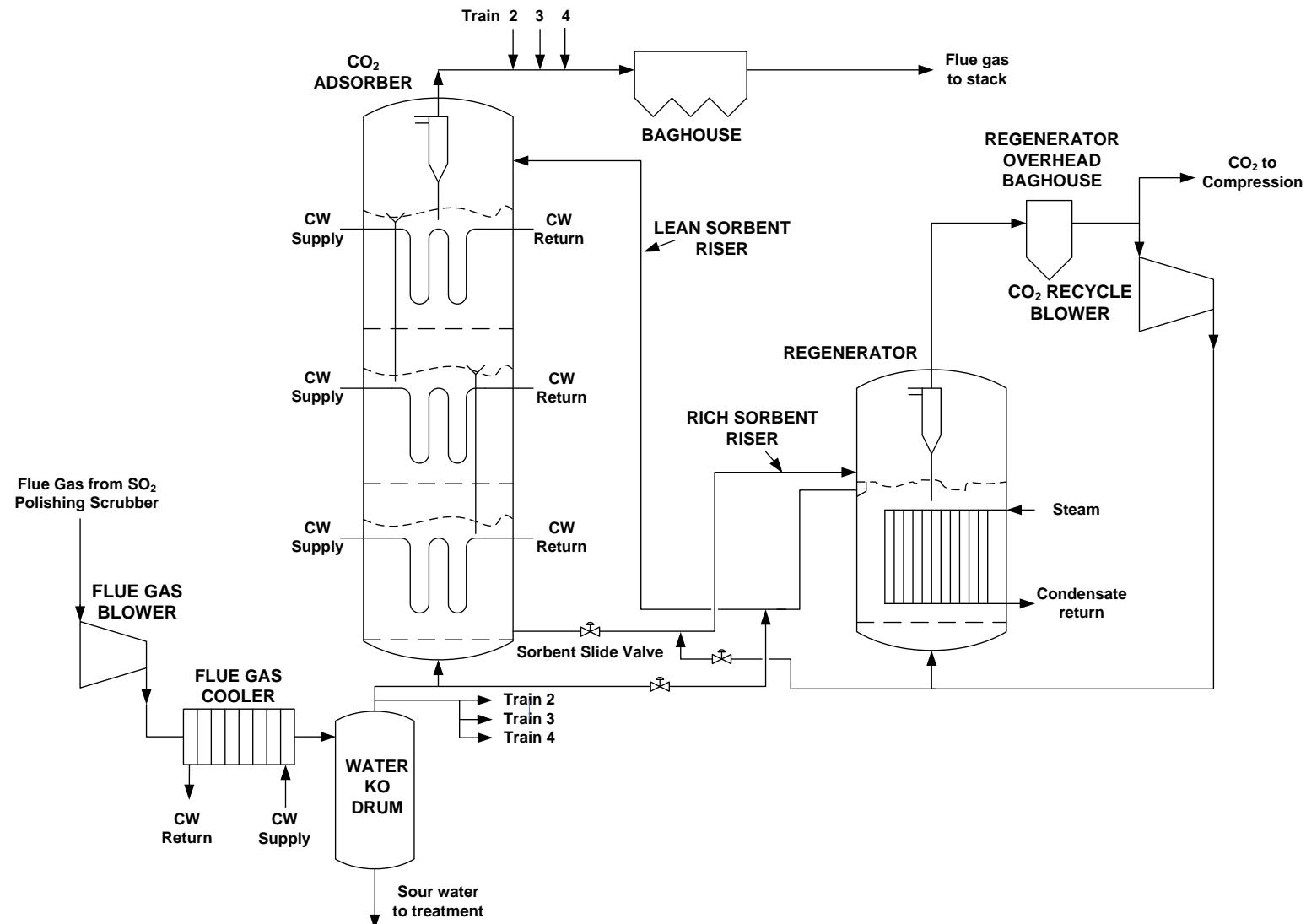


Figure 2-2 Process Flow Diagram of the Solid-Based CO_2 Capture Process

Preliminary Techno-Economic Assessment

Methodology

December 13, 2011

3.2 ECONOMIC ASSESSMENT METHODOLOGY AND ASSUMPTIONS

The Econamine cost and operating information was provided in a report issued by the DOE NETL.¹ In that report the baseline coal-fired power plant with no CO₂ capture is referred to as Case 9 and the same power plant with CO₂ capture using the integrated Econamine process is referred to as Case 10. To ensure a fair comparison between the Econamine process and the sorbent based process, the configuration/conditions (except flow rate) of peripheral units outside the CO₂ capture battery limits were identical, unless some modifications were necessary to meet the requirements of the sorbent-based process. For both cases the power plant generated the same amount of net electricity, 550 MW. Because the energy requirements for the two CO₂ capture processes are different the thermal input to the overall power plant was varied until the net power output was 550 MW.

For each CO₂ capture process two different approaches were used to develop cost estimates. The first approach was based on the methodology described in a report issued by the DOE, entitled "Cost and Performance Baseline for Fossil Energy Plants – Volume 1: Bituminous Coal and Natural Gas to Electricity, Revision 2".¹ The cost estimates based on the DOE methodology are referred to as Econamine1 and Sorbent1. To develop the second cost assessment the engineering firm used vendor quotes and history of past projects from their extensive database. The cost estimates based on engineering quotes and experience are referred to as Econamine2 and Sorbent2.

3.2.1 Capital Costs

As determined by the Association for the Advancement of Cost Engineering International (AACE), the level of cost accuracy for this conceptual design is defined by a Class IV/V estimate, which is approximately in a range of ± 50 percent. In order to increase the accuracy of the capital cost estimate, pilot testing should be completed in order to validate numerous process assumptions made in the economic assessment. Pilot data will be used to accurately size the full-scale vessels which will have a proportional impact on the associated capital costs component of the economic assessment. The four levels of capital cost and the estimate basis used in this analysis are given in Table 3-1. Each "level" flows through to the next. The bare erected cost (BEC) is the cost of process equipment plus other costs (e.g. cost of supporting facilities and direct/indirect labor costs related to construction and installation).

Preliminary Techno-Economic Assessment

Methodology

December 13, 2011

Table 3-1 Capital Cost Structure

Level	Cost	Estimate Basis
Bare Erected Cost (BEC) – Overnight cost expressed in base year (2011) dollars	<ul style="list-style-type: none"> - Process Equipment - Support Facilities (e.g. Offices, Labs) - Direct and Indirect Labor for Construction and/or Installation 	
Total Plant Cost (TPC) – Overnight cost expressed in base year (2011) dollars	<ul style="list-style-type: none"> - BEC - Engineering, Procurement and Construction (EPC) Contractor Services - Process Contingency - Project Contingency 	<ul style="list-style-type: none"> ~ 9.4% of BEC ~ 20% of CO₂ Capture Facility Capital Cost ~ 15% of the Sum of BEC, EPC and Process Contingency
Total Overnight Cost (TOC) – Overnight cost expressed in base year (2011) dollars	<ul style="list-style-type: none"> - TPC - Preproduction - Inventory Capital - Initial Cost - Land - Owner's Costs - Financing Costs 	<ul style="list-style-type: none"> ~ 3% of TPC ~ 2% of TPC 15% of TPC 2.7% of TPC
Total As-Spent Cost (TASC) – Expressed in mixed-year current dollars over the capital expenditure period	<ul style="list-style-type: none"> - TOC - Escalation/Interest During Capital Expenditure Period 	1.140 Multiplier for High Risk Investor-Owned Utility (IOU) Over Five-Year Capital Expenditure Period

Four cost assessments were completed and are described in this report; the cases are listed in Table 3-2. The costs for Econamine1 were taken directly from the DOE report except that they were scaled from 2007 to 2011 U.S. dollars. Based on the DOE report, the power plants for where the Econamine and sorbent-based CO₂ capture processes were both 550 MW_{net}. Because the energy penalty for the two processes is not the same, the gross power plants were different in size. Therefore, the power plant costs were calculated for cases Sorbent1 and Sorbent2 (the power plant costs for Econamine1 and Econamine2 were provided in the DOE report.¹) For the sorbent cases the capital costs of the PC plant and CO₂ compression unit were obtained by linearly scaling the costs of the Econamine process (escalated from 2007 to 2011

Preliminary Techno-Economic Assessment

Methodology

December 13, 2011

US dollars) proportional to coal usage (i.e. gross power plant size). Total inflation from June 2007 to February 2011 was assumed to be 6.22%.

Table 3-2 Cost Methodology	
Case	Cost Estimation Method for BEC of Capture Facility
Econamine1	DOE Methodology (Indirects as per DOE)
Econamine2	Vendor Quotes/Actual Pricing Information (Indirects Based on Experience)
Sorbent1	DOE Methodology (Indirects as per DOE)
Sorbent2	Vendor Quotes/Actual Pricing Information (Indirects Based on Experience)

The cost of the process equipment for the sorbent-based CO₂ capture process, including the SO₂ polishing unit and the BP turbine, were estimated using a combination of vendor quotes and actual pricing information from the engineering firm's internal database. Items specifically excluded from this capital cost estimate are the same as those in the Econamine1 and Econamine2 estimates: taxes, site specific considerations, overtime, and extra premiums due to an EPC contract.

The core equipment costs for Econamine1 and Econamine2 and Sorbent1 and Sorbent2 are identical, respectively, but the method of calculating indirects for the final BEC cost of the CO₂ capture facility differs. The different cost calculation cases and their respective methodologies are listed in Table 3-2. The "1" options utilize the DOE method to build up costs and indirects¹. The "2" options begin with the same core costs, but build up the estimate using a more comprehensive estimate of indirects, based on recent vendor quotations and construction experience.

Preliminary Techno-Economic Assessment

Methodology

December 13, 2011

3.2.2 Operating and Maintenance Cost Estimates

The operating and maintenance (O&M) costs for cases Sorbent1 and Sorbent2 were developed based on the following constraints and assumptions:

Fixed O&M Costs

- Annual operating labor cost/administrative and support labor were equal to the escalated costs of Econamine1 as provided by the DOE¹
- Maintenance labor cost/property taxes and insurance were obtained by linearly scaling the escalated costs of Econamine1 proportional to the total plant cost (TPC)

Variable O&M Costs

- An 85% capacity factor was assumed
- Water consumption was estimated using the Econamine1 calculation method.¹
- Maintenance material cost/annual cost of makeup (MU) water and water treatment (WT) chemicals are obtained by linearly scaling the escalated costs of Econamine1 proportional to the TPC.
- Annual costs of limestone/ammonia/SCR catalyst/fly ash and bottom ash disposal were obtained by linearly scaling the escalated costs of Econamine1 proportional to the gross power plant output
- Initial and annual costs of sodium hydroxide (NaOH)/sulfuric acid (H₂SO₄) were obtained by linearly scaling the escalated costs of Econamine1 A proportional to the power plant gross output. However, it was assumed that the SO₂ concentration must be less than 1 ppm for the solid sorbent-based process. Therefore, the annual NaOH cost was doubled to reflect the greater consumption.
- Consumption of NaOH/Lime/H₂SO₄ for additional waste water treatment was based on the cooling water demand of the CO₂ capture facility.
- A sorbent attrition rate of 0.0025% per cycle (attrition) was assumed. No loss from leakage was taken into account.
- The cost of the sorbent was estimated at US \$5/lb.
- Potential revenue from selling CO₂ product was excluded.

3.2.3 CO₂ Transport, Storage, and Monitoring Costs

Supercritical CO₂ from the sorbent based capture facility is transported via pipeline and injected into a deep saline formation for sequestration. Based on the assumptions used to model the transport, storage and monitoring (TS&M) cost for Econamine1, the CO₂ TS&M costs for cases Sorbent1 and Sorbent2 linearly depend on the CO₂ removal rate. The cost for TS&M was calculated to be approximately US \$22 M for both cases.

3.2.4 Cost of Electricity

The methodology provided by DOE/NETL was used to calculate a cost of energy (COE) and a leveled COE (LCOE)¹ for case Sorbent1 (note that Econamine1 was taken directly from the DOE report with inflation taken into account). Both COE and LCOE are the revenue received by

Preliminary Techno-Economic Assessment

Methodology

December 13, 2011

the generator per net megawatt-hour (MWh) during the PC plant's first year of operation. The difference between the COE and LCOE is that the COE escalates thereafter at a nominal annual rate equal to the general inflation rate of three percent, whereas the LCOE escalates thereafter at a zero nominal annual inflation rate. The calculated COE and LCOE can be used to provide an internal rate of return on equity (IRROE) when the calculation is conducted over the entire economic analysis period using the assumptions and conditions listed Table 3-3.

Table 3-3 Global Economic Assumption	
Parameter	Value
Taxes	
Income Tax Rate	38% (Effective 34% Federal, 4% State)
Capital Depreciation	20 years, 150% declining balance
Investment Tax Credit	0%
Tax Holiday	0 years
Contracting and Financing Terms	
Contracting Strategy	Engineering, Procurement, Construction and Management (EPCM)
Type of Debt Financing	Non-Recourse
Repayment Term of Debt	15 years
Grace Period on Debt Repayment	0 years
Debt Reserve Fund	None
Analysis Time Periods	
Capital Expenditure Period	5 years
Operation Period	30 years
Economic Analysis Period	35 years
Treatment of Capital Costs	
Capital Cost Escalation During Capital Expenditure Period (nominal annual rate)	3.6%
Distribution of TOC Over Capital Expenditure Period (before escalation)	5-year period: 10%, 30%, 25%, 20%, 15%
Working Capital	Zero for all parameters
% of TOC that is Depreciated	100%
Escalation of Operating Revenues and Costs	
Escalation of COE (revenue), O&M Costs and Fuel Costs (nominal annual rate)	3.0%

Preliminary Techno-Economic Assessment

Methodology

December 13, 2011

Several assumptions were made to complete the cost assessment. Details on finance structures of the PC plant with CO₂ capture, assuming a high risk investor-owned utility (IOU), are provided in Table 3-4.

Table 3-4 Financial Structure for High Risk IOU				
Parameters	%	Current (Nominal) Dollar Cost	Weighted Current (Nominal) Cost	After Tax Weighted Cost of Capital
Debt	45	5.5%	2.475%	
Equity	55	12%	6.6%	
Total	100		9.075%	8.13%

The COE was calculated using equation 1, which was published in the DOE report.¹ The various costs used in this equation were expressed in base-year dollars. The base year, defined as the first year of capital expenditure, for the purposes of the cost calculations the base year was assumed to be 2011. Since the COE, O&M costs, and fuel costs escalate thereafter at three percent, all costs expressed in first-year-of-operation dollars are equivalent to base-year costs. As a result, the first-year COE is also equivalent to the base year COE.

$$\text{COE} = \frac{(CCF)(TOC) + OC_{\text{FIX}} + CF \cdot OC_{\text{VAR}}}{CF \cdot MWh} \quad (1)$$

where

COE = revenue received by the generator per net megawatt-hour during the PC plant's first year of operation (but expressed in base-year dollars, \$/MWh or equivalent to mills/kWh)

CCF = capital charge factor, which was 0.124 for high risk IOU, 5-year capital expenditure period

TOC = total overnight cost, expressed in base-year dollars

OC_{FIX} = the sum of all fixed annual operating costs, expressed in base year dollars

OC_{VAR} = the sum of all variable annual operating costs, including fuel at 100% capacity factor, expressed in base year dollars

CF = plant capacity factor, assumed to be constant over the operational period

MWh = annual net megawatt-hours of power generated at 100% capacity factor

Preliminary Techno-Economic Assessment

Methodology

December 13, 2011

3.3 TECHNICAL ASSESSMENT METHODOLOGY AND ASSUMPTIONS

There are several key technical/performance parameters that can also be used to compare the Econamine CO₂ capture process to the sorbent-based CO₂ capture process.

3.3.1 Energy Penalty

For both CO₂ capture processes thermal input (mainly for the regeneration energy) and electricity (for flue gas blowers, CO₂ compression, pumps, etc.) are required for the overall process. For the Econamine process the required electricity and thermal input required was provided in the DOE report.¹ The sorbent-based energy requirements were calculated by the project team based on the conceptual design shown in Figure 2-2. Equation 2 can be used to calculate a non-comprehensive heat duty. Although there are many more terms associated with the actual regeneration energy, only the largest terms are considered in this evaluation. This equation can be used for two objectives: 1) to compare the overall regeneration energy for the two processes and 2) to identify potential energy savings that can be achieved after further research and development of the sorbent-based CO₂ capture process.

$$Q_{regen} = mC_p\Delta T + \Delta H_{rxn} + \Delta H_{vap} \quad (2)$$

where

Q_{regen}	=	Regeneration heat duty, Btu/lb CO ₂ captured
m	=	The inverse of the solvent/sorbent delta loading (lb sorbent or solvent per lb CO ₂ captured)
C_p	=	Solution/sorbent specific heat, Btu/lb·°F
ΔT	=	The temperature difference between adsorption and regeneration
ΔH_{rxn}	=	The enthalpy of reaction between the amine in solution or on the sorbent, Btu/lb CO ₂
ΔH_{vap}	=	The enthalpy associated with the vaporization of water, Btu/lb CO ₂

3.3.2 Environmental Considerations

The objective of the implementation of CO₂ capture is to mitigate the environmental effects related to excessive anthropogenic CO₂ emissions. It is important that the selected CO₂ capture process minimizes all environmental concerns, such as waste and fugitive emissions. There are two potential environmental concerns where the sorbent based CO₂ capture process may offer significant environmental benefits over the Econamine process. One benefit of utilizing a dry sorbent for CO₂ capture is that this material has demonstrated a lower specific heat compared to a solution of MEA in water, which results in a lower amount of sensible heat capacity required to change the temperature of the material. Therefore, it is expected that the water usage for creating the CO₂ capture medium (none for the dry process) and the cooling

Preliminary Techno-Economic Assessment

Methodology

December 13, 2011

water requirements will be less. This could be more important at some coal-fired power plants where water resources are increasing in short supply. In addition, the volatile emission of amines has also been considered and is discussed in the Section 4.2.2.

Preliminary Techno-Economic Assessment

Results

December 13, 2011

4.0 Results

4.1 ECONOMIC ASSESSMENT AND COMPARISON

In several key areas the engineering firm concluded that whether the basis for the capital cost estimates were provided from either DOE or the engineering firm the sorbent based CO₂ capture resulted in lower cost of electricity increases than the benchmark Econamine based CO₂ capture. The following list was generated to highlight the comparison of the key economic considerations:

- Capital costs, fuel costs and CO₂ TS&M costs of the sorbent-based process were lower than those of the Econamine case, respectively. Specifically, to generate 550 MW_{net} with 90% CO₂ capture, the gross power plant was smaller for when sorbent-based CO₂ capture was used due to the lower thermal input required to operate the CO₂ capture facility.
- The O&M costs of the sorbent-based CO₂ capture were higher than those of the Econamine process, mostly as a result of a high sorbent cost and consumption for an initial fill. With the data that will be collected during 1 MW pilot testing it may be possible to reduce the overall mass of sorbent required in the system and, thus, reduce the initial fill.
- The electric requirements for the compression of CO₂ is significant for both cases. However, because the gross power plant with sorbent-based capture is smaller, less CO₂ must be compressed and the related costs are nominally less. In both CO₂ capture processes blowers are used to overcome the system pressure drop.
- COE/LCOE of Sorbent1 and Sorbent2 cases are lower than those of Econamine1 and Econamine2, respectively, due to a lower capital costs, fuel costs, and CO₂ TS&M costs, offsetting a higher O&M costs.
- Case Sorbent1 resulted in the lowest COE and LCOE, 113.3 and 143.6 mills/kWh, respectively.
- Based on the cost methodology used for calculating cost of electricity, the order of parameters from the largest to the smallest contribution to the COE was:
For Cases A1 & A2: *Capital > Fuel > Fixed O&M > Variable O&M > CO₂ T&SM*
For Cases B1 & B2: *Capital > Fuel > Variable O&M > Fixed O&M > CO₂ T&SM*

In general, a PC plant with the solid sorbent-based CO₂ capture will demonstrate better technical and economic performance than using an aqueous amine capture process as described in the DOE/NETL report. Compared with the PC plant without CO₂ capture published in the DOE Final Report¹, the PC plant with the solid sorbent technology results in a COE increase by 80 percent from 62.9 (escalated to 2011 dollars) to 113.3 mills/kWh. Recall these estimates are based upon a Class IV/V estimate which have an accuracy of +/-50%. Results from pilot testing should be used to accurately size the equipment required for full-scale. The details from the performance and economic comparison are provided in Table 4-1. Although the

Preliminary Techno-Economic Assessment

Results

December 13, 2011

costs listed in Table 4-1 are greater than the targets identified by the DOE, there are several potential means to significantly lower these costs, which are discussed in Section 5.0.

Preliminary Techno-Economic Assessment

Results

December 13, 2011

Table 4-1 Performance and Economic Comparison*

Description	Unit	Econamine1 BEC as per DOE	Econamine2 BEC based on experience	Sorbent1 BEC as per DOE	Sorbent2 BEC based on experience
1. Gross Power Output	kW _e	672,700	672,700	656,125	656,125
2. Electrical Output – BP Turbine	kW _e	0	0	47,369	47,369
3. Auxiliary Load Summary	kW _e	122,740	122,740	153,534	153,534
• PC Plant	kW _e	51,550	51,550	50,280	50,280
• SO ₂ Polishing Unit	kW _e	0	0	2,230	2,230
• CO ₂ Capture Facility	kW _e	22,400	22,400	57,744	57,744
• Compression Unit	kW _e	48,790	48,790	42,858	42,858
4. Net Power Output	kW _e	549,960	549,960	549,960	549,960
5. Thermal Input	kW _{th}	2,102,644	2,102,644	1,865,320	1,865,320
• Gross Output – PC Plant	kW _{th}	1,513,467	1,513,467	1,476,175	1,476,175
• Sorbent Regeneration	kW _{th}	589,177	589,177	389,145	389,145
6. Coal Flow Rate	lb/hr	614,994	614,995	545,581	545,581
7. Coal HHV	Btu/lb	11,666	11,666	11,666	11,666
8. Net Plant HHV Efficiency	%	26.2	26.2	29.5	29.5
9. Net Plant HHV Heat Rate	Btu/kWh	13,046	13,046	11,573	11,573
10. Net kWh @ 85% Capacity Factor	kWh-net	4,095,002,160	4,095,002,160	4,095,002,160	4,095,002,160
11. CO ₂ Capture Profile					
• CO ₂ Produced	lb/hr	1,459,838	1,459,838	1,295,067	1,295,067
• CO ₂ Captured	lb/hr	1,313,960	1,313,960	1,165,561	1,165,561
• CO ₂ Emission	lb/hr	145,878	145,878	129,507	129,507
12. Circulating Cooling Water Demand [†]	gpm	540,000	540,000	399,276	399,276
• CW Demand – PC Plant	gpm	200,000	200,000	195,072	195,072
• CW Demand – Capture Facility	gpm	340,000	340,000	204,204	204,204
13. Raw Water Consumption	1000 gal/D	8,081	8,081	6,460	6,460
14. CO ₂ Capture Facility					
• Solvent Regeneration Energy	Btu/lb CO ₂	1,530	1,530	1,139	1,139
• Total Energy Requirement	MMBtu/hr	2,010	2,010	1,328	1,328
• Steam Extraction Flow	lb/hr	2,219,454	2,219,454	1,429,730	1,429,730
• Amount of Solid Sorbent	lb/hr	N/A	N/A	16,610,220	16,610,220

[†] Assumed maximum circulating CW demands required by the PC plant and the CO₂ capture facility for Cases Econamine1 and Econamine2.

Preliminary Techno-Economic Assessment

Results

December 13, 2011

Table 4-1 Performance and Economic Comparison*

Description	Unit	Econamine1 BEC as per DOE	Econamine2 BEC based on experience	Sorbent1 BEC as per DOE	Sorbent2 BEC based on experience
A. Capital Cost					
1. Bare Erected Cost	\$	1,317,434,998	1,797,563,381	1,204,518,214	1,547,066,531
• PC Plant	\$	974,502,282	974,502,282	953,857,228	958,826,649
• CO ₂ Capture Facility	\$	302,505,839	782,634,223	215,149,481	552,378,840
• CO ₂ Compression	\$	40,426,876	40,426,876	35,511,505	35,861,042
2. Total Plant Cost	2011\$	1,719,001,555	2,431,552,345	1,557,371,701	2,064,504,368
3. Total Plant Cost	2011\$/kW	3,126	4,421	2,832	3,754
4. Total Overnight Cost	2011\$	2,108,905,287	2,981,487,193	1,927,783,145	2,551,290,413
5. Total Overnight Cost	2011\$/kW	3,835	5,421	3,505	4,639
6. Total As-Spent Cost	2011\$	2,404,152,028	3,398,895,400	2,197,672,785	2,908,471,070
7. Total As-Spent Cost	2011\$/kW	4,372	6,180	3,996	5,288
B. Operating & Maintenance Cost		Initial Cost	Annual Cost	Initial Cost	Annual Cost
1. Total Fixed Operating Costs	\$	56,784,795		75,593,565	
2. Total Variable Operating Costs	\$	2,881,127	39,827,356	2,881,127	47,626,023
• Maintenance Material Cost	\$		16,617,203		23,492,742
• Consumables	\$	2,881,127	23,210,153	2,881,127	24,133,281
C. Fuel Costs	\$	92,862,624	92,862,624	81,578,386	82,381,357
D. CO₂ TS&M Costs	\$	25,228,047	25,228,047	22,160,652	22,378,778
E. COE contribution (2011\$)	 mills/kWh	116.3	149.2	113.3	133.3
• Capital Costs	mills/kWh	63.9	90.3	58.4	77.3
• Fixed Operating Costs	mills/kWh	13.9	18.5	12.9	16.2
• Variable Operating Costs	mills/kWh	9.7	11.6	16.6	14.3
• Fuel Costs	mills/kWh	22.7	22.7	19.9	20.1
• CO ₂ T&SM Costs	mills/kWh	6.2	6.2	5.4	5.5
F. LCOE (2011\$)	 mills/kWh	147.7	189.1	143.6	169.0

Preliminary Techno-Economic Assessment

Results

December 13, 2011

4.2 TECHNCIAL ASSESSMENT AND COMPARISON

While the overall cost of electricity increase due to CO₂ capture is important, there are other key performance parameters which also must be taken into consideration. Examples of such parameters include energy usage, water requirements, and overall environmental impacts.

4.2.1 Energy Penalty

There are two main sources of energy penalty for the Econamine and sorbent-based CO₂ capture processes, electricity (i.e., parasitic power consumption) and thermal (steam). In both cases electricity is used for flue gas blowers (to overcome the absorber/adsorber pressure drop), CO₂ compression, and cooling water pumps. When the engineering firm compared the overall energy penalty for the two processes, they concluded that the sorbent-based process B resulted in a lower energy penalty. Specifically, they found that the net plant efficiency when solid sorbent CO₂ capture is employed is 29.5 percent, which is a 12.6 percent improvement compared to the benchmark Econamine technology.

To understand why the thermal input for the sorbent-based CO₂ capture process is lower than that of the Econamine process, it is helpful to consider the regeneration heat duty (Q_{regen}) defined in equation 2. Based on the DOE report the total Econamine Q_{regen} is 1530 Btu/lb CO₂ captured. On the right hand side of equation 2 are the key terms contributing to the Q_{regen} . The first term is related to the heat input required to increase the sorbent or solvent from the adsorption temperature to the regeneration temperature. The term m is the inverse of the delta CO₂ loading. Based on mass balances provided in previous DOE reports reported a delta CO₂ loading for aqueous MEA system to be approximately 4.5 lb CO₂/100 lb fresh solvent.¹ It is assumed that the specific heat of for aqueous MEA is approximately the same as that of pure water, which is 1.0 Btu/lb·°F. The absorption and regeneration temperatures of the Econamine process are approximately 122°F and 243°F, respectively.⁴ Therefore, the difference between the absorption temperature and the regeneration temperature (ΔT) is 120°F. The sensible heat input for the aqueous MEA process is calculated, it is (100 lb fresh solvent/4.5 lb CO₂)*(1.0 Btu/lb·°F)*(120°F) = 2670 Btu/lb CO₂ captured. However, ΔT in equation 2 is only the temperature where active heat input is required to cause a temperature change. The Econamine process employs a lean/rich heat exchanger to reduce the energy requirement due to sensible heat. Most of the sensible heat from the lean solvent leaving the regenerator is transferred to the rich sorbent before it enters the regenerator. Based on public literature, it is accepted that this lean/rich heat exchanger can be operated at an approach temperature (the temperature difference between the lean solvent exiting the heat exchanger and the rich solvent entering it) of approximately 18°F.³ The sensible heat requirement for the Econamine process is then calculated to be (100 lb fresh solvent/4.5 lb CO₂)*(1.0 Btu/lb·°F)*(18°F) = 400 Btu/lb CO₂ captured. Insufficient information was provided in the DOE report to calculate the exact values of the second and third terms in equation 2. However, using estimates from public literature a general estimate of these terms was developed. The second term on the right hand side of equation 2, ΔH_{rxn} , is the enthalpy generated due to the exothermic reaction with CO₂. For the Econamine process it is assumed to be 700 Btu/lb CO₂ captured.⁵ The last term on the right hand side of equation 2 is related to the vaporization of water. From literature, this value for

Preliminary Techno-Economic Assessment

Results

December 13, 2011

aqueous MEA is approximately 290 Btu/lb CO₂ captured.⁵ Therefore, the total Q_{regen} ~ 1400 Btu/lb CO₂, which is less than the reported 1530 Btu/lb CO₂ (meaning that additional heat duty requirements should be taken into account or our calculations were not conservative enough).² If Q_{regen} is calculated without the lean/rich heat exchanger the total energy penalty is 2670 + 700 + 290 = 3660 Btu/lb CO₂. Therefore, the presence of the lean/rich heat exchanger reduced the overall regeneration energy duty by approximately 60%.

For solid sorbents with no heat recovery and no lean/rich heat exchanger, the sensible heat can be calculated similarly, (100 lb fresh sorbent/7.0 lb CO₂)*(0.25 Btu/lb·°F)*(144°F) = 514 Btu/lb CO₂. The sensible heat duty for the sorbent based process is 80% lower than that of the aqueous amine process without heat recovery. The enthalpy of reaction (ΔH_{rxn}), which will be confirmed through 1 MW pilot testing, is projected to be approximately 587 Btu/lb CO₂.⁴ In the past the enthalpy of vaporization was expected to be negligible for dry sorbents. However, different sorbents will exhibit varied behavior regarding moisture uptake. While some sorbents may be hydrophobic, the sorbent used as the basis to complete the cost and technical assessment will remove moisture from the flue gas and release it in the regenerator. On a mass basis the moisture removed from the flue gas is significantly less than that of the CO₂, but the enthalpy of vaporization term (ΔH_{vap}) can not be neglected in the energy balance. Using laboratory data generated to date, the expected delta loading for moisture on the sorbent will be approximately 0.9 lb H₂O/lb fresh sorbent. Assuming that the enthalpy for the release of moisture from the sorbent is the same as that the vaporization of water, ~970 Btu/lb H₂O,⁶ this can be converted to 235 Btu/lb CO₂. Therefore, the regeneration heat duty for the sorbent-based CO₂ capture process is 514 + 587 + 235 = 1340 Btu/lb CO₂. Even without the presence of heat recovery the CO₂ capture process offers a lower regeneration heat duty. If it is deemed to be economically feasible to implement heat recovery for the sorbent-based process then the regeneration heat duty can be reduced. It is important to note that the heat duty calculated for the sorbent-based CO₂ capture process is based entirely on laboratory experiments and public literature. Operation of the 1 MW pilot is extremely important to determining the actual values of the heat duty and other key operating parameters. A series of tests will be performed during pilot testing to quantify the latent heat of reaction for both CO₂ and H₂O adsorption. Clearly, this information is critical to accurately calculate the energy requirements for solid sorbent based CO₂ capture.

The thermal input requirements for the Econamine and the sorbent-based processes are provided in Figure 3-1. As expected, due to the lower regeneration heat duty the overall thermal input is lower for the sorbent based process.

Preliminary Techno-Economic Assessment

Results

December 13, 2011

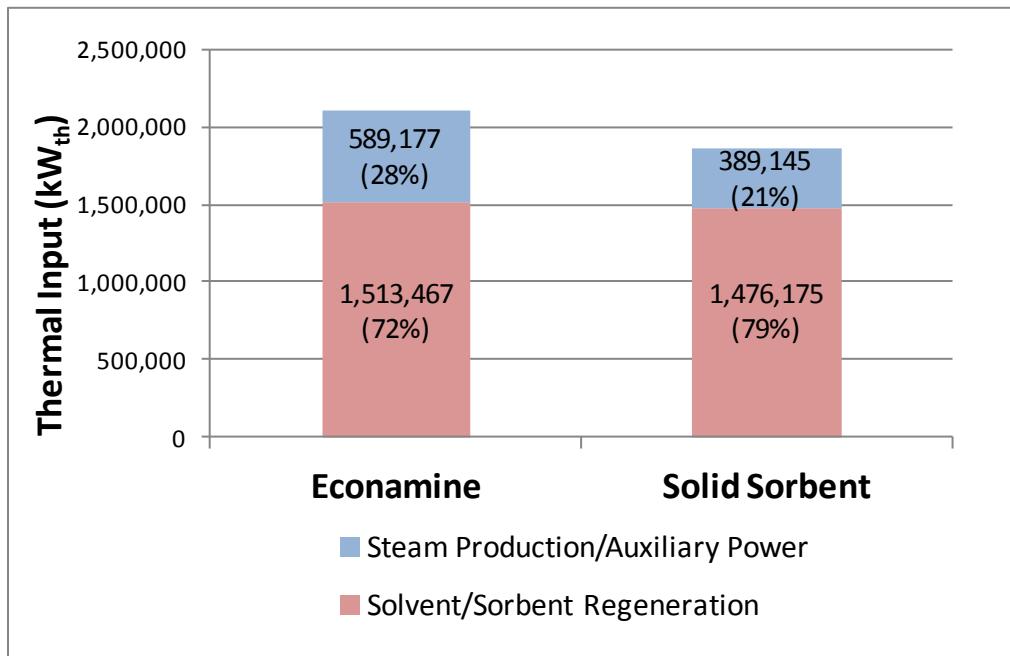
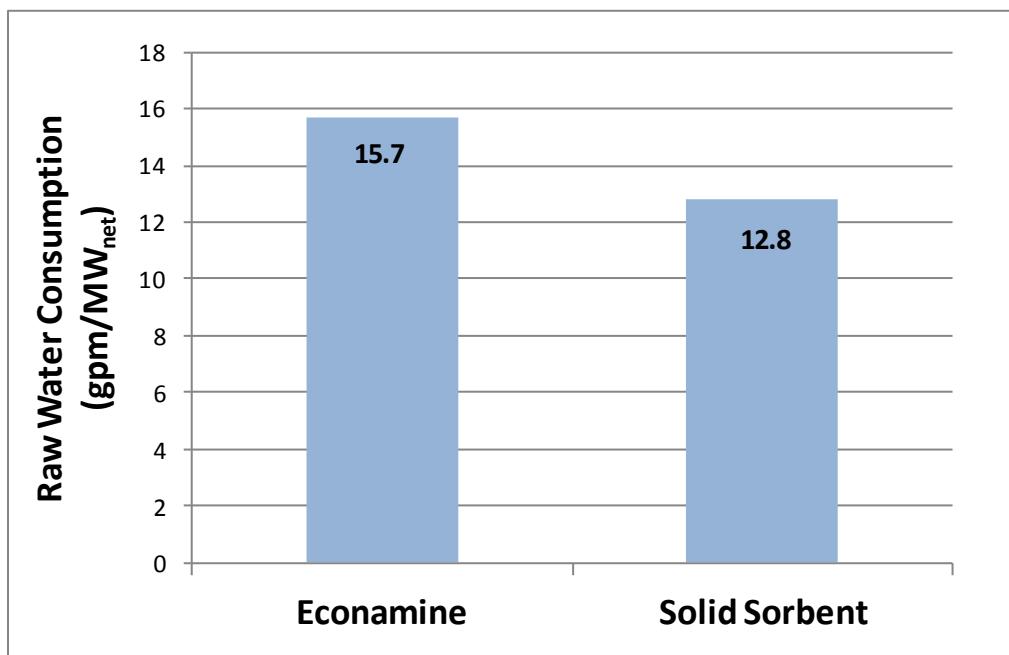


Figure 3-1 Thermal Input

4.2.2 Environmental Considerations


The coal supply to the PC plant is linearly related to the power plant gross thermal output. Because the gross thermal output for the power plant with sorbent-based CO₂ capture is 20 percent less than that of the Econamine process less coal is burned and thus, less mercury (Hg), SO₂, SO₃ (sulfur trioxide), NO_x, etc. will be created. This beneficial environmental impact must also be taken into consideration when comparing the Econamine and the sorbent based processes.

Similarly, the raw water consumption of the solid based process (~6.5M gallon/D) is 20 percent lower than that of the Econamine process (~8.1M gallon/D). This can be attributed to the fact that the gross power plant is smaller when the sorbent-based CO₂ capture process is implemented. Because water is likely to become an increasingly scarce resource in the future, less water consumption may be an important property for the sorbent based process. The calculation methodology from the DOE report¹ is used to produce water use and costs. Results on the raw water consumption are shown in Figure 4-1. As per the DOE report¹, it was assumed that 50 percent of the raw water is sourced from groundwater at no cost.

Preliminary Techno-Economic Assessment

Results

December 13, 2011

Figure 4-1 Raw Water Utilization

Another significant environmental concern is related to the volatile emissions of amines. At the expected regeneration temperatures the vapor pressure of 3.5 M aqueous MEA is approximately 0.0725 psi. Although the sorbent has been degraded in the laboratory using excessively high temperatures, no measureable volatile emissions were recorded using a mass spectrometer. It is possible that the amine on the selected sorbent remains covalently attached to the surface of the substrate even when being converted to urea, heat stable salts, or being otherwise degraded.

Another environmental consideration is related to potential spills. If the proposed sorbent were to spill either in transport or at the power plant, unlike an aqueous solution the sorbent will not seep into the soil. The sorbent could more easily be cleaned up without serious environmental consequences. The sorbent is not considered hazardous by the OSHA Hazard Communication Standard, thus waste disposal should be in accordance with the plants locale environmental controls.

Preliminary Techno-Economic Assessment

Discussion and Conclusions

December 13, 2011

5.0 Discussion and Conclusions

Two potential post-combustion CO₂ capture processes have been compared; the Econamine process employs aqueous MEA and the other process is a process based on an aminated sorbent under development. The two options were compared with respect to cost, energy penalty, and environmental performance.

The sorbent-based CO₂ capture process resulted in a lower energy penalty and lower overall increase in the cost of electricity. However, the improvements versus aqueous MEA are not enough to meet the DOE's COE goals. With further improvements it is possible that the sorbent-based CO₂ capture process may be able to make significant progress towards the DOE goals. Potential areas of improvement include:

- Heat integration
 - Heat recovery between the rich and lean sorbent – this must be accomplished in such a way that the energy recovery is significant enough to offset the added capital costs for the heat exchangers
 - Integration within the power plant – using heat from the power plant or the CO₂ compression system to reduce the overall energy penalty
- Reduce capital costs – for the preliminary conceptual design discussed in this report several key assumptions were made. It is possible with the data from the 1 MW pilot that the overall process size and complexity could be reduced, which would importantly result in a decrease in the overall capital costs. A reduction in the number of necessary trains would result in a significant cost reduction.
- Improve sorbent performance and characteristics
 - Working CO₂ capacity
 - Attrition resistance
 - Cost
 - Thermal conductivity
 - Moisture loading
 - Etc.
- Optimize steam condition at IP/LP crossover to eliminate a need of the BP turbine and to integrate into the steam cycle in a more efficient manner.

A unique process for CO₂ capture using solid sorbents has been developed. In the absence of large scale (i.e. pilot-scale) testing to date, it was necessary to make many different assumptions regarding the equipment and sorbent performance under the expected operating conditions. To fully capture the true range of operation and fully assess synergistic effects of the entire system operation it is important to continue this work to the 1 MW pilot scale to validate the following key performance parameters:

- CO₂ delta loading
- H₂O delta loading

Preliminary Techno-Economic Assessment

Discussion and Conclusions

December 13, 2011

- Enthalpy of reaction/adsorption of CO₂
- Enthalpy of reaction/adsorption of H₂O
- Reaction kinetics
 - CO₂ uptake limited by kinetics in the adsorber
 - CO₂ release limited by mass diffusion in the regenerator
- Effective heat transfer coefficients
 - Cooling water requirements
 - Steam requirements
- CO₂ partial pressure in the regenerator
- Reactor pressure drop
- Physical attrition rate
- Successful isothermal operation
- Optimize process variables:
 - Temperature
 - Sorbent Circulation Rate
- Identify sorbent bed height required to maintain 90% CO₂ capture

Using results from the 1 MW pilot test a more in depth techno-economic assessment can be completed. If the process will not meet the DOE's goals related to the cost of electricity increase as described in this report, sorbent properties and process conditions that would result in an acceptable cost increase will be identified.

Preliminary Techno-Economic Assessment

List of Abbreviations

December 13, 2011

6.0 List of Abbreviations

AACE	Association for the Advancement of Cost Engineering
BACT	best available control technology
BEC	bare erected cost
Btu/lb	British thermal unit per pound
BP	back pressure
°C	degree Celsius
CCF	capital charge factor
CF	capacity factor
CO ₂	carbon dioxide
COE	cost of electricity
C_p	specific heat
DOE	Department of Energy
Econamine	Fluor Econamine FG Plus SM
EPC	engineering, procurement, and construction
EPCM	engineering, procurement, construction, and management
°F	degree Fahrenheit
FGD	flue gas desulfurization
ft/s	foot per second
gpm	gallons per minute
KO	knockout
kW _e	kilowatt of electrical energy
kW _{th}	kilowatt of thermal energy
ΔH_{rxn}	enthalpy of reaction
ΔH_{vap}	enthalpy associated with the vaporization of water
H ₂ SO ₄	sulfuric acid
H ₂ O	water
Hg	mercury
HSS	heat stable salts
IOU	investor-owned utility
IRROE	internal rate of return on equity
IP	intermediate pressure
lb/ft ³	pound per foot cubed
LCOE	Levelized cost of electricity
LNBs	low NO _x burners
LP	low pressure
M	million
m	inverse of the solvent/sorbent delta loading
MEA	monoethanolamine
mills/kWh	milliseconds per kilowatt hour
MW	megawatt
MWh	megawatt-hour
MU	makeup
NaOH	sodium hydroxide
NETL	National Energy Technology Laboratory

Preliminary Techno-Economic Assessment

List of Abbreviations

December 13, 2011

NO _x	nitrogen oxides
OC	operating costs
O&M	operations and maintenance
OFA	over-fire air
OSHA	Occupational Safety and Health Administration
PC	pulverized coal
PM	particulate matter
psi	pounds per square inch
psia	pounds per square inch absolute
Q_{regen}	regeneration heat duty
ΔT	temperature difference between adsorption and regeneration
TASC	total as-spent cost
TOC	total overnight cost
TPC	total plant cost
TS&M	transport, storage & monitoring
SCR	selective catalytic reduction
SO ₂	sulfur dioxide
SO ₃	sulfur trioxide
U.S.	United States
WT	water treatment

Preliminary Techno-Economic Assessment

References

December 13, 2011

7.0 References

1. Final report – Carbon Dioxide Capture from Existing Coal-Fired Power Plants, DOE/NETL- 401/110907, November 2007.
2. Final report – Cost and Performance Baseline for Fossil Plants, Volume 1: Bituminous Coal and Natural Gas to Electricity, DOE/NETL-2007/1281, August 2007.
3. Fisher, Kevin S., Carrie Beitler, Curtis Rueter, Katherine Searcy, Dr. Gary Rochelle, Majeed Jassim, and Jose Figueroa. “Integrating MEA Regeneration with CO₂ Compression to Reduce CO₂ Capture Costs”, Paper Presented at the Fourth Annual Conference on Carbon Capture & Sequestration, Alexandria, VA, May, 2005.
4. Rochelle, G. T., Chen, E., Dugas, R., Oyenekan, B., Siebert, F., “Solvent and Process Enhancements for CO₂ Absorption/Stripping” Paper Presented at the Fifth Annual Conference on Carbon Capture & Sequestration, Alexandria, VA, May 2006.
5. Tarka, T. J., Ciferno, J. P., Gray, M. L., Fauth, D., “CO₂ Capture Systems Using Amine Enhanced Solid Sorbents”, Presented at the Fifth Annual Conference on Carbon Capture & Sequestration, Alexandria, VA, May 2006.
6. http://www.sorbentsystems.com/desiccants_charts.html, Assessed November 2011.

**Techno-Economic Report
Commercial – Scale Solid
Sorbent CO₂ Capture Process:
550 MW Pulverized Coal-Fired
Power Plant**

Updated Report Based on Solid
Sorbent Pilot Data

Prepared for:
Advanced Clean Energy
Solutions, LLC

Prepared by:
Stantec Consulting Ltd.
1919 Rose Street
Regina, Saskatchewan
Canada, S4P 3P1

111100208

June 14, 2016

Sign-off Sheet

This document entitled Techno-Economic Report Commercial – Scale Solid Sorbent CO2 Capture Process: 550 MW Pulverized Coal-Fired Power Plant was prepared by Stantec Consulting Ltd. ("Stantec") for the account of ADA-ES (the "Client"). Any reliance on this document by any third party is strictly prohibited. The material in it reflects Stantec's professional judgment in light of the scope, schedule and other limitations stated in the document and in the contract between Stantec and the Client. The opinions in the document are based on conditions and information existing at the time the document was published and do not take into account any subsequent changes. In preparing the document, Stantec did not verify information supplied to it by others. Any use which a third party makes of this document is the responsibility of such third party. Such third party agrees that Stantec shall not be responsible for costs or damages of any kind, if any, suffered by it or any other third party as a result of decisions made or actions taken based on this document.

Prepared by _____
(signature)

Bhurisa Thitakamol

Prepared by _____
(signature)

Teerawat Sanpasertparnich

Reviewed by _____
(signature)

Mike Richard

Revision	Rev. Date	Description	Created By	Initial	Approved By	Initial
A	Dec 4, 2015	Draft	BT/TS		MR	
B	Dec 14, 2015	Draft	BT/TS		MR	

Table of Contents

EXECUTIVE SUMMARY	1
1.0 INTRODUCTION	1
1.1 SUBCRITICAL PULVERIZED COAL-FIRED (PC) POWER PLANT	1
1.2 CARBON CAPTURE FACILITY	2
2.0 SOLID SORBENT-BASED PROCESS	4
3.0 PROCESS SIMULATION.....	8
3.1 PROCESS VALIDATION	8
3.2 ADA-ES CO ₂ ADSORBENT PROCESS INTEGRATION.....	8
3.2.1 Gross Power Output	8
3.2.2 Steam Consumption	8
3.2.3 Performance.....	9
3.3 MAJOR EQUIPMENT LIST.....	12
3.4 EQUIPMENT USEFUL LIFE	19
4.0 ECONOMIC ANALYSIS	20
4.1 CAPITAL COST ESTIMATE.....	20
4.2 OPERATING AND MAINTENANCE (O&M) COST ESTIMATE	23
4.3 CO ₂ TRANSPORT, STORAGE AND MONITORING (TS&M) COST	25
4.4 COST OF ELECTRICITY (COE) CALCULATION.....	25
4.4.1 Methodology.....	25
4.4.2 Cost of Electricity Formulas	27
4.4.3 Results.....	28
5.0 COMPARABLE CARBON CAPTURE TECHNOLOGIES	29
6.0 CONCLUSIONS.....	34
7.0 REFERENCES.....	35
8.0 APPENDICES	36

LIST OF TABLES

Table 3-1 Performance Comparison.....	9
Table 3-2 Account 1: Fuel and Sorbent Handling.....	12
Table 3-3 Account 2: Fuel and Sorbent Handling.....	13
Table 3-4 Account 3: Feedwater and Miscellaneous Systems and Equipment.....	13
Table 3-5 Account 4: Boiler and Accessories	15
Table 3-6 Account 5: Flue Gas Cleanup	15
Table 3-7 Account 5B: Carbon Dioxide Recovery.....	16
Table 3-8 Account 7: HRSG, Ducting & Stack	16
Table 3-9 Account 8: Steam Turbine Generator and Auxiliaries	17

TECHNO-ECONOMIC REPORT COMMERCIAL – SCALE SOLID SORBENT CO₂ CAPTURE PROCESS: 550 MW PULVERIZED COAL-FIRED POWER PLANT

Table 3-10	Account 9: Cooling Water System.....	17
Table 3-11	Account 10: Ash/Spent Sorbent Recovery and Handling	17
Table 3-12	Account 11: Accessory Electric Plant.....	18
Table 3-13	Account 12: Instrumentation and Control.....	19
Table 4-1	Capital Cost Structure	21
Table 4-2	Capital Cost Summary 2015 Dollars	22
Table 4-3	Capital Cost Summary 2011 Dollars	22
Table 4-4	Operating Cost Summary 2015 Dollars.....	24
Table 4-5	Operating Cost Summary 2011 Dollars.....	24
Table 4-6	Global Economic Assumption	26
Table 4-7	Financial Structure for High Risk IOU	27
Table 4-8	COE and LCOE Summary in 2015 Dollars.....	28
Table 4-9	COE and LCOE Summary in 2011 Dollars.....	28
Table 5-1	Performance and Economic Comparison in 2015 Dollars*	30
Table 5-2	Economic Comparison in 2011 Dollars.....	32
Table 5-3	\$/ton CO ₂ Captured Results	33

LIST OF FIGURES

Figure 2-1	Process Flow Diagram: Solid Sorbent Technology	4
Figure 2-2	Process Flow Diagram of the Solid-Based CO ₂ Capture Process	7

LIST OF APPENDICES

APPENDIX A	PILOT PLANT PROCESS FLOW DIAGRAM.....	37
APPENDIX B	GATECYCLE RESULTS	38
APPENDIX C	PERFORMANCE AND ECONOMIC CALCULATIONS.....	41

Executive Summary

The following report provides a Techno-Economic Assessment (TEA) of a generic 550 MW (net) subcritical Pulverized Coal-fired (PC) power station with integration of a carbon capture facility based on a solid sorbent technology. The objective of this report is to determine the economic viability of the emerging solid sorbent technology by comparing it to an established absorption technology at full-scale commercialization. In this study, the benchmark technology selected for comparison is the Fluor Econamine FG PlusSM (Econamine) process.

Previously, a TEA based on preliminary laboratory performance was produced by Stantec². Since then, the technology has been piloted at a 1 MW equivalent scale. This updated TEA includes performance factors obtained from this pilot.

Table E-1 compares both cases studied. As can be seen, solid sorbents are not competitive with the amine based economic case set forth by the DOE report entitled "Cost and Performance Baseline for Fossil Energy Plants – Volume 1: Bituminous Coal and Natural Gas to Electricity, Revision 3"¹. The Levelized Cost of Energy (LCOE) for solid sorbents is approximately 2.2 times higher than the amine case from the report.

The major causes for poor results are due to low working capacity of the sorbent discovered during piloting of the. A low working capacity means that the difference in loading between rich and lean is reduced, thus the amount of sorbent required for 90% capture of emitted CO₂ grows. This leads to multiple equipment trains for absorption and regeneration, resulting in very high capital costs.

Further development of the sorbent, perhaps reformulating to increase working capacity, could potentially restore competitiveness of this technology.

Table E-1 Performance and Economic Comparison in 2015 Dollars			
Description	Unit	Amine Technology	Solid Sorbent Technology
Performance			
1. Gross Power Output	kW _e	672,700	718,738
2. Electrical Output – BP Turbine	kW _e	0	32,525
3. Auxiliary Load	kW _e	122,740	201,293
4. Net Power Output	kW _e	549,960	549,970
5. Thermal Input	kW _{th}	2,102,644	2,383,129
6. Coal Flow Rate	lb/hr	614,994	697,032
7. Net Plant HHV Efficiency	%	26.2	23.1
8. Net Plant HHV Heat Rate	Btu/kWh	13,046	14,785
9. CO ₂ Capture Profile			
• CO ₂ Produced	lb/hr	1,459,838	1,651,831
• CO ₂ Captured	lb/hr	1,313,960	1,486,648
• CO ₂ Emission	lb/hr	145,878	165,183
10. Circulating CW Demand	gpm	540,000	487,120
11. Raw Water Consumption	1000 gal/D	8,081	7,802
12. Carbon Capture Facility			
• Regeneration Energy	Btu/lb CO ₂	1,530	2,042
• Total Energy Requirement	MMBtu/hr	2,010	3,036
• Steam Extraction Flow	lb/hr	1,931,497	2,709,721
Costs			

TECHNO-ECONOMIC REPORT COMMERCIAL – SCALE SOLID SORBENT CO₂ CAPTURE PROCESS: 550 MW PULVERIZED COAL-FIRED POWER PLANT

A. Capital Costs			
1. Bare Erected Costs	\$	1,415,831,000	3,377,994,721
2. Total Plant Costs	\$	1,847,390,000	4,724,953,270
3. Total Overnight Costs	\$	2,266,414,000	5,991,041,269
4. Total As-Spent Costs	\$	2,583,712,000	6,355,138,125
B. O&M Costs			
• Total Fixed Initial Costs	\$	N/A	N/A
• Total Fixed Annual Costs	\$	61,025,905	141,311,446
• Total Variable Operating Initial Costs	\$	3,096,311	180,802,311
• Total Variable Operating Annual Costs	\$	42,801,959	132,049,027
C. Fuel Costs	\$	99,798,295	113,110,975
D. CO ₂ TS&M Costs	\$	27,112,265	30,675,509
E. COE contribution (2015\$)	mills/kWh	125.0	283.9
• Capital Costs	mills/kWh	68.6	181.4
• Fixed Operating Costs	mills/kWh	14.9	34.5
• Variable Operating Costs	mills/kWh	10.5	32.9
• Fuel Costs	mills/kWh	24.4	27.6
• CO ₂ T&SM Costs	mills/kWh	6.6	7.5
F. LCOE (2015\$)	mills/kWh	158.7	359.9

TECHNO-ECONOMIC REPORT COMMERCIAL – SCALE SOLID SORBENT CO₂ CAPTURE PROCESS: 550 MW PULVERIZED COAL-FIRED POWER PLANT

The cost data is repeated in February 2011 dollars, below:

Table E-1a Economic Comparison in 2011 Dollars			
A. Capital Costs			
1. Bare Erected Costs	\$	1,317,435,000	3,143,235,000
2. Total Plant Costs	\$	1,719,002,000	4,396,584,000
3. Total Overnight Costs	\$	2,108,905,000	5,574,683,000
4. Total As-Spent Costs	\$	2,404,152,000	6,355,138,000
B. O&M Costs			
• Total Fixed Initial Costs	\$	N/A	N/A
• Total Fixed Annual Costs	\$	56,785,000	131,491,000
• Total Variable Operating Initial Costs	\$	2,881,000	168,237,000
• Total Variable Operating Annual Costs	\$	39,827,000	125,219,000
C. Fuel Costs	\$	92,863,000	105,250,000
D. CO ₂ TS&M Costs	\$	25,228,000	28,544,000
E. COE contribution (2011\$)	mills/kWh	116.3	264.2
• Capital Costs	mills/kWh	63.9	168.8
• Fixed Operating Costs	mills/kWh	13.9	32.1
• Variable Operating Costs	mills/kWh	9.7	30.6
• Fuel Costs	mills/kWh	22.7	25.7
• CO ₂ T&SM Costs	mills/kWh	6.2	7.0
F. LCOE (2011\$)	mills/kWh	147.7	334.9

The cost per ton of carbon dioxide captured is presented below in Table E-2. It is calculated using the LCOE established previously, compared against the amount of CO₂ captured each year.

TECHNO-ECONOMIC REPORT COMMERCIAL – SCALE SOLID SORBENT CO₂ CAPTURE PROCESS: 550 MW PULVERIZED COAL-FIRED POWER PLANT

Table E-2: \$/ton CO₂ Captured Results

	Case A	Case B
2015 Dollars	71 \$/ton	272 \$/ton
2011 Dollars	66 \$/ton	253 \$/ton

TECHNO-ECONOMIC REPORT COMMERCIAL – SCALE SOLID SORBENT CO₂ CAPTURE PROCESS: 550 MW PULVERIZED COAL-FIRED POWER PLANT

Introduction
June 14, 2016

1.0 INTRODUCTION

The following report provides details on the preliminary technical and economic performance of a generic 550 MW (net) subcritical Pulverized Coal-fired (PC) power station with integration of a carbon capture facility using a conventional amine-based absorption process (Case A), and a novel solid sorbent-based process (Case B), to remove carbon dioxide (CO₂) from the flue gas stream. The objective of this report is to determine the economic viability of the emerging solid sorbent technology by comparing it to an established absorption technology at full-scale commercialization. In this study, the benchmark technology selected for comparison is the Fluor Econamine FG PlusSM (Econamine) process.

Case studies on a 550 MW (net) PC plant and its integration with the Econamine process (Cases 9 and 10) previously conducted by DOE/NETL, and published in the Final Report entitled "Cost and Performance Baseline for Fossil Energy Plants – Volume 1: Bituminous Coal and Natural Gas to Electricity, Revision 3," provide the starting point for the cases in this study. Full descriptions of the generic PC plant and the Econamine process can be found in the DOE/NETL final report¹.

Case 10 from the DOE/NETL final report¹ is used to represent Case A and form the basis for Case B, while Case 9 is used for comparison purposes. To make a fair comparison, process configuration/conditions (except flow rate) of peripheral units outside the carbon capture battery limits for Case B are assumed to remain identical to those of Case A, unless some modifications are required to meet the requirement of the solid sorbent-based process.

Prior to the carbon capture facility, in general, the PC plant is equipped with the Best Available Control Technology (BACT) to comply with environmental targets. The Flue Gas Desulfurization (FGD) system used for sulfur dioxide (SO₂) removal is a wet limestone forced oxidation absorber, which will produce gypsum as a byproduct. A fabric filter is used to control Particulate Matter (PM). The nitrogen oxides (NO_x) concentration is reduced by using a combination of Low NO_x Burners (LNBs) and Over-Fire Air (OFA) systems in the boiler and installing Selective Catalytic Reduction (SCR) prior to the air heater.

Since both cases are evaluated on a common 550 net output basis, the gross steam turbine output must vary to account for different auxiliary and heat power demand for the two cases. As a result, the PC plant size and the amount of coal required will vary accordingly to ensure a constant net output of 550 MW. Thermal input generated by burning coal must be sufficient to supply an electricity demand for both PC plant and carbon capture facility as well as energy requirement for solvent / sorbent regeneration.

1.1 SUBCRITICAL PULVERIZED COAL-FIRED (PC) POWER PLANT

This report focuses on 550 MW net output steam-power cycle operating under subcritical steam conditions uses a single reheat with 2,415 psia and 1,050°F main steam, and 565.5 psia and

TECHNO-ECONOMIC REPORT COMMERCIAL – SCALE SOLID SORBENT CO₂ CAPTURE PROCESS: 550 MW PULVERIZED COAL-FIRED POWER PLANT

Introduction
June 14, 2016

1,050°F reheat steam. The steam turbines are composed of a high pressure (HP) turbine, an intermediate pressure (IP) turbine and a low pressure (LP) turbine. Steam leaving the HP turbine returns to the reheat in the boiler where it is reheated and expanded to IP and LP turbines and eventually a condenser. The condenser condenses the steam and rejects heat to the cooling tower. Condensate accumulates in the hotwell and is pumped by the condensate extraction pump through a gland seal condenser, four low pressure (LP) feedwater heaters, and the deaerator. The boiler feed pump underneath of the deaerator pressures the condensate through two HP feedwater heaters.

Bled steam at the last stage of the IP turbine is extracted to mechanically drive the boiler feed turbine which is connected to the boiler feed pump. The condensate then enters the economizer and boiler drum. The drum separates vapor from liquid. Vapor is superheated by the superheater and is sent to the HP turbine. Meanwhile, liquid from the boiler drum enters the water tubes, attached to boiler inside wall. Heat from the boiler is transferred through these tubes to boil water to steam.

The performance of the unit is based on Illinois no. 6 bituminous coal. Flue gas from coal combustion transfers energy to a number of tubes inside the boiler. The arrangement of the boiler tubes is based on conventional boiler configuration composed of a superheater, reheat, boiler drum, water wall tubes and economizer. A tri-sectional air preheater is the last equipment to pick up heat from the flue gas to the inlet air of primary and forced draft air.

1.2 CARBON CAPTURE FACILITY

As mentioned previously, two cases are investigated: a conventional absorption process and the solid sorbent-based process. Both are designed to capture 90 percent of the CO₂ from the whole flue gas stream generated by the 550 MW (net) PC plant.

Case A: Conventional Absorption Process

This process is based on the Fluor Econamine FG PlusSM technology using formulated aqueous monoethanolamine (MEA) solution with a proprietary corrosion inhibitor as a solvent to absorb CO₂ from the flue gas stream. To minimize the formation of Heat Stable Salts (HSS), an SO₂ polishing unit using 20wt percent sodium hydroxide (NaOH) must reduce the SO₂ concentration in the flue gas stream exiting the FGD down to 10 ppmv or less. The flue gas exiting the SO₂ polishing is pressurized by a fan to overcome a 2-psi pressure drop across the absorber.

The flue gas, with a temperature of approximately 135°F, then enters at the CO₂ capture equipment and flows counter-currently against the lean MEA-based solution introduced at the top of the absorber. After removing CO₂ the rich MEA-based solution is collected at the absorber bottom, whereas the CO₂-free flue gas is released at the absorber top. The CO₂ rich solution is preheated by the CO₂ lean solution from the solvent stripper in the lean/rich cross exchanger. The cooled CO₂ lean solution is directed to the absorber for a complete circulation,

TECHNO-ECONOMIC REPORT COMMERCIAL – SCALE SOLID SORBENT CO₂ CAPTURE PROCESS: 550 MW PULVERIZED COAL-FIRED POWER PLANT

Introduction
June 14, 2016

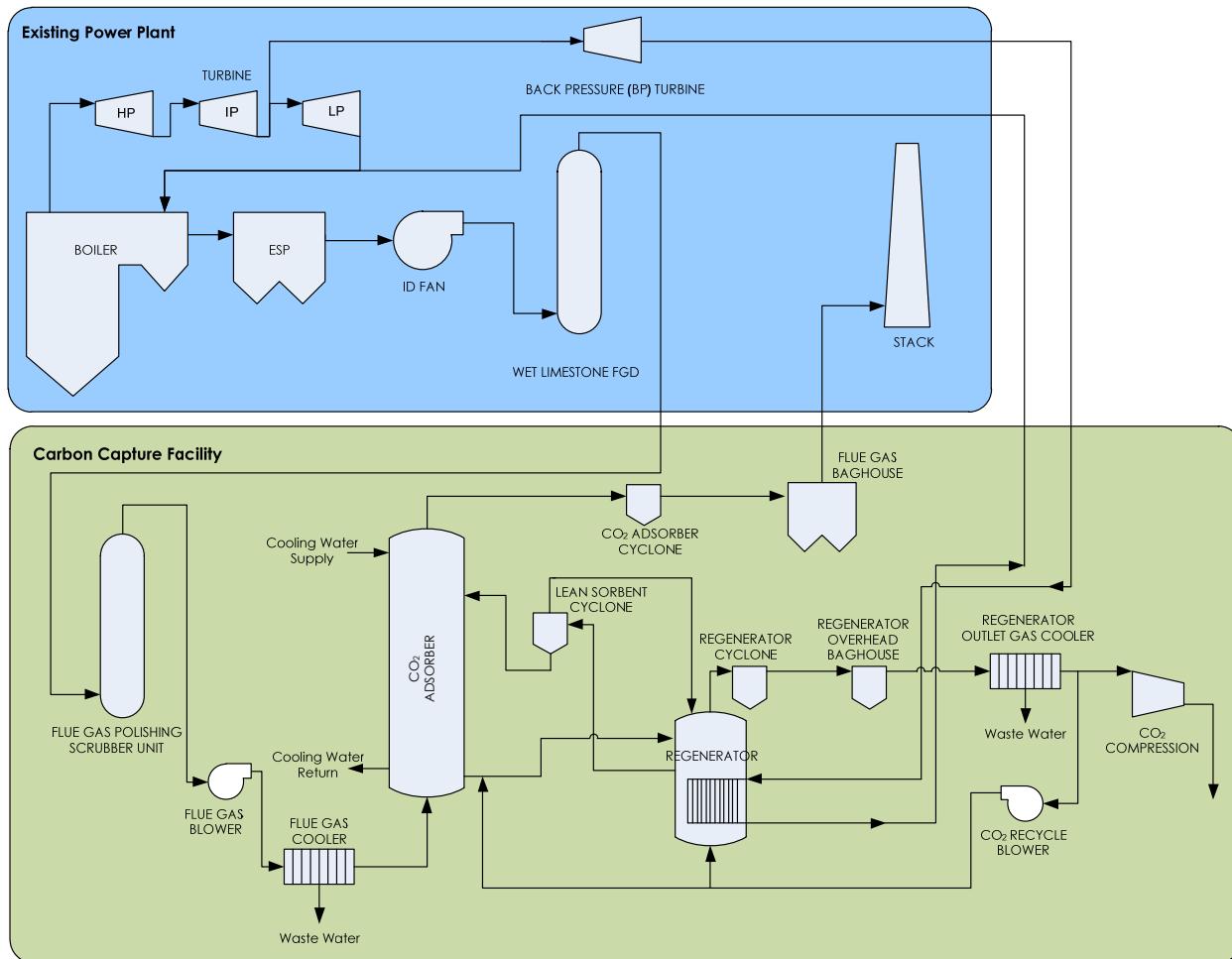
whereas the heated rich solution is directed to the solvent stripper for CO₂ stripping and solvent regeneration using steam from the IP/LP crossover pipe of steam turbine. For sequestration purpose, the CO₂ product gas is compressed to 2,215 psia by a six-stage compressor and dehydrated to 40°F with triethylene glycol.

Case B: Solid Sorbent-Based Process

The solid sorbent-based process employs an amine-impregnated solid sorbent technology developed by ADA-ES. Previously, a TEA based on preliminary laboratory performance was produced by Stantec². Since then, the technology has been piloted at a 1 MW equivalent scale. This updated TEA includes performance factors obtained from the pilot, which is presented below:

- Particles physically resemble polystyrene beads with respect to size. Particles were milled to a mean particle diameter of about 165 – 180 µm.
- Particle density is 36.6 lb/ft³.
- Sorbent working capacity is 5.4 %wt (lb CO₂/100 lb sorbent). This corresponds to 65 minutes residence time in the adsorber.
- Average bed density in the adsorber is 23.15 lb/ft³ for the bottom bed, 24.32 lb/ft³ for the middle bed and 23.34 lb/ft³ for the top bed. High bed density results from reduced gas velocity through the adsorber to approach 90% CO₂ removal efficiency.
- Average bed height in the adsorber is 7.99 ft for the bottom bed, 6.00 ft for the middle bed and 17.84 ft for the top bed.
- Superficial gas velocity of the flue gas entering the adsorber is 0.7 ft/s.
- Thermal energy for regeneration is 2042 Btu/lb CO₂ adsorbed.
- Adsorption temperature is 104°F.
- Regeneration temperature is 248°F.
- Flue gas temperature after the SO₂ polishing unit is 135°F.

Section 2.0 provides more information on the integration of this process into the PC plant along with a detailed process description.


TECHNO-ECONOMIC REPORT COMMERCIAL – SCALE SOLID SORBENT CO₂ CAPTURE PROCESS: 550 MW PULVERIZED COAL-FIRED POWER PLANT

Solid Sorbent-Based Process
June 14, 2016

2.0 SOLID SORBENT-BASED PROCESS

The concept of a solid-based CO₂ capture process integrated into the PC plant is demonstrated in Figure 2-1. Figure 2-2 shows a conceptual representation of adsorption and desorption equipment. Full Process Flow Diagram for the 1 MW solid sorbent CO₂ capture pilot plant can be found in Appendix A.

Figure 2-1 Process Flow Diagram: Solid Sorbent Technology

Flue gas is routed from the existing plant through ductwork to the new carbon capture facility. The SO₂ concentration in the flue gas before entering the carbon capture facility must be reduced to low levels by a similar SO₂ polishing unit used in the Econamine process. A flue gas blower is installed to provide sufficient pressure to pass the flue gas through the carbon capture equipment, and return it via ductwork back to the original stack. As a result, the pressure of the flue gas is boosted by approximately 7 psi, causing the flue gas temperature to rise from 135°F to

TECHNO-ECONOMIC REPORT COMMERCIAL – SCALE SOLID SORBENT CO₂ CAPTURE PROCESS: 550 MW PULVERIZED COAL-FIRED POWER PLANT

Solid Sorbent-Based Process
June 14, 2016

219°F. The hot wet flue gas is then directed to the flue gas cooler, where the flue gas is cooled down to 104°F by exchanging heat with cooling water and the water Knockout (KO) drum where water vapor is separated from the flue gas.

The cool flue gas then enters an isothermal three-stage fluidized bed adsorber. The stages are separated by horizontal perforated trays, which allow the flue gas entering at the bottom to flow through the adsorber and fluidize the sorbent bed in a churn flow regime. The treated flue gas is released at the adsorber top and routed to a baghouse, which removes any entrained sorbent ensuring none is lost or emitted as a pollutant when the flue gas is returned to the stack. The baghouse will remove very fine sorbent that may have been damaged through attrition, thus collected solids could be removed for disposal if required. In addition, the adsorber is equipped with a bundle of serpentine tubes in each stage to maintain isothermal operation by exchanging exothermic heat generated from chemical reaction between CO₂ and amine sorbent with cooling water.

To maximize the driving force for mass transfer, this adsorber simulates continuous counter-current operation by installing a standpipe between each stage. The standpipe functions as a passage for the sorbent to cascade down from the top to the bottom of the adsorber, while adsorbing CO₂ from the upward flowing flue gas. As the sorbent rich in CO₂ is withdrawn at the bottom, lean sorbent is simultaneously added at the top of the adsorber to replenish the bed. The amount of the rich sorbent discharged is controlled by a sorbent slide valve and pneumatically conveyed with CO₂ to the regenerator via a rich sorbent riser.

In an isothermal single-stage fluidized bed regenerator, the rich sorbent releases CO₂ by means of heat from steam circulating in an internal heat exchanger. Since the temperature of steam (306°F) extracted from IP/LP crossover section of the PC plant steam turbine is hotter than the regeneration temperature of the solid sorbent (248°F), the expansion of the steam through a Back Pressure (BP) turbine before entering the exchanger is required to prevent the thermal degradation of the amines impregnated in the solid sorbent and also to generate additional electricity. Saturated steam at 45 psia is obtained at the BP turbine exit.

After being directed through a baghouse downstream of the regenerator, a portion of the CO₂ is routed to the CO₂ recycle compressor, while the remaining CO₂ is sent to the compression plant similar to the Econamine process. The recycle compressor provides enough pressure for the CO₂ to promote adequate fluidization in the regenerator and to convey sorbent from the adsorber to the regenerator in the rich sorbent riser. The compression plant features wet stages, followed by dehydration, then dry stages to compress the CO₂ to supercritical conditions.

To complete the cycle, the hot lean sorbent from the regenerator is transferred via a lean sorbent riser, using the conveying media of CO₂ lean flue gas. The top bed of the adsorber is deeper to accommodate more heat exchange area required to cool the sorbent down to the adsorption temperature. Originally, 4 absorption / regeneration trains were sufficient to treat the incoming flue gas (based on laboratory results for sorbent performance). The pilot plant results

TECHNO-ECONOMIC REPORT COMMERCIAL – SCALE SOLID SORBENT CO₂ CAPTURE PROCESS: 550 MW PULVERIZED COAL-FIRED POWER PLANT

Solid Sorbent-Based Process
June 14, 2016

have indicated that in order to provide sufficient residence time for 90% capture, 44 parallel trains are now required.

TECHNO-ECONOMIC REPORT COMMERCIAL – SCALE SOLID SORBENT CO₂ CAPTURE PROCESS: 550 MW PULVERIZED COAL-FIRED POWER PLANT

Solid Sorbent-Based Process
June 14, 2016

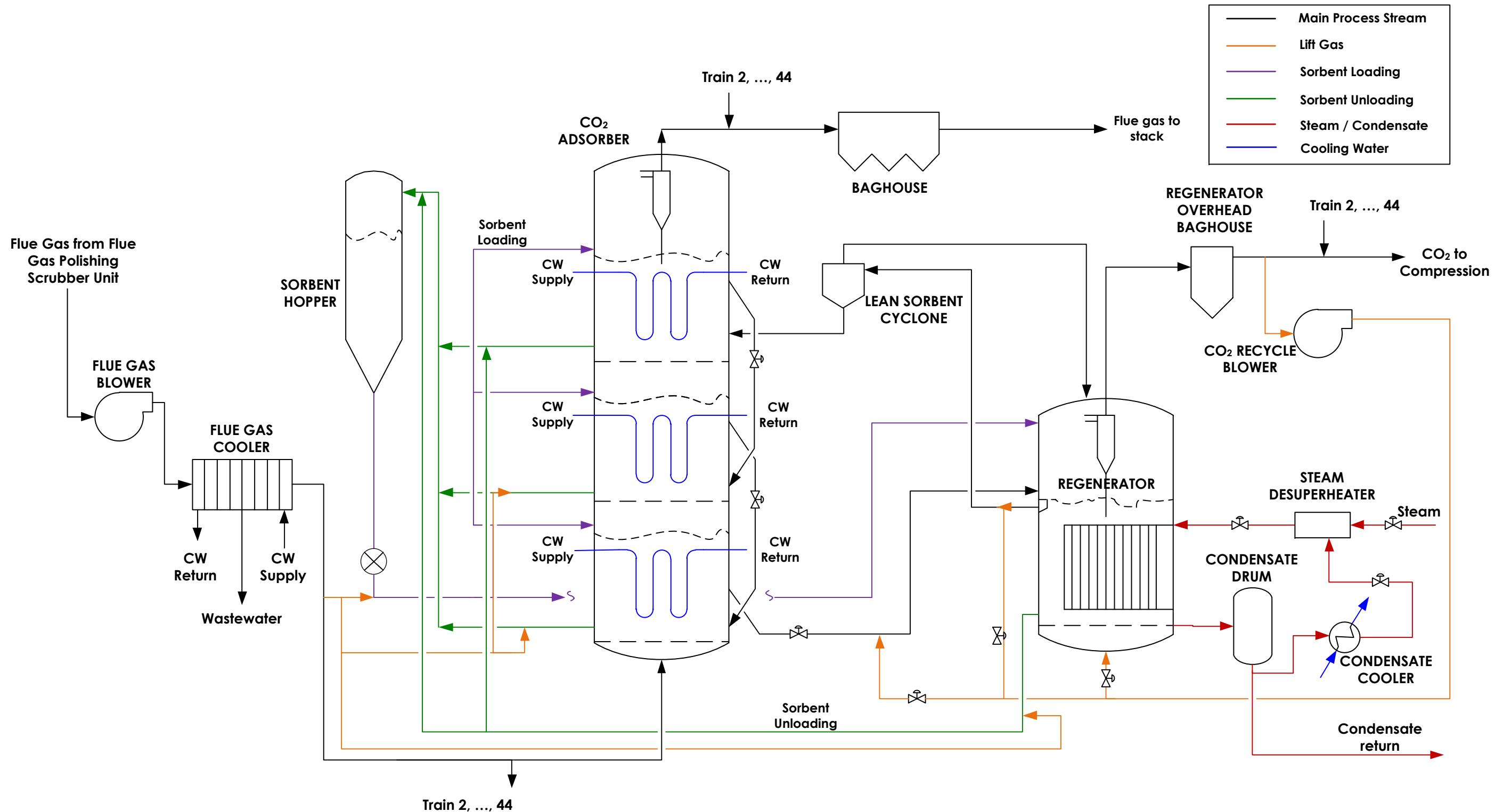


Figure 2-2 Process Flow Diagram of the Solid-Based CO₂ Capture Process

Process Simulation
June 14, 2016

3.0 PROCESS SIMULATION

3.1 PROCESS VALIDATION

This study employed GateCycle, a thermal system designing software, to model a pulverized boiler / furnace, steam cycle and heat rejection system. A process validation with the DOE's Cases 9 and Case 10 was conducted in order to gain necessary confidence to proceed on the process integration with the solid sorbent-based process. The results showed a good agreement between the DOE's cases and the GateCycle process simulation models. Full details can be found in Appendix B.

3.2 ADA-ES CO₂ ADSORBENT PROCESS INTEGRATION

Thermal input supplied by coal combustion is utilized in two different ways: providing both the gross output required to operate the 550 MW (net) PC plant, and the thermal regeneration energy requirement for the sorbent system.

3.2.1 Gross Power Output

The gross power output varies with auxiliary load of both the PC plant and the solid sorbent-based carbon capture facility and electrical output produced from the BP turbine. The auxiliary load of the PC plant and the BP turbine output are obtained by GateCycle simulation whereas that of the capture facility is obtained by linearly scaling the estimated auxiliary load with CO₂ removal rate.

For CO₂ compression, ProMax chemical process simulation is used to estimate the auxiliary loads required to compress the captured CO₂ at a given set of carbon capture process conditions. A relationship between the CO₂ product flow rate and CO₂ compression auxiliary load obtained from the ProMax simulation was used as an input to GateCycle for total gross power output calculation.

A series of iterations in GateCycle is programmed to vary input parameters to meet a net power output of 550 MW. All process parameters (e.g., coal consumption, flue gas flow, BP output and steam extraction flow rate) and auxiliary loads for the PC plant and its integration with the carbon capture facility are constantly changing as the GateCycle progresses to the 550 MW net output target. The final outputs are obtained when the model converges. This model output can also be found in Appendix B.

3.2.2 Steam Consumption

Steam is extracted at the last stage of the IP turbine to the BP turbine. The BP turbine controls the steam pressure to 45 psia before entering the reboilers in the solid sorbent-based carbon

TECHNO-ECONOMIC REPORT COMMERCIAL – SCALE SOLID SORBENT CO₂ CAPTURE PROCESS: 550 MW PULVERIZED COAL-FIRED POWER PLANT

Process Simulation
June 14, 2016

capture facility. A rate of extracted steam to the reboiler depends on the CO₂ removal flow rate at a given thermal regeneration energy of 2,042 Btu/lb CO₂ obtained from the actual pilot plant data.

3.2.3 Performance

Performance of the carbon capture facility using the amine technology and the solid sorbent-based technology is summarized in Table 3-1.

Table 3-1 Performance Comparison

Parameter	Unit	Amine Technology	Solid Sorbent Technology
Gross Power Output	kW _e	672,700	718,738
Back Pressure Turbine Power Output	kW _e	-	32,525
Total Gross Power Output	kW _e	672,700	751,263
Auxiliary Load Summary	kW _e	122,740	201,293
• PC Plant			
Coal Handling and Conveying	kW _e	540	612
Pulverizers	kW _e	4,180	4,738
Sorbent Handling & Reagent Preparation	kW _e	1,370	1,553
Ash Handling	kW _e	800	907
Primary Air Fans	kW _e	1,960	2,222
Forced Draft Fans	kW _e	2,500	2,833
Induced Draft Fans	kW _e	12,080	13,671
SCR	kW _e	70	79
Baghouse	kW _e	100	113
Wet FGD	kW _e	4,470	5,066
Miscellaneous Balance of Plant ^{1,2}	kW _e	2,000	2,000
Steam Turbine Auxiliaries	kW _e	400	400
Condensate Pumps	kW _e	700	621
Circulating Water Pumps	kW _e	11,190	3,703
Ground Water Pumps	kW _e	1,020	775
Cooling Tower Fans	kW _e	5,820	1,918
Transformer Losses	kW _e	2,350	2,511
Sub Total	kW _e	51,550	43,722

¹ Turbine driven boiler feed pumps are used.

² Plant control systems, lighting, HVAC and miscellaneous low voltage loads are included.

TECHNO-ECONOMIC REPORT COMMERCIAL – SCALE SOLID SORBENT CO₂ CAPTURE PROCESS: 550 MW PULVERIZED COAL-FIRED POWER PLANT

Process Simulation
June 14, 2016

Parameter	Unit	Amine Technology	Solid Sorbent Technology
• Flue Gas Polishing Scrubber Unit			
Recirculating Pumps	kW _e	0	2,276
Bleed Pumps	kW _e	0	569
Sub Total	kW _e	0	2,845
• Carbon Capture Facility ³			
Circulating Water Pump	kW _e	N/A	4,802
Cooling Tower Fan	kW _e	N/A	2,503
Condensate Pump	kW _e	N/A	325
Flue Gas Compressor	kW _e	N/A	53,617
CO ₂ Recycle Compressor	kW _e	N/A	14,787
Lean Sorbent Lift Compressor	kW _e	N/A	16,527
Sub Total	kW _e	22,400	92,558
• Compression Unit			
CO ₂ Compressors	kW _e	48,790	62,165
Sub Total	kW _e	48,790	62,165
Net Power Output	kW_e	549,960	549,969
• Net Plant Efficiency (HHV)	%	26.2	23.1
• Net Plant Heat Rate	Btu/kWh	13,046	14,785
Condenser Cooling Duty	MMBTU/hr	1,928	1,716
Consumables			
• As-Received Coal Feed	lb/hr	614,994	697,032
• Thermal Input ⁴	kW _{th}	2,102,643	2,383,129
Flue Gas Conditions before Carbon Capture Facility			
• Flow Rate	lb/hr	7,084,027	8,014,057
• Temperature	°F	136	136
• Composition			
Ar	% mole	0.0081	0.0081
CO ₂	% mole	0.1350	0.1350
H ₂	% mole	0.0000	0.0000
H ₂ O	% mole	0.1537	0.1537
N ₂	% mole	0.6793	0.6793
O ₂	% mole	0.0238	0.0238
SO ₂	% mole	0.0000	0.0000
Total	% mole	1.0000	1.0000

³ No breakdown is given for the total auxiliary load of the amine-based carbon capture facility.

⁴ HHV of As-Received Illinois No.6 coal is 11,666 Btu/lb.

TECHNO-ECONOMIC REPORT COMMERCIAL – SCALE SOLID SORBENT CO₂ CAPTURE PROCESS: 550 MW PULVERIZED COAL-FIRED POWER PLANT

Process Simulation
June 14, 2016

Parameter	Unit	Amine Technology	Solid Sorbent Technology
CO₂ Capture Profile			
• CO ₂ Produced	lb/hr	1,459,838	1,651,831
• CO ₂ Captured	lb/hr	1,313,960	1,486,648
• CO ₂ Emission	lb/hr	145,878	165,183
Total Circulating Cooling Water Demand	gpm	540,000	487,120
• PC Plant	gpm	200,000	226,679
• Carbon Capture Facility	gpm	340,000	260,441
Steam Extraction from IP/LP Turbine before Carbon Capture Facility			
• Flow Rate	lb/hr	1,931,497	2,709,721
• Temperature	°F	565	563
• Pressure	psia	73.5	45.0
• Total Regeneration Energy Requirement	MMBtu/hr	2,010	3,036
• Thermal Regeneration Energy	Btu/lb CO ₂	1,530	2,042
• Amount of Amine Solvent/Solid Sorbent	lb/hr	Not Given	27,530,510

TECHNO-ECONOMIC REPORT COMMERCIAL – SCALE SOLID SORBENT CO₂ CAPTURE PROCESS: 550 MW PULVERIZED COAL-FIRED POWER PLANT

Process Simulation
June 14, 2016

3.3 MAJOR EQUIPMENT LIST

Tables below are major equipment items for the subcritical pulverized coal-fired power plant integrated with the solid sorbent-based carbon capture facility.

Table 3-2 Account 1: Fuel and Sorbent Handling

Equipment No.	Description	Type	Design Condition	Operating Qty.	Spares
1	Bottom Trestle Dumper and Receiving Hoppers	N/A	205 tonne (226 ton)	2	0
2	Feeder	Belt	648 tonne (715 ton)	2	0
3	Conveyor No. 1	Belt	1285 tonne/hr (1417 tph)	1	0
4	Transfer Tower No. 1	Enclosed	N/A	1	0
5	Conveyor No. 2	Belt	1285 tonne/hr (1417 tph)	1	0
6	As-Received Coal Sampling System	Two-stage	N/A	1	0
7	Stacker / Reclaimer	Traveling, linear	1285 tonne/hr (1417 tph)	1	0
8	Reclaim Hopper	N/A	61 tonne (67 ton)	2	1
9	Feeder	Vibratory	257 tonne/hr (284 tph)	2	1
10	Conveyor No. 3	Belt w/ tripper	525 tonne/hr (578 tph)	1	0
11	Crusher Tower	N/A	N/A	1	0
12	Coal Surge Bin w/ Vent Filter	Dual outlet	257 tonne/hr (284 tph)	2	0
13	Crusher	Impactor reduction	8.5 cm x 0 - 3.2 cm x 0 (3.4 in x 0 - 1.3 in x 0)	2	0
14	As-Fired Coal Sampling System	Swing hammer	N/A	1	1
15	Conveyor No. 4	Belt w/ tripper	525 tonne/hr (578 tph)	1	0
16	Transfer Tower No. 2	Enclosed	N/A	1	0
17	Conveyor No. 5	Belt w/ tripper	525 tonne/hr (578 tph)	1	0
18	Coal Silo w/ Vent Filter and Slide Gates	Field erected	1131 tonne/hr (1247 tph)	3	0
19	Limestone Truck Unloading Hopper	N/A	41 tonne/hr (45 tph)	1	0
20	Limestone Feeder	Belt	134 tonne/hr (147 tph)	1	0
21	Limestone Conveyor No. L1	Belt	134 tonne/hr (147 tph)	1	0
22	Limestone Reclaim Hopper	N/A	31 tonne/hr (34 tph)	1	0

TECHNO-ECONOMIC REPORT COMMERCIAL – SCALE SOLID SORBENT CO₂ CAPTURE PROCESS: 550 MW PULVERIZED COAL-FIRED POWER PLANT

Process Simulation
June 14, 2016

Equipment No.	Description	Type	Design Condition	Operating Qty.	Spares
23	Limestone Reclaim Feeder	Belt	103 tonne/hr (114 tph)	1	0
24	Limestone Conveyor No. L2	Belt	103 tonne/hr (114 tph)	1	0
25	Limestone Day Bin	w/ actuator	422 tonne/hr (465 tph)	2	0

Table 3-3 Account 2: Fuel and Sorbent Handling

Equipment No.	Description	Type	Design Condition	Operating Qty.	Spares
1	Coal Feeder	Gravimetric	61 tonne/hr (67 tph)	6	0
2	Coal Pulverizer	Ball type or equivalent	61 tonne/hr (67 tph)	6	0
3	Limestone Weigh Feeder	Gravimetric	35 tonne/hr (39 tph)	1	1
4	Limestone Ball Mill	Rotary	35 tonne/hr (39 tph)	1	1
5	Limestone Mill Slurry Tank with Agitator	N/A	137300 liters (36300 gal)	1	1
6	Limestone Mill Recycle Pumps	Horizontal centrifugal	2274 lpm @ 12m H ₂ O (601 gpm @ 40 ft H ₂ O)	1	1
7	Hydroclone Classifier	4 active cyclones in a 5 cyclone bank	558 lpm (147 gpm) per cyclone	1	1
8	Distribution Box	2-way	N/A	1	1
9	Limestone Slurry Storage Tank with Agitator	Field erected	763686 liters (202000 gal)	1	1
10	Limestone Slurry Feed Pumps	Horizontal centrifugal	1588 lpm @ 9m H ₂ O (419 gpm @ 30 ft H ₂ O)	1	1

Table 3-4 Account 3: Feedwater and Miscellaneous Systems and Equipment

Equipment No.	Description	Type	Design Condition	Operating Qty.	Spares
1	Demineralized Water Storage Tank	Vertical, cylindrical, outdoor	1771700 liters (468000 gal)	2	0
2	Condensate Pumps	Vertical canned	18145 lpm @ 213m H ₂ O (4794 gpm @ 700 ft H ₂ O)	1	1
3	Deaerator and Storage Tank	Horizontal spray type	2946886 kg/hr (6496764 lb/h), 5 min. tank	1	0
4	Boiler Feed Pump / Turbine	Barrel type, multi-stage, centrifugal	49331 lpm @ 2591 m H ₂ O (13032 gpm @ 8500 ft H ₂ O)	1	1

TECHNO-ECONOMIC REPORT COMMERCIAL – SCALE SOLID SORBENT CO₂ CAPTURE PROCESS: 550 MW PULVERIZED COAL-FIRED POWER PLANT

Process Simulation
June 14, 2016

Equipment No.	Description	Type	Design Condition	Operating Qty.	Spares
5	Startup Boiler Feed Pump, Electric Motor Driven	Barrel type, multi-stage, centrifugal	14585 lpm @ 2591 m H ₂ O (3853 gpm @ 8500 ft H ₂ O)	1	0
6	LP Feedwater Heater 1A/1B	Horizontal U-tube	543600 kg/hr (1198400 lb/hr)	2	0
7	LP Feedwater Heater 2A/2B	Horizontal U-tube	543600 kg/hr (1198400 lb/hr)	2	0
8	LP Feedwater Heater 3A/3B	Horizontal U-tube	543600 kg/hr (1198400 lb/hr)	2	0
9	LP Feedwater Heater 4A/4B	Horizontal U-tube	543600 kg/hr (1198400 lb/hr)	2	0
10	HP Feedwater Heater 6	Horizontal U-tube	2945300 kg/hr (6493400 lb/hr)	1	0
11	HP Feedwater Heater 7	Horizontal U-tube	2945300 kg/hr (6493400 lb/hr)	1	0
12	Auxiliary Boiler	Shop fabricated, water tube	18144 kg/hr, 2.8 Mpa, 343 C (40000 lb/hr, 400 psig, 650 F)	1	0
13	Fuel Oil System	No. 2 fuel oil for light off	1135624 litre (300000 gal)	1	0
14	Service Air Compressors	Flooded screw	28 m ³ /min @ 0.7 Mpa (1000 scfm @ 100 psig)	2	1
15	Instrument Air Dryers	Duplex, regenerative	28 m ³ /min (1000 scfm)	2	1
16	Closed Cycle Cooling Heat Exchangers	Shell and tube	53 GJ/hr (50 MMBtu/hr) each	2	0
17	Closed Cycle Cooling Water Pumps	Horizontal centrifugal	20820 lpm @ 30 m H ₂ O (5500 gpm @ 100 ft H ₂ O)	2	1
18	Engine-Driven Fire Pump	Vertical turbine, diesel engine	3785 lpm @ 88 m H ₂ O (1000 gpm @ 290 ft H ₂ O)	1	1
19	Fire Service Booster Pump	Two-stage horizontal centrifugal	2650 lpm @ 64 m H ₂ O (700 gpm @ 210 ft H ₂ O)	1	1
20	Raw Water Pumps	Stainless steel, single suction	9410 lpm @ 18 m H ₂ O (2486 gpm @ 60 ft H ₂ O)	2	1
21	Ground Water Pumps	Stainless steel, single suction	3768 lpm @ 268 m H ₂ O (995 gpm @ 880 ft H ₂ O)	5	1
22	Filtered Water Pumps	Stainless steel, single suction	2480 lpm @ 49 m H ₂ O (655 gpm @ 160 ft H ₂ O)	2	1
23	Filtered Water Tank	Vertical, cylindrical	2379648 litre (628636 gal)	1	0
24	Markup Water Demineralizer	Multi-media filter, cartridge filter, RO membrane assembly, electrodeionization unit	814 lpm (215 gpm)	1	1

TECHNO-ECONOMIC REPORT COMMERCIAL – SCALE SOLID SORBENT CO₂ CAPTURE PROCESS: 550 MW PULVERIZED COAL-FIRED POWER PLANT

Process Simulation
June 14, 2016

Equipment No.	Description	Type	Design Condition	Operating Qty.	Spares
25	Liquid Waste Treatment System	-	10 years, 24-hour storm	1	0

Table 3-5 Account 4: Boiler and Accessories

Equipment No.	Description	Type	Design Condition	Operating Qty.	Spares
1	Boiler	Subcritical, drum wall-fired, low Nox burners, overfire air	2945342 kg/hr steam @ 17.9 Mpa/574 C/574 C (6493000 lb/hr steam @ 2600 psig/1065 F/1065 F)	1	0
2	Primary Air Fan	Centrifugal	401514 kg/hr, 5482 m ³ /min @ 123 cm WG (885000 lb/hr, 194000 acfm @ 48 in. WG)	2	0
3	Forced Draft Fan	Centrifugal	1307353 kg/hr, 17844 m ³ /min @ 47 cm WG (2882000 lb/hr, 630000 acfm @ 19 in. WG)	2	0
4	Induced Draft Fan	Centrifugal	1893352 kg/hr, 39958 m ³ /min @ 104 cm WG (4174000 lb/hr, 1411000 acfm @ 41 in. WG)	2	0
5	SCR Reactor Vessel	Space for spare layer	3794100 kg/hr (8364500 lb/hr)	2	0
6	SCR Catalyst	-	-	3	0
7	Dilution Air Blower	Centrifugal	224 m ³ /min @ 108 cm WG (7900 acfm @ 42 in. WG)	2	1
8	Ammonia Storage	Horizontal tank	248800 liters (65700 gal)	5	0
9	Ammonia Feed Pump	Centrifugal	48 lpm @ 91 m H ₂ O (13 gpm @ 300 ft H ₂ O)	2	1

Table 3-6 Account 5: Flue Gas Cleanup

Equipment No.	Description	Type	Design Condition	Operating Qty.	Spares
1	Fabric Filter	Single stage, high ratio with pulse jet online cleaning system	1896500 kg/hr (4181100 lb/hr), 99.8% efficiency	2	0
2	Absorber Module	Counter current open	75800 m ³ /min (2678000 acfm)	1	0

TECHNO-ECONOMIC REPORT COMMERCIAL – SCALE SOLID SORBENT CO₂ CAPTURE PROCESS: 550 MW PULVERIZED COAL-FIRED POWER PLANT

Process Simulation
June 14, 2016

Equipment No.	Description	Type	Design Condition	Operating Qty.	Spares
		spray			
3	Recirculation Pumps	Horizontal centrifugal	261710 lpm @ 64 m H ₂ O (69100 gpm @ 210 ft H ₂ O)	5	1
4	Bleed Pumps	Horizontal centrifugal	6910 lpm (1820 gpm) at 20 wt% solids	2	1
5	Oxidation Air Blowers	Centrifugal	133 m ³ /min @ 0.3 MPa (4680 acfm @ 37 psia)	2	1
6	Agitators	Side entering	50 hp	5	1
7	Dewatering Cyclones	Radial assembly, 5 units each	1716 lpm (450 gpm) per cyclone	2	0
8	Vacuum Filter Belt	Horizontal belt	54 tonne/hr (60 tph) of 50 wt% slurry	2	1
9	Filtrate Water Return Pumps	Horizontal centrifugal	1029 lpm @ 12 m H ₂ O (270 gpm @ 40 ft H ₂ O)	1	1
10	Filtrate Water Return Storage Tank	Vertical, lined	686460 lpm (181000 gal)	1	0
11	Process Markup Water Pumps	Horizontal centrifugal	5534 lpm @ 21 m H ₂ O (1460 gpm @ 70 ft H ₂ O)	1	1

Table 3-7 Account 5B: Carbon Dioxide Recovery

Equipment No.	Description	Type	Design Condition	Operating Qty.	Spares
1	ADA-ES Capture Process	Solid Absorbent	90878 kg/hr (200351 lb/hr), 20.6 wt % CO ₂ concentration	44 trains	0
2	Condensate Pump back to Power Island	Centrifugal	25860 lpm @ 52 m H ₂ O (6800 gpm @ 170 ft H ₂ O)	1	1
3	CO ₂ Compressor	Integrally geared, multi-stages centrifugal	199621 kg/hr @ 15.3 MPa (440088 lb/hr @ 2215 psia)	4	0
4	Dehydration	Desiccant (Activated Alumina)	199621 kg/hr @ 2.75 MPa (440088 lb/hr @ 400 psia)	4	0

Table 3-8 Account 7: HRSG, Ducting & Stack

Equipment No.	Description	Type	Design Condition	Operating Qty.	Spares
1	Stack	Reinforced concrete with FRP liner	152 m (500 ft) high x 6 m (20 ft) diameter	1	0

TECHNO-ECONOMIC REPORT COMMERCIAL – SCALE SOLID SORBENT CO₂ CAPTURE PROCESS: 550 MW PULVERIZED COAL-FIRED POWER PLANT

Process Simulation
June 14, 2016

Table 3-9 Account 8: Steam Turbine Generator and Auxiliaries

Equipment No.	Description	Type	Design Condition	Operating Qty.	Spares
1	Steam Turbine (Steam Turbine in Power Island + Backpressure Turbine at Upstream of ADA-ES Reboiler)	Commercially available advanced steam turbine	756 MW, 16.5 MPa/566 C/566 C (2400.3 psig/1050 F/1050 F) Plus 34 MW, 0.52 MPa/295 C (75 psia to 45 psia/565 F)	1	0
2	Steam Turbine Generator	Hydrogen cooled, static excitation	882 MVA @ 0.9 p.f., 24 kV, 60 Hz, 3 phase	1	0
3	Surface Condenser	Single pass, divided waterbox including vacuum pumps	1986 GJ/hr (1882 MMBtu/hr), Inlet water temperature 16 C (60 F), Water temperature rise 11 C (20 F)	1	0

Table 3-10 Account 9: Cooling Water System

Equipment No.	Description	Type	Design Condition	Operating Qty.	Spares
1	Circulating Water Pumps	Vertical, wet pit	827488 lpm @ 30 m H ₂ O (218599 gpm @ 100 ft H ₂ O)	2	1
2	Cooling Tower	Evaporative, mechanical draft, multi cell	11 C (51.5 F) wet bulb / 16 C (60 F) CWT / 27 C (80 F) HWT / 4623 GJ/hr (4382 MMBtu/hr) heat duty	1	0

Table 3-11 Account 10: Ash/Spent Sorbent Recovery and Handling

Equipment No.	Description	Type	Design Condition	Operating Qty.	Spares
1	Economizer Hopper (part of boiler scope of supply)	-	-	4	0
2	Bottom Ash Hopper (part of boiler scope of supply)	-	-	2	0
3	Clinker Grinder	-	7.3 tonne/hr (8 tph)	1	1
4	Pyrites Hopper (part of pulverizer scope of supply included with boiler)	-	-	6	0
5	Hydroejectors	-	-	12	0

TECHNO-ECONOMIC REPORT COMMERCIAL – SCALE SOLID SORBENT CO₂ CAPTURE PROCESS: 550 MW PULVERIZED COAL-FIRED POWER PLANT

Process Simulation
June 14, 2016

Equipment No.	Description	Type	Design Condition	Operating Qty.	Spares
6	Economizer / Pyrites Transfer Tank	-	-	1	0
7	Ash Sluice Pumps	Vertical, wet pit	257 lpm @ 17 m H ₂ O (68 gpm @ 56 ft H ₂ O)	1	1
8	Ash Seal Water Pumps	Vertical, wet pit	8581 lpm @ 9 m H ₂ O (2270 gpm @ 28 ft H ₂ O)	1	1
9	Hydrobins	-	257 lpm (68 gpm)	1	1
10	Baghouse Hopper (part of baghouse scope of supply)	-	-	24	0
11	Air Heater Hopper (part of boiler scope of supply)	-	-	10	0
12	Air Blower	-	25 m ³ /min @ 0.2 MPa (873 scfm @ 24 psi)	1	1
13	Fly Ash Silo	Reinforced concrete	1645 tonne (1813 ton)	2	0
14	Slide Gate Valve	-	-	2	0
15	Unloader	-	-	1	0
16	Telescoping Unloading Chute	-	154 tonne/hr (170 tph)	1	0

Table 3-12 Account 11: Accessory Electric Plant

Equipment No.	Description	Type	Design Condition	Operating Qty.	Spares
1	STG Transformer	Oil-filled	24 kV/345 kV, 726 MVA, 3-ph, 60 Hz	1	0
2	Auxiliary Transformer	Oil-filled	24 kV/4.16 kV, 150 MVA, 3-ph, 60 Hz	1	1
3	Low Voltage Transformer	Dry ventilated	4.16 kV/480 V, 22 MVA, 3-ph, 60 Hz	1	1
4	STG Isolated Phase Bus Duct and Tap Bus	Aluminum, self-cooled	24 kV, 3-ph, 60 Hz	1	0
5	Medium Voltage Switchgear	Metal clad	4.16 kV, 3-ph, 60 Hz	1	1
6	Low Voltage Switchgear	Metal enclosed	480 V, 3-ph, 60 Hz	1	1
7	Emergency Diesel Generator	Sized for emergency shutdown	750 kW, 480 V, 3-ph, 60 Hz	1	0

TECHNO-ECONOMIC REPORT COMMERCIAL – SCALE SOLID SORBENT CO₂ CAPTURE PROCESS: 550 MW PULVERIZED COAL-FIRED POWER PLANT

Process Simulation
June 14, 2016

Table 3-13 Account 12: Instrumentation and Control

Equipment No.	Description	Type	Design Condition	Operating Qty.	Spares
1	DCS - Main Control	Monitor / keyboard; operator printer (laser color); Engineering printer (laser B&W)	Operator stations/printers and engineering stations/printers	1	0
2	DCS - Processor	Microprocessor with redundant input/output	N/A	1	0
3	DCS - Data Highway	Fiber optic	Fully redundant, 25% spare	1	0

3.4 EQUIPMENT USEFUL LIFE

Generally, the design of equipment for post combustion treatment of flue gases targets a useful life of 30 years. Material selection is chosen to adequately provide this life span, but in practice, longer lifetimes would be expected

Pretreatment of the flue gas based on flue gas desulphurization has a long operative history in utilities, and a life span of 30 years should be readily achievable. Assuming a reasonable amount of chlorides, the design of the wet / dry interface materials will likely feature a great deal of Alloy 2205 for pitting resistance. Recirculation piping would consist of erosion resistant fiberglass or reasonable substitute. Mechanical devices would have normal maintenance requirements but generally should last the expected life of the facility.

The sorbent absorber, regenerator, and interconnected risers are constructed of carbon steel. Areas of high erosive potential, namely the cyclone separators on the absorber and regenerator, feature an erosion resistant refractory lining. Without the benefit of long term testing, this selection appears to be satisfactory. At full scale, areas of concern might include parts of the risers where direction is changed at elbows.

The flue gas compressor used to pressurize the feed flue gas would also be specified to achieve a 30 year life. A major overhaul can be expected every 6 to 7 years.

Recycle compressors used for internal recirculation of carbon dioxide are expected to be similar to the flue gas compressor, just on a much smaller scale, provided they are kept free of particulate.

The carbon dioxide compressor would also mirror the life expectancy of the flue gas compressor.

Economic Analysis
June 14, 2016

4.0 ECONOMIC ANALYSIS

The methodology for capital costs, operating and maintenance costs and the first year Cost of Electricity (COE) used in this report are based on the DOE/NETL Final Report¹. Background information directly relevant to the analysis is briefly given in each section. All the costs are estimated in October 2015 US dollars. Appendix C provides the background calculations for this methodology.

4.1 CAPITAL COST ESTIMATE

Capital costs of the PC plant are obtained by linearly scaling the costs of Case A (escalated from 2007 to 2015 US dollars) proportional to the coal flow rate. Total inflation over the period from June 2007 to October 2015 is 14.15 percent. Final results are also presented as February 2011 dollars for comparison to earlier developed costs.

The cost of the process equipment for the carbon capture facility, including the SO₂ polishing unit, the BP turbine and the CO₂ compressor and dehydration, are estimated using a combination of vendor quotes and actual pricing information from Stantec's internal database.

As determined by the Association for the Advancement of Cost Engineering International (AACE), the level of cost accuracy for this concept design is defined by a Class IV/V estimate, which is approximately in a range of ± 50 percent.

Items specifically excluded from this capital cost estimate are the same as those in Case A – taxes, site specific considerations, overtime and extra premiums due to an Engineering, Procurement, and Construction (EPC) type contract.

Four levels of capital cost and the estimate basis used in this analysis are given in Table 4-1. Each "level" flows through to the next. From the table, the BEC is the cost of process equipment plus other costs (e.g. cost of supporting facilities and direct/indirect labor costs related to construction and installation). The core equipment costs for Cases A and Cases B are identical. The method of calculating indirects for the final BEC cost of the carbon capture facility utilizes the DOE method to build up costs and includes indirects¹.

TECHNO-ECONOMIC REPORT COMMERCIAL – SCALE SOLID SORBENT CO₂ CAPTURE PROCESS: 550 MW PULVERIZED COAL-FIRED POWER PLANT

Economic Analysis
June 14, 2016

Table 4-1 Capital Cost Structure

Level	Cost	Estimate Basis
Bare Erected Cost (BEC) – Overnight cost expressed in base year (2011) dollars	<ul style="list-style-type: none"> - Process Equipment - Support Facilities (e.g. Offices, Labs) - Direct and Indirect Labor for Construction and/or Installation 	
Total Plant Cost (TPC) – Overnight cost expressed in base year (2011) dollars	<ul style="list-style-type: none"> - BEC - Engineering, Procurement and Construction (EPC) Contractor Services - Process Contingency - Project Contingency 	<ul style="list-style-type: none"> ~ 9.4% of BEC ~ 20% of CO₂ Capture Facility Capital Cost ~ 15% of the Sum of BEC, EPC and Process Contingency
Total Overnight Cost (TOC) – Overnight cost expressed in base year (2011) dollars	<ul style="list-style-type: none"> - TPC - Preproduction - Inventory Capital - Initial Cost - Land - Owner's Costs - Financing Costs 	<ul style="list-style-type: none"> ~ 3% of TPC ~ 2% of TPC 15% of TPC 2.7% of TPC
Total As-Spent Cost (TOC) – Expressed in mixed-year current dollars over the capital expenditure period	<ul style="list-style-type: none"> - TOC - Escalation/Interest During Capital Expenditure Period 	1.140 Multiplier for High Risk Investor-Owned Utility (IOU) Over Five-Year Capital Expenditure Period

Table 4-2 and 4-3 summarize the capital cost estimate results. Appendix C contains the complete capital cost table for the carbon capture facility for both cases. Details on Case A will be discussed in Section 5.0.

TECHNO-ECONOMIC REPORT COMMERCIAL – SCALE SOLID SORBENT CO₂ CAPTURE PROCESS: 550 MW PULVERIZED COAL-FIRED POWER PLANT

Economic Analysis
June 14, 2016

Table 4-2 Capital Cost Summary 2015 Dollars

Description	Unit	CASE B
1. PC Plant	US\$	1,136,090,912
2. Carbon Capture Facility*	US\$	2,139,215,668
3. CO ₂ Compression and Dehydration	US\$	102,688,141
BEC	US\$	3,377,994,721
4. ECM	US\$	318,845,653
5. Process Contingency	US\$	435,362,068
6. Project Contingency	US\$	592,750,828
TPC	US\$	4,724,953,270
7. Preproduction Costs	US\$	151,119,850
8. Inventory Capital	US\$	96,819,840
9. Initial Cost for Catalyst and Chemicals†	US\$	180,802,311
10. Land§	US\$	1,027,368
11. Other Owner's Costs	US\$	708,743,255
12. Financing Costs	US\$	127,575,374
TOC	US\$	5,991,041,269
TASC Multiplier (IOU, 35 Years)	-	1.140
TASC	US\$	6,355,138,125

The cost data presented as 2011 Dollars is:

Table 4-3 Capital Cost Summary 2011 Dollars

Description	Unit	CASE B
1. PC Plant	US\$	1,057,136,133
2. Carbon Capture Facility*	US\$	1,990,546,844
3. CO ₂ Compression and Dehydration	US\$	95,551,636
BEC	US\$	3,143,234,612

* Included cost of the SO₂ polishing unit and the BP turbine.

† Summarized in Table 4-3 for both cases and see more details in Appendix B.

§ Assumed the same cost of land as Case A.

TECHNO-ECONOMIC REPORT COMMERCIAL – SCALE SOLID SORBENT CO₂ CAPTURE PROCESS: 550 MW PULVERIZED COAL-FIRED POWER PLANT

Economic Analysis
June 14, 2016

4. ECM	US\$	296,686,873.52
5. Process Contingency	US\$	405,105,760.51
6. Project Contingency	US\$	551,556,492
TPC	US\$	4,396,583,739
7. Preproduction Costs	US\$	140,617,491
8. Inventory Capital	US\$	90,091,163
9. Initial Cost for Catalyst and Chemicals†	US\$	168,237,113
10. Land§	US\$	955,969
11. Other Owner's Costs	US\$	659,487,807
12. Financing Costs	US\$	118,709,283
TOC	US\$	5,574,682,566
TASC Multiplier (IOU, 35 Years)	-	1.14
TASC	US\$	6,355,138,125

4.2 OPERATING AND MAINTENANCE (O&M) COST ESTIMATE

O&M costs for Case B, summarized in Table 4-4 and 4-5, are developed based on the following:

Fixed O&M Costs

- Annual operating labor cost / administrative and support labor are equal to the escalated costs of Case A.
- Maintenance labor cost / property taxes and insurance are obtained by linearly scaling the escalated costs of Case A proportional to the TPC.

Variable O&M Costs

- Annual costs are calculated at 85 percent capacity factor.
- Water consumption is estimated using the Case A calculation method.
- Maintenance material cost / annual cost of MU and WT chemicals are obtained by linearly scaling the escalated costs of Case A proportional to the TPC.
- Annual costs of limestone / ammonia / SCR catalyst / fly ash and bottom ash disposal are obtained by linearly scaling the escalated costs of Case A proportional to the gross output.

§ Assumed the same cost of land as Case A.

TECHNO-ECONOMIC REPORT COMMERCIAL – SCALE SOLID SORBENT CO₂ CAPTURE PROCESS: 550 MW PULVERIZED COAL-FIRED POWER PLANT

Economic Analysis
June 14, 2016

- Initial and annual costs of sodium hydroxide (NaOH) / sulfuric acid (H₂SO₄) are obtained by linearly scaling the escalated costs of Case A proportional to the coal flow rate. The SO₂ concentration must be less than 1 ppm for the solid sorbent-based process, resulting in a higher NaOH consumption than the amine process. Therefore, annual NaOH cost is doubled to reflect the high consumption.
- Consumption of NaOH / Lime / H₂SO₄ for additional waste water treatment depends on the cooling water demand of the carbon capture facility.
- Makeup sorbent is required to replenish loss due to attrition. Solid sorbent loss of 0.005 percent per cycle (attrition) is assumed. A leakage loss is not accounted for.
- The cost of solid sorbents is US\$5 per pound.
- Consumable pricing (caustic, lime, sulphuric acid, etc.) can be found in Appendix C. Costs extracted from the DOE report¹ for consumables are adjusted to October 2015 dollars with a total inflation rate from June 2007 to October 2015 of 14.15 percent.
- Potential revenue from selling CO₂ product is excluded.

Table 4-4 Operating Cost Summary 2015 Dollars

Parameters	Case B	
	Initial Cost (US\$)	Annual Cost (US\$/year)
Fixed O&M Costs	N/A	141,311,446
Variable O&M Costs	180,802,311	132,049,027
Fuel Cost	0	113,110,975
Total	180,802,311	386,471,468

Table 4-5 Operating Cost Summary 2011 Dollars

Parameters	Case B	
	Initial Cost (US\$)	Annual Cost (US\$/year)
Fixed O&M Costs	N/A	131,490,741
Variable O&M Costs	168,237,113	125,219,297
Fuel Cost	0	105,250,115
Total	168,237,113	361,960,153

Economic Analysis
June 14, 2016

4.3 CO₂ TRANSPORT, STORAGE AND MONITORING (TS&M) COST

Supercritical CO₂ from the sorbent based carbon capture facility is transported via pipeline and injected to a deep saline formation for sequestration. Since a set of assumptions used in modeling the TS&M cost for Case A is applied to Case B, the CO₂ TS&M costs for Cases B linearly depend on the CO₂ removal rate. Results show approximately US\$30 M for both cases.

4.4 COST OF ELECTRICITY (COE) CALCULATION

4.4.1 Methodology

In this report, the methodology developed by DOE / NETL is used to calculate a COE and a Levelized COE (LCOE)¹. Both COE and LCOE are the revenue received by the generator per net megawatt-hour (MWh) during the PC plant's first year of operation. The calculated COE and LCOE are expected to provide an Internal Rate of Return on Equity (IRROE) when the calculation is conducted over the entire economic analysis period as defined in Table 4-6. The difference is that the COE escalates thereafter at a nominal annual rate equal to the general inflation rate of three percent, whereas the LCOE escalates thereafter at a zero nominal annual rate.

Table 4-7 provides details on finance structures of the PC plant with carbon capture, assuming high risk Investor-Owned Utility (IOU).

TECHNO-ECONOMIC REPORT COMMERCIAL – SCALE SOLID SORBENT CO₂ CAPTURE PROCESS: 550 MW PULVERIZED COAL-FIRED POWER PLANT

Economic Analysis
June 14, 2016

Table 4-6 Global Economic Assumption

Parameter	Value
Taxes	
Income Tax Rate	38% (Effective 34% Federal, 6% State)
Capital Depreciation	20 years, 150% declining balance
Investment Tax Credit	0%
Tax Holiday	0 years
Contracting and Financing Terms	
Contracting Strategy	Engineering, Procurement, Construction and Management (EPCM)
Type of Debt Financing	Non-Recourse
Repayment Term of Debt	15 years
Grace Period on Debt Repayment	0 years
Debt Reserve Fund	None
Analysis Time Periods	
Capital Expenditure Period	5 years
Operation Period	30 years
Economic Analysis Period	35 years
Treatment of Capital Costs	
Capital Cost Escalation During Capital Expenditure Period (nominal annual rate)	3.6%
Distribution of TOC Over Capital Expenditure Period (before escalation)	5-year period: 10%, 30%, 25%, 20%, 15%
Working Capital	Zero for all parameters
% of TOC that is Depreciated	100%
Escalation of Operating Revenues and Costs	
Escalation of COE (revenue), O&M Costs and Fuel Costs (nominal annual rate)	3.0%

TECHNO-ECONOMIC REPORT COMMERCIAL – SCALE SOLID SORBENT CO₂ CAPTURE PROCESS: 550 MW PULVERIZED COAL-FIRED POWER PLANT

Economic Analysis
June 14, 2016

Table 4-7 Financial Structure for High Risk IOU

Parameters	%	Current (Nominal) Dollar Cost	Weighted Current (Nominal) Cost	After Tax Weighted Cost of Capital
Debt	45	5.5%	2.475%	
Equity	55	12%	6.6%	
Total	100		9.075%	8.13%

4.4.2 Cost of Electricity Formulas

The COE is calculated by the following equation published in the DOE report¹. All costs used in this equation are expressed in base-year dollars. The base year is assumed to be 2011, which is the first year of capital expenditure. Since the COE and O&M and fuel costs escalate thereafter at three percent nominal annual general inflation rate, all costs expressed in first-year-of-operation dollars are equivalent to base-year costs. As a result, the first-year COE is also equivalent to the base year COE.

$$\text{COE} = \frac{(CCF)(TOC) + (OC_{\text{FIX}}) + (CF)(OC_{\text{VAR}})}{(CF)(\text{MWh})} \quad (\text{Eq.1})$$

where

COE = revenue received by the generator per net megawatt-hour during the PC plant's first year of operation (but expressed in base-year dollars, \$/MWh or equivalent to mills/kWh).

CCF = capital charge factor, which was 0.124 for high risk IOU, 5-year capital expenditure period.

TOC = total overnight cost, expressed in base-year dollars.

OCFIX = the sum of all fixed annual operating costs, expressed in base year dollars.

OCVAR= the sum of all variable annual operating costs, including fuel at 100% capacity factor, expressed in base year dollars.

CF = plant capacity factor, assumed to be constant over the operational period.

MWh = annual net megawatt-hours of power generated at 100% capacity factor.

TECHNO-ECONOMIC REPORT COMMERCIAL – SCALE SOLID SORBENT CO₂ CAPTURE PROCESS: 550 MW PULVERIZED COAL-FIRED POWER PLANT

Economic Analysis
June 14, 2016

4.4.3 Results

Both base year and first operation year COE / LCOE for Case B are summarized in Table 4-8 and 4-9.

Table 4-8 COE and LCOE Summary in 2015 Dollars

Parameter	Case B
COE (mills/kWh, base year 2015\$)	283.9
Capital costs	181.4
Fixed O&M Costs	34.5
Variable O&M Costs	32.9
Fuel Costs	27.6
CO ₂ T&SM Costs	7.5
LCOE (mills/kWh, base year 2015\$)	359.9
COE (mills/kWh, first operation year 2020\$)	329.1
LCOE (mills/kWh, first operation year 2020\$)	417.2

Table 4-9 COE and LCOE Summary in 2011 Dollars

Parameter	Case B
COE (mills/kWh, base year 2011\$)	264.2
Capital costs	168.8
Fixed O&M Costs	32.1
Variable O&M Costs	30.6
Fuel Costs	25.7
CO ₂ T&SM Costs	7.0
LCOE (mills/kWh, base year 2011\$)	334.9
COE (mills/kWh, first operation year 2016\$)	306.2
LCOE (mills/kWh, first operation year 2016\$)	388.2

TECHNO-ECONOMIC REPORT COMMERCIAL – SCALE SOLID SORBENT CO₂ CAPTURE PROCESS: 550 MW PULVERIZED COAL-FIRED POWER PLANT

Comparable Carbon Capture Technologies
June 14, 2016

5.0 COMPARABLE CARBON CAPTURE TECHNOLOGIES

In this section, the developed costs for Case B from Section 4 are compared to the established costs for Case A from the DOE report¹.

TECHNO-ECONOMIC REPORT COMMERCIAL – SCALE SOLID SORBENT CO₂ CAPTURE PROCESS: 550 MW PULVERIZED COAL-FIRED POWER PLANT

Comparable Carbon Capture Technologies
June 14, 2016

Table 5-1 Performance and Economic Comparison in 2015 Dollars*

Description	Unit	Case A	Case B
PERFORMANCE			
1. Gross Power Output	kW _e	672,700	718,738
2. Electrical Output – BP Turbine	kW _e	0	32,525
3. Auxiliary Load Summary	kW _e	122,740	
• PC Plant	kW _e	51,550	43,722
• SO ₂ Polishing Unit	kW _e	0	2,845
• Carbon Capture Facility	kW _e	22,400	92,558
• Compression / Dehydration Unit	kW _e	48,790	62,165
4. Net Power Output	kW _e	549,960	549,969
5. Thermal Input	kW _{th}	2,102,644	2,383,129
• Gross Output – PC Plant	kW _{th}	1,513,467	-
• Sorbent Regeneration	kW _{th}	589,177	-
6. Coal Flow Rate	lb/hr	614,994	697,032
7. Coal HHV	Btu/lb	11,666	11,666
8. Net Plant HHV Efficiency	%	26.2	23.1
9. Net Plant HHV Heat Rate	Btu/kWh	13,046	14,785
10. Net kWh @ 85% Capacity Factor	kWh-net	4,095,002,160	4,095,075,837
11. CO ₂ Capture Profile			
• CO ₂ Produced	lb/hr	1,459,838	1,651,831
• CO ₂ Captured	lb/hr	1,313,960	1,486,648
• CO ₂ Emission	lb/hr	145,878	165,183
12. Circulating Cooling Water Demand [†]	gpm	540,000	487,120
• CW Demand – PC Plant	gpm	200,000	226,679
• CW Demand – Capture Facility	gpm	340,000	260,441
13. Raw Water Consumption	1000 gal/D	8,081	7,802
14. Carbon Capture Facility			
• Solvent Regeneration Energy	Btu/lb CO ₂	1,530	2,042
• Total Energy Requirement	MMBtu/hr	2,010	3,036
• Steam Extraction Flow	lb/hr	1,931,497	2,709,721
• Amount of Solid Sorbent	lb/hr	N/A	27,530,510

[†] Assumed maximum circulating CW demands required by the PC plant and the carbon facility for Case A.

TECHNO-ECONOMIC REPORT COMMERCIAL – SCALE SOLID SORBENT CO₂ CAPTURE PROCESS: 550 MW PULVERIZED COAL-FIRED POWER PLANT

Comparable Carbon Capture Technologies
June 14, 2016

Description	Unit	Case A		Case B	
COSTS					
A. Capital Cost					
1. Bare Erected Cost	\$	1,415,830,829		3,377,994,721	
• PC Plant	\$	1,047,285,351		1,136,090,912	
• Carbon Capture Facility	\$	325,099,223		2,139,215,668	
• CO ₂ Compression / Dehydration	\$	43,446,256		102,688,141	
2. Total Plant Cost	2015\$	1,847,389,360		4,724,953,270	
3. Total Plant Cost	2015\$/kW	3,359		8,591	
4. Total Overnight Cost	2015\$	2,266,413,999		5,991,041,269	
5. Total Overnight Cost	2015\$/kW	4,121		10,893	
6. Total As-Spent Cost	2015\$	2,583,711,959		6,829,787,046	
7. Total As-Spent Cost	2015\$/kW	4,698		12,417	
B. Operating & Maintenance Cost		Initial Cost	Annual Cost	Initial Cost	Annual Cost
1. Total Fixed Operating Costs	\$	N/A	61,025,905	N/A	141,311,446
2. Total Variable Operating Costs	\$	3,096,311	42,801,959	180,802,311	134,571,604
• Maintenance Material Cost	\$	-	17,858,299	-	47,206,648
• Consumables	\$	3,096,311	24,943,660	180,802,311	87,364,956
C. Fuel Costs	\$	99,798,295		113,110,975	
D. CO₂ TS&M Costs	\$	27,112,265		30,675,509	
E. COE contribution (2015\$)	mills/kWh	125.0		283.9	
• Capital Costs	mills/kWh	68.6		181.4	
• Fixed Operating Costs	mills/kWh	14.9		34.5	
• Variable Operating Costs	mills/kWh	10.5		32.9	
• Fuel Costs	mills/kWh	24.4		27.6	
• CO ₂ T&SM Costs	mills/kWh	6.6		7.5	
F. LCOE (2015\$)	mills/kWh	158.7		359.9	

TECHNO-ECONOMIC REPORT COMMERCIAL – SCALE SOLID SORBENT CO₂ CAPTURE PROCESS: 550 MW PULVERIZED COAL-FIRED POWER PLANT

Comparable Carbon Capture Technologies
June 14, 2016

Table 5-2 Economic Comparison in 2011 Dollars

Description	Unit	Case A		Case B	
COSTS					
A. Capital Cost					
1. Bare Erected Cost	\$	1,317,434,997		3,143,235,000	
• PC Plant	\$	974,502,282		1,057,136,133	
• Carbon Capture Facility	\$	302,505,840		1,990,546,844	
• CO ₂ Compression / Dehydration	\$	40,426,877		95,551,636	
2. Total Plant Cost	2011\$	1,719,001,555		4,396,584,000	
3. Total Plant Cost	2011\$/kW		3,126		7,994
4. Total Overnight Cost	2011\$	2,108,905,287		5,574,683,000	
5. Total Overnight Cost	2011\$/kW		3,835		10,136
6. Total As-Spent Cost	2011\$	2,404,152,028		6,355,138,000	
7. Total As-Spent Cost	2011\$/kW		4,372		11,554
B. Operating & Maintenance Cost		Initial Cost	Annual Cost	Initial Cost	Annual Cost
1. Total Fixed Operating Costs	\$	N/A	56,784,795	N/A	131,490,741
2. Total Variable Operating Costs	\$	2,881,127	39,827,356	168,237,114	125,219,297
• Maintenance Material Cost	\$	-	16,617,203	-	43,925,933
• Consumables	\$	2,881,127	23,210,153	168,237,114	81,293,364
C. Fuel Costs	\$	92,862,624		105,250,115	
D. CO₂ TS&M Costs	\$	25,228,047		28,543,657	
E. COE contribution (2011\$)	mills/kWh	116.3		264.2	
• Capital Costs	mills/kWh	63.8		168.8	
• Fixed Operating Costs	mills/kWh	13.9		32.1	
• Variable Operating Costs	mills/kWh	9.8		30.6	
• Fuel Costs	mills/kWh	22.7		25.7	
• CO ₂ T&SM Costs	mills/kWh	6.1		7.0	
F. LCOE (2011\$)	mills/kWh	147.7		334.9	

TECHNO-ECONOMIC REPORT COMMERCIAL – SCALE SOLID SORBENT CO₂ CAPTURE PROCESS: 550 MW PULVERIZED COAL-FIRED POWER PLANT

Comparable Carbon Capture Technologies
June 14, 2016

The cost per ton of carbon dioxide captured is presented below in Table 5-3.

Table 5-3 \$/ton CO₂ Captured Results

	Case A	Case B
2015 Dollars	133 \$/ton	256 \$/ton
2011 Dollars	124 \$/ton	239 \$/ton

Conclusions
June 14, 2016

6.0 CONCLUSIONS

As can be seen in previous sections, the solid sorbent based capture technology does not compare favorably to conventional amine based absorption. The LCOE, a factor comparing both capital and operating costs, is larger for solid sorbents by a factor of 2.2. There are many contributing factors to this higher cost of energy, but primarily the central issue is the lower working capacity discovered during the pilot.

On the capital side, the pilot results lead to a significant increase in the number of parallel treatment trains. The original TEA was based on a higher working capacity, which only required 4 parallel absorber / desorber trains. The actual residence time developed by the pilot of 65 minutes resulted in a substantial increase in mass flow of sorbent. Fluidizing these solids limits how deep the beds can be, so additional contact can only be provided by adding more parallel trains. Based on pilot results, 44 trains are necessary for 65 minutes of residence time.

Eliminating the latent heat portions of regenerating a solid sorbent is the promising advantage of the technology over amine based, water solution absorption. The growing volume of sorbent necessary for 65 minutes of contact time results in a significant increase in the amount of steam for regeneration. This study pins the output of the power plant at 550 MW net at all times, so as steam for regeneration increases, the gross output of the plant must also increase, leading to higher capital and operating costs for the base power plant.

On the operating side, due to attrition losses being calculated on the total mass flow of sorbent, the higher solids flow rate does result in a higher replacement cost of sorbent. Also attributed to the growth of the power plant, fuel costs rise, again leading to a higher LCOE for the solid sorbent case.

Based on this assessment, solid sorbents are not competitive with amine based technology at this time. In order to restore competitiveness, the working capacity of the sorbent must be increased.

TECHNO-ECONOMIC REPORT COMMERCIAL – SCALE SOLID SORBENT CO₂ CAPTURE PROCESS: 550 MW PULVERIZED COAL-FIRED POWER PLANT

References
June 14, 2016

7.0 REFERENCES

- 1 Cost and Performance Baseline for Fossil Energy Plants – Volume 1: Bituminous Coal and Natural Gas to Electricity, Revision 3, July, 6, 2015, DOE/NETL-2015/1723.
- 2 Techno-Economic Report Commercial-Scale Solid Sorbent CO₂ Capture Process: 550 MW Pulverized Coal-Fired Power Plant, July 12, 2011, Stantec.

TECHNO-ECONOMIC REPORT COMMERCIAL – SCALE SOLID SORBENT CO₂ CAPTURE PROCESS: 550 MW PULVERIZED COAL-FIRED POWER PLANT

Appendices
June 14, 2016

8.0 APPENDICES

TECHNO-ECONOMIC REPORT COMMERCIAL – SCALE SOLID SORBENT CO₂ CAPTURE PROCESS: 550 MW PULVERIZED COAL-FIRED POWER PLANT

Appendices
June 14, 2016

Appendix A PILOT PLANT PROCESS FLOW DIAGRAM

TECHNO-ECONOMIC REPORT COMMERCIAL – SCALE SOLID SORBENT CO₂ CAPTURE PROCESS: 550 MW PULVERIZED COAL-FIRED POWER PLANT

Appendices
June 14, 2016

Appendix B GATECYCLE RESULTS

Table B-1 Comparable GateCycle Results with DOE's Cases 9 and 10

	Bituminous Baseline Study (DOE/NETL, 2010)		Process Validation	
	Subcritical Power Plant		Subcritical Power Plant	
	Case 9	Case 10	Case 9	Case 10
GROSS (STEAM TURBINE) POWER at Generator Terminal, kWe¹	582,600	672,700	582,600	672,698
AUXILIARY LOAD SUMMARY, kWe				
- Coal Handling and Conveying	450	540	450	540
- Pulverizers	2,970	4,180	2,970	4,180
- Sorbent Handling & Reagent Preparation	950	1,370	950	1,370
- Ash Handling	570	800	570	800
- Primary Air Fans	1,400	1,960	1,400	1,961
- Forced Draft Fans	1,780	2,500	1,780	2,500
- Induced Draft Fans	7,540	12,080	7,545	12,082
- SCR	50	70	50	70
- Baghouse	70	100	70	100
- Wet FGD	3,180	4,470	3,180	4,470
- Econamine FG Plus Auxiliaries	-	22,400	-	22,400
- CO ₂ Compression	-	48,790	-	48,790
- Miscellaneous Balance of Plant	2,000	2,000	2,000	2,000
- Steam Turbine Auxiliaries	400	400	400	400
- Condensate Pumps	890	700	890	700
- Circulating Water Pumps ²	5,250	11,190	5,247	4,159 (Power) + 7,031 (Capture)
- Ground Water Pumps	530	1,020	530	1,020
- Cooling Tower Fans ²	2,720	5,820	2,719	2,155 (Power) + 3,665 (Capture)
- Transformer Losses	1,830	2,350	1,830	2,350
TOTAL AUXILIARIES, kWe	32,580	122,740	32,582	122,742
NET POWER, kWe	550,020	549,960	550,018	549,956
- Net Plant Efficiency (HHV)	36.8%	26.2%	36.8%	26.2%
- Net Plant Heat Rate, BTU/kWh	9,277	13,046	9,277	13,046
CONDENSER COOLING DUTY (MMBTU/hr)³	2,432	1,928	2,431	1,927

TECHNO-ECONOMIC REPORT COMMERCIAL – SCALE SOLID SORBENT CO₂ CAPTURE PROCESS: 550 MW PULVERIZED COAL-FIRED POWER PLANT

Appendices
June 14, 2016

	Bituminous Baseline Study (DOE/NETL, 2010)		Process Validation	
	Subcritical Power Plant		Subcritical Power Plant	
	Case 9	Case 10	Case 9	Case 10
CONSUMABLES				
- As-Received Coal Feed, lb/hr	437,378	614,994	437,378	614,994
- HHV Thermal Input, kW	1,495,379	2,102,643	1,495,381	2,102,645
FLUE GAS				
- Flow Rate before Baghouse, lb/hr	4,814,113	6,755,062	4,814,607	6,755,062
- Temperature before Baghouse, °F	337	337	336.9	336.8
- Composition (%by mole)				
- Ar	0.87%	0.87%	0.87%	0.87%
- CO ₂	14.47%	14.50%	14.51%	14.54%
- H ₂	0.00%	0.00%	0.00%	0.00%
- H ₂ O	8.68%	8.70%	8.72%	8.73%
- N ₂	73.25%	73.24%	73.24%	73.23%
- O ₂	2.50%	2.47%	2.46%	2.42%
- SO ₂	0.21%	0.21%	0.21%	0.21%
STEAM EXTRACTION FROM IP/LP TURBINE TO CAPTURE PLANT				
- Flow Rate, lb/hr	-	1,931,497	-	1,931,497
- Temperature, °F	-	564.7	-	563
- Pressure, psia	-	73.5	-	73.5

Notes:

1. Boiler feed pump is connected to boiler feed pump turbine drive. Load of this pump is not included in the gross power at generator terminal.
2. Condenser heat duty for Case 9 (2432 MMBtu/hr) is higher than Case 10 (1,928 MMBtu/hr); however, the cooling tower fan load for Case 9 (2,720 kW) is lower than Case 10 (5,820 kW). It is assumed that Case 10 has already included the fan load for both Power Island and Capture Island.
3. Condenser cooling duty shown in the Table is based on a steam cycle only.

TECHNO-ECONOMIC REPORT COMMERCIAL – SCALE SOLID SORBENT CO₂ CAPTURE PROCESS: 550 MW PULVERIZED COAL-FIRED POWER PLANT

Appendix C Performance and Economic Calculations
June 14, 2016

Appendix C PERFORMANCE AND ECONOMIC CALCULATIONS

Stantec

Calculation Sheet

Customer	ADA-ES	Proj No	111100208																					
Project Title	Solid Sorbent CO ₂ Capture Pilot System	Calc No																						
Calculation Title	Performance and Cost Analysis for an Integration of Sorbent BN-based CO ₂ Capture with a 550 MW (net) Subcritical Pulverized Coal-fired Power Plant	Phase/CTR																						
Elec File Location																								
Project File Location	V:\1111\active\11110080\design\1900\230\lcoe_case10_ADA_bt_20110530_rev.xlsx																							
Rev	Date	By	Checked	Rev	Date	By	Checked	Rev	Date	By	Checked	Rev	Date	By	Checked	Rev	Date	By	Checked	Rev	Date	By	Checked	
Elec File Location	26-Nov-15	BT	MER																					
Line No.	Description		unit	CASE 9 - (REF. PP)						CASE 10 - (REF. PP WITH FLUOR'S AMINE BASED CAPTURE)						CASE 10 WITH POLYSTYRENE BN SORBENT						NOTE		
1	PLANT PERFORMANCE																							
2	A. Gross Power Output		kWe	582,600						672,700						718,738								
3																								
4	B. Parasitic Power																							
5	· Auxiliary Power Requirement																							
6	· Power Plant + FGD																							
7	Coal Handling and Conveying		kWe	450						540						612,00								
8	Pulverizers		kWe	2,970						4,180						4,738								
9	Sorbent Handling & Reagent Prepara		kWe	950						1,370						1,553								
10	Ash Handling		kWe	570						800						907								
11	Primary Air Fans		kWe	1,400						1,960						2,222								
12	Forced Draft Fans		kWe	1,780						2,500						2,833								
13	Induced Draft Fans		kWe	7,540						12,080						13,671								
14	SCR		kWe	50						70						79								
15	Baghouse		kWe	70						100						113								
16	Wet FGD		kWe	3,180						4,470						5,066								
17	Miscellaneous Balance of Plant		kWe	2,000						2,000						2,000								
18	Steam Turbine Auxiliaries		kWe	400						400						400								
19	Condensate Pumps		kWe	890						700						621								
20	Circulating Water Pump		kWe	5,250						11,190						3,703								
21	Ground Water Pumps		kWe	530						1,020						775								
22	Cooling Tower Fans		kWe	2,720						5,820						1,918								
23	Transformer Losses		kWe	1,830						2,350						2,511								
24	Sub-Total		kWe	32,580						51,550						43,722								
25																								
26	<u>Flue Gas Polishing Scrubber Unit</u>																							
27	Recirculation Pump		kWe	0						0						1,138								
28	Recirculation Pump		kWe	0						0						1,138								
29	Bleed Pump		kWe	0						0						284								
30	Bleed Pump		kWe	0						0						284								
31	Sub-Total		kWe	0						0						2,845								
32																								
33	<u>CO₂ Capture</u>																							
34	Econamine FG Plus Auxiliaries (including Flue Gas Supply, SO ₂ polishing, CO ₂ abs. Solvent stripping and reclaiming)		kWe	0						22,400						0								
35	Condensate Return Pump		kWe	0						0						325						68)		
36	Cooling Tower Fan Power		kWe	0						0						2,503						83) / CO ₂ removal rate		
37	Circulating Water Pump		kWe	0						0						4,802						83) / CO ₂ removal rate		
38	Flue Gas Compressor		kWe	0						0						53,617						Scaling CO ₂ Removal Rate line (Line: 63)		
39	CO ₂ Recycle Compressor		kWe	0						0						14,787						Scaling CO ₂ Removal Rate line (Line: 63)		
40	Lean Sorbent Lift Compressor (NEW)		kWe	0						0						16,527						Scaling CO ₂ Removal Rate line (Line: 63)		
41	Sub-Total		kWe	0						22,400						92,562								
42																								
43	<u>CO₂ Compressor</u>																							
44	CO ₂ Compressor		kWe	0						48,790						62,165								
45	Sub-Total		kWe	0						48,790						62,165								
46	Total Auxiliary Power		kWe	32,580						122,740						201,293								
47																								
48	GRAND Total Parasitic Power		kWe	32,580						122,740						201,293								
49																								
50	C. Back Pressure Turbine Generator Outp		kWe	0						0						32,525								
51	D. Net Power Output		kWe	550,020						549,960						549,970								
52	E. Net Power Reduction		kWe	N/A						0						0								
53	F. Coal HHV		Btu/lbm	11,666						11,666						11,666								
54	G. Coal Flow Rate		lbm/hr	437,378						614,994						697,032								
55	H. Thermal Input		kW _{th}	1,495,379						2,102,644						2,383,129								
56	· Power Plant		kW _{th}	1,495,379						1,513,467														
57	· CO ₂ Capture		kW _{th}	N/A						589,177														
58	I. Gross Output to Thermal Input to PP		%	39.0						44.4						44.4								

Stantec

Calculation Sheet

Customer	ADA-ES	Proj No	111100208																									
Project Title	Solid Sorbent CO ₂ Capture Pilot System	Calc No																										
Calculation Title	Performance and Cost Analysis for an Integration of Sorbent BN-based CO ₂ Capture with a 550 MW (net) Subcritical Pulverized Coal-fired Power Plant	Phase/CTR																										
Elec File Location																												
Project File Location	V:\1111\active\11110080\design\1900\230\coe_case10 ADA_bt_20110530_rev.xlsx																											
Rev	Date	By	Checked	Rev	Date	By	Checked	Rev	Date	By	Checked	Rev	Date	By	Checked	Rev	Date	By	Checked	Rev	Date	By	Checked					
Elec File Location	26-Nov-15	BT	MER																									
Line No.	Description	unit		CASE 9 - (REF. PP)					CASE 10 - (REF. PP WITH FLUOR'S AMINE BASED CAPTURE)					CASE 10 WITH POLYSTYRENE BN SORBENT					NOTE									
55	J. Net Plant HHV Efficiency	%		36.8					26.2					23.1														
56	K. Energy Penalty	%		N/A					10.6					13.7														
57	L. Net Plant HHV Heat Rate	Btu/kWh		9,277					13,046					14,785														
58	M. Capacity Factor	%		85					85					85														
59	N. Net kWh @ 85% Capacity Factor	kWh-net		4,095,448.920					4,095,002,160					4,095,075,837.00														
60																												
61	CO ₂ CAPTURE PROFILE																											
62	A. CO ₂ Produced	lbm/hr		1,038,691					1,459,838					1,651,831.00														
63	B. CO ₂ Captured	lbm/hr		0					1,313,960					1,486,648														
64	C. CO ₂ Emission	lbm/hr		1,038,691					145,878					165,183														
65																												
66	CO ₂ REMOVAL SYSTEM PARAMETERS																											
67	A. Solvent Regeneration Energy	Btu/lbm CO ₂		N/A					1,530					2,042														
68	B. Total Energy Requirement	MMBtu/hr		N/A					2,010					3,036														
69	· Heat of Desorption	MMBtu/hr		N/A					2,010																			
70	· Sensible Heat of Solid / Liquid	MMBtu/hr		N/A					0																			
71	- Heat Capacity of Solid	(Btu/lbm °F)		N/A					0																			
72	- Delta Temp	(°F)		N/A					0																			
73	- Solid/liquid recirc. Rate	(lbm/hr)		N/A					0																			
74	· Sensible Heat of CO ₂	MMBtu/hr		N/A					0																			
75	- Heat Capacity of CO ₂	(Btu/lbm°F)		N/A					0																			
76	- Delta Temp	(°F)		N/A					0																			
77	C. Steam Pressure	psia		N/A					74					45														
78	D. Steam Temperature	°F		N/A					306					274														
79	J. Steam Extraction Flow	lbm/hr		N/A					1,931,497					2,709,721														
80																												
81	CIRC. COOLING WATER RATE																											
82	A. CW Requirement for Power Plant	gpm		170,000					200,000					226,679														
83	B. CW Requirement for Carbon Capture	gpm		0					340,000					260,441					Scaling CO ₂ Removal Rate line (Line: 113)									
84	Total	gpm		170,000					540,000					487,120														
85																												
86	CW PARAMETERS																											
87	A. Cooling Water to condenser	°F		60					60					60					DOE's Report - 2010/1397, p.327									
88	B. Cooling Water from condenser	°F		80					80					80					DOE's Report - 2010/1397, p.327									
89	C. Cooling Water Temp. range	°F		20					20					20					DOE's Report - 2010/1397, p.42									
90	D. Cooling Water Makeup Rate	gpm																										
91	· Evaporative losses	%		0.8					0.8					0.8					% of Circ. Water flow rate/10°F of range, DOE's Report-2010/1397, p.42									
92	· Drift losses	%		0.001					0.001					0.001					% of Circ. Water flow rate DOE's Report - 2010/1397, p.42									
93	· Blowdown losses	-		= Evaporative losses / (Cycles of Concentration - 1)					= Evaporative losses / (Cycles of Concentration - 1)					= Evaporative losses / (Cycles of Concentration - 1)					DOE's Report - 2010/1397, p.42									
94	: Cycles of concentration	-		4					4					4					DOE's Report - 2010/1397, p.42									
95																												
96	WATER DEMAND FOR COOLING TOWER																											
97	A. Calculated Water Demand																		Assume the CW makeup flow rate (p.42) is equal to the water demand.									
98	· Evaporative losses	gpm		2,720					8,640					7,794														
99	· Drift losses	gpm		1.7					5.4					4.9														
100	· Blowdown losses	gpm		906.7					2,880					2,598														
101	Total	gpm		3,628.4					11,525					10,397														
102	B. DOE's Water Demand	gpm		5,404					11,580					N/A					DOE's Report - 2010/1397, p.333 for Case 9 and p.359 for Case 10									
103	C. % Error	%		33					0.5					N/A														
104																												
105	RAW WATER CONSUMPTION			(Exhibit 4-11, p.333)					(Exhibit 4-24, p.359)					(Calculation)														
106	A. RW Consumption		Demand	Internal	Withdraw.	Discharge	Consumption	Demand	Internal	Withdraw.	Discharge	Consumption	Demand	Internal	Withdraw.	Discharge	Consumption											
107	· Capture Makeup	gpm	0	0	0	0	0	0	39	0	39	0	39	0	0	0	0	0	Assumed									
108	· FGD Makeup	gpm	1,017	0	1,017	0	1,017	1,460	0	1,460	0	1,460	2,052	0	0	2,052	0	2,052	Scaling coal flow rate * 1.24 for Demand; Assume zero for Int. & Withdraw									
109	· BFW Makeup	gpm	74	0	74	0	74	104	0	104	0	104	146	0	0	146	0	14,032	Scaling coal flow rate * 1.24 for Demand; Assume zero for Int. & Withdraw									
110	· Cooling Tower	gpm	5,404	600	4,804	1,215	3,589	11,580	1,959	9,621	2,604	7,017	10,397	1,758.83	8,638	2,337.93	6,300	Scaling Case 10 - Internal and Discharge.										
111	Total	gpm	6,495	600	5,895	1,215	4,680	13,183	1,959	11,224	2,604	8,620	12,595	1,759	10,836	2,338	22,384											
112		(1000 gal/D)	9,353	864	8,489	1,750	6,739	18,983.52	2,820.96	16,163	3,750	12,413	18,137	2,533	15,604	3,367	12,237											
113	B. 50% RW Withdrawal (Calculated)	(1000 gal/D)		4,244					8,081					7,802														
114	C. DOE's RW Consumption	(1000 gal/D)		(Exhibit 4-17, p.352)					4,245					(Exhibit 4-30, p.379)					8,081					N/A	Daily consumption is calculated on a 100% operating capacity basis.			
115	D. % Error	%		0.0					0.0					0.0					N/A									

Calculation Sheet

Customer ADA-ES Project Title Solid Sorbent CO ₂ Capture Pilot System Calculation Title Performance and Cost Analysis for an Integration of Sorbent BN-based CO ₂ Capture with a 550 MW (net) Subcritical Pulverized Coal-fired Power Plant Elec File Location Project File Location V:\1111\active\11110080\design\1900\230\coe_case10 ADA_bt_20110530_rev.xlsx																	Proj No 111100208 Calc No Phase/CTR		
																	INITIAL DESIGN / DOE INDIRECT COSTS		
Rev	Date	By	Checked	Rev	Date	By	Checked	Rev	Date	By	Checked	Rev	Date	By	Checked	Rev	Date	By	Checked
Elec File Location	26-Nov-15	BT	MER																
Line No.	Description		unit	CASE 9 - (REF. PP)				CASE 10 - (REF. PP WITH FLUOR'S AMINE BASED CAPTURE)				CASE 10 WITH POLYSTYRENE BN SORBENT				NOTE			
116																			
117	COSTS																		
118	A. Capital Cost			June	2007	Oct	2015	June	2007	Oct	2015	Oct	2015						
119	· Bare Erected Cost (BEC)				\$/kW	14.15			\$/kW	14.15		\$/kW	1,136,090,912						
120	· Acct 1. Coal & Sorbent Handling		\$	31,895,000	58	\$ 36,408,784	66	\$ 39,542,000	72	\$ 45,137,989	82	\$ 48,965,507	89	Scaling coal flow rate linearly (Line: 54)					
121	· Acct 2. Coal & Sorbent Prep & Feed		\$	15,075,000	23	\$ 17,208,416	31	\$ 18,984,000	35	\$ 21,670,618	39	\$ 23,508,199	43	Scaling coal flow rate linearly (Line: 54)					
122	· Acct 3. Feedwater & Misc. BOP Syster		\$	58,766,000	102	\$ 67,082,571	122	\$ 78,063,000	142	\$ 89,110,485	162	\$ 96,666,694	176	Scaling coal flow rate linearly (Line: 54)					
123	· Acct 4. PC Boiler		\$	221,527,000	403	\$ 252,877,528	460	\$ 280,980,000	511	\$ 320,744,323	583	\$ 347,942,144	633	Scaling coal flow rate linearly (Line: 54)					
124	· Acct 5. Flue Gas Cleanup		\$	112,287,000	204	\$ 128,177,870	233	\$ 144,350,000	262	\$ 164,778,429	300	\$ 178,750,973	325	Scaling coal flow rate linearly (Line: 54)					
125	· Acct 6. Combustion Turbine/Accesso		\$	-	0	\$ -	-	\$ -	0	\$ -	-	\$ 0	Scaling coal flow rate linearly (Line: 54)						
126	· Acct 7. HRSG, Ducting & Stack		\$	31,679,000	58	\$ 36,162,216	68	\$ 33,792,000	61	\$ 38,574,248	70	\$ 41,845,188	76	Scaling coal flow rate linearly (Line: 54)					
127	· Acct 8. Steam Turbine Generator		\$	93,508,000	170	\$ 106,741,263	194	\$ 105,470,000	192	\$ 120,396,127	219	\$ 130,605,232	237	Scaling coal flow rate linearly (Line: 54)					
128	· Acct 9. Cooling Water System		\$	32,189,000	59	\$ 36,744,391	67	\$ 52,626,000	96	\$ 60,073,638	109	\$ 65,167,639	118	Scaling coal flow rate linearly (Line: 54)					
129	· Acct 10. Ash/Spent Sorbent Handling		\$	10,833,000	20	\$ 12,366,087	22	\$ 13,088,000	24	\$ 14,940,215	27	\$ 16,207,085	29	Scaling coal flow rate linearly (Line: 54)					
130	· Acct 11. Accessory Electric Plant		\$	42,692,000	78	\$ 48,733,777	89	\$ 68,316,000	124	\$ 77,984,089	142	\$ 84,596,824	154	Scaling coal flow rate linearly (Line: 54)					
131	· Acct 12. Instrumentation & Control		\$	17,451,000	32	\$ 19,920,668	36	\$ 20,024,000	34	\$ 22,857,799	42	\$ 24,796,048	45	Scaling coal flow rate linearly (Line: 54)					
132	· Acct 13. Improvements to Site		\$	10,679,000	19	\$ 12,190,293	22	\$ 12,006,000	22	\$ 13,705,091	25	\$ 14,867,227	27	Scaling coal flow rate linearly (Line: 54)					
133	· Acct 14. Buildings & Structures		\$	45,727,000	83	\$ 52,198,291	95	\$ 50,207,000	91	\$ 57,312,301	104	\$ 62,172,152	113	Scaling coal flow rate linearly (Line: 54)					
134	· CO ₂ Removal System		\$	-	0	\$ -	-	\$ 284,795,000	518	\$ 325,099,223	591	\$ 2,139,215,668	3,890	Back pressure turbine included and Stantec-Shaw indirect costs included					
135	· CO ₂ Compression & Drying		\$	-	0	\$ -	-	\$ 38,060,000	69	\$ 43,446,256	79	\$ 102,688,141	187						
136	· Total BEC		\$	724,308,000	1,317	\$ 826,812,155	1,503	\$ 1,240,303,000	2,255	\$ 1,415,830,829	2,574	\$ 3,377,994,721	6,142						
137																			
138	· ECM + Home Office Expenses + Fee		\$	68,082,000	124	\$ 77,716,973	141	\$ 117,071,000	213	\$ 133,638,902	243	\$ 318,845,653.02	580	9.4% of TPC					
139	· Process Contingencies (20% of CO ₂ Removal System)		\$	-	-	\$ -	-	\$ 57,960,000	105	\$ 66,162,506	120	\$ 435,362,067.83	792	20% of the CO ₂ Removal System					
140	· Project Contingencies (15 - 30% of BEC + EPC + Process Contingency)		\$	100,043,000	182	\$ 114,201,097	208	\$ 203,025,000	369	\$ 231,757,122	421	\$ 592,750,828	1,078	Project Contingencies is about 14.34% of the BEC + ECM + Process Contingency.					
141	· Total Plant Cost		\$	892,433,000	1,623	\$ 1,018,730,225	1,852	\$ 1,618,359,000	2,943	\$ 1,847,389,360	3,359	\$ 4,724,953,270	8,591						
142																			
143	· Preproduction Costs		\$	28,543,000	52	\$ 32,582,409	59	\$ 48,733,000	89	\$ 55,629,700	101	\$ 151,119,850	275	Scaling (Preproductio/TPC) _{case 9} ~3%					
144	· Inventory Capital		\$	18,287,000	33	\$ 20,874,978	38	\$ 28,281,000	51	\$ 32,283,331	59	\$ 96,819,840	176	Scaling (Inv. Ca./TPC) _{case 9} ~2%					
145	· Initial Cost for Catalyst and Chemicals		\$	-	-	\$ -	-	\$ 2,712,000	5	\$ 3,095,803	6	\$ 180,802,311	329						
146	· Land		\$	900,000	2	\$ 1,027,368	2	\$ 900,000	2	\$ 1,027,368	2	\$ 1,027,368	2	Equal to Case 10					
147	· Other Owner's Costs		\$	133,865,000	240	\$ 152,809,591	278	\$ 242,754,000	441	\$ 277,108,575	504	\$ 708,743,255	1,289	Scaling (Other Own./TPC) _{case 9,10} ~15%					
148	· Financing Costs		\$	24,096,000	44	\$ 27,506,069	50	\$ 43,696,000	79	\$ 49,879,863	91	\$ 127,575,374	232	Scaling (Fin. Cost/TPC) _{case 9,10} ~27%					
149	· Total Overnight Cost																		

Calculation Sheet

Customer	ADA-ES															Proj No	111100208			
Project Title	Solid Sorbent CO ₂ Capture Pilot System															Calc No				
Calculation Title	Performance and Cost Analysis for an Integration of Sorbent BN-based CO ₂ Capture with a 550 MW (net) Subcritical Pulverized Coal-fired Power Plant															Phase/CTR				
Elec File Location																				
Project File Location	V:\1111\active\11110080\design\1900\230\coe_case10 ADA_bt_20110530_rev.xlsx																			
Rev	Date	By	Checked	Rev	Date	By	Checked	Rev	Date	By	Checked	Rev	Date	By	Checked	Rev	Date	By	Checked	
Elec File Location	26-Nov-15	BT	MER																	
Line No.	Description		unit	CASE 9 - (REF. PP)					CASE 10 - (REF. PP WITH FLUOR'S AMINE BASED CAPTURE)					CASE 10 WITH POLYSTYRENE BN SORBENT					NOTE	
173	Corrosion Inhibitor (MEA Carbon Capture)			\$ -	\$ -	-	\$ -	\$ -	-	\$ 154,511	\$ 7,358	0.00000	\$ 176,377	\$ 8,399	0.00000	\$ -	\$ -	\$ -	-	
174	Activated Carbon (MEA Carbon Capture)			\$ -	\$ -	-	\$ -	\$ -	-	\$ 616,433	0.00015	\$ -	\$ 703,671	0.00017	\$ -	\$ -	\$ -	\$ -	-	
175	Ammonia (19% NH ₃) (SCR)			\$ -	\$ 3,136,289	0.00077	\$ -	\$ 3,580,137	0.00087	\$ -	\$ 4,446,378	0.00109	\$ -	\$ 5,075,630	0.00124	\$ -	\$ -	\$ 5,752,698	0.00140	Scaling coal flow rate linearly (Line: 54)
176	Solid Sorbent			\$ -	\$ -	-	\$ -	\$ -	-	\$ -	\$ -	-	\$ -	\$ -	-	\$ 180,744,516	\$ 55,610,859	0.01358	¥ % attrition rate (0.005%) and CO ₂ removal rate	
	Initial fill															Total mass, lb (44 trains)				
	Adsorber-1																169,450			
	Adsorber-2																134,562			
	Adsorber-3																383,401			
	Regenerator																69,700			
	Total		(lbm)														757,112			
	Total for 44 Trains		(lbm)														33,312,929			
	Grand Total		(Ton)														16,656			
	Cost of Sorbent		(\$/ton)														\$ 10,851			
	Solid Consumption (Mainly Attrition)																0.005			
	%Attrition		(% / Cycle)																	
	Total Sorbent flow rate		(lbm/hr)														27,530,510		The solid circ. rate linearly depends on the CO ₂ captured flow rate.	
	Spent solid		(lbm/hr)														1,377			
	Daily solid consumption @ 100% CF		(ton/day)														16,52			
	Annual solid consumption @ 85% CF		(ton/year)														5,125			
177	NaOH (ct - Solid CC)			\$ -	\$ -	-	\$ -	\$ -	-	\$ -	\$ -	-	\$ -	\$ -	-	\$ 220,007	0.00005	Scaling CW requirement for CO ₂ capture (83)		
	Old CW recir. Rate		(gpm)														27,300			
	Old NaOH requirement		(lbm/day)														300,30			
	New NaOH requirement		(lbm/day)														2,864,85			
	Daily NaOH consumption @ 100% CF		(ton/day)														1.43			
	Annual NaOH consumption @ 85% CF		(ton/year)														444,41			
	Cost of NaOH		(\$/ton)														495,05			
178	Lime (ct - Solid CC)			\$ -	\$ -	-	\$ -	\$ -	-	\$ -	\$ -	-	\$ -	\$ -	-	\$ 694,431	0.00017	Scaling CW requirement for CO ₂ capture (83)		
	Old CW recir. Rate		(gpm)														27,300			
	Old Lime requirement		(lbm/day)														1,965,60			
	New Lime requirement		(lbm/day)														18,751,76			
	Daily Lime consumption @ 100% CF		(ton/day)														9,38			
	Annual Lime consumption @ 85% CF		(ton/year)														2,908,87			
	Cost of Lime		(\$/ton)														238,73			
179	H ₂ SO ₄ (ct - Solid CC)			\$ -	\$ -	-	\$ -	\$ -	-	\$ -	\$ -	-	\$ -	\$ -	-	\$ 236,812	0.00006	Scaling CW requirement for CO ₂ capture (83)		
	Old CW recir. Rate		(gpm)														27,300			
	Old H ₂ SO ₄ requirement		(lbm/day)														1,010,10			
	New H ₂ SO ₄ requirement		(lbm/day)														9,636,32			
	Daily H ₂ SO ₄ consumption @ 100% CF		(ton/day)														4,82			
	Annual H ₂ SO ₄ consumption @ 85% CF		(ton/year)														1,494,83			
	Cost of H ₂ SO ₄		(\$/ton)														158,42			
180	Subtotal Chemicals			\$ -	\$ 7,735,950	0.00189	\$ -	\$ 8,830,743	0.00216	\$ 2,712,445	\$ 14,705,446	0.00359	\$ 3,096,311	\$ 16,786,562	0.00410	\$ 180,802,311	\$ 78,544,671	0.01918		
181	- Other																			
182	Supplemental Fuel			\$ -	\$ -	-	\$ -	\$ -	-	\$ -	\$ -	-	\$ -	\$ -	-	\$ -	\$ -	\$ -		
183	SCR Catalyst			\$ -	\$ 592,641	0.00014	\$ -	\$ 676,512	0.00017	\$ -	\$ 831,516	0.00020	\$ -	\$ 949,192	0.00023	\$ -	\$ 1,075,811	0.00026	Scaling coal flow rate linearly (Line: 54)	
184	Emission Penalties			\$ -	\$ -	-	\$ -	\$ -	-	\$ -	\$ -	-	\$ -	\$ -	-	\$ -	\$ -	\$ -		
185	Subtotal Other			\$ -	\$ 592															

Calculation Sheet

Customer	ADA-ES
Project Title	Solid Sorbent CO ₂ Capture Pilot System
Calculation Title	Performance and Cost Analysis for an Integration of Sorbent BN-based CO ₂ Capture with a 550 MW (net) Subcritical Pulverized Coal-fired Power Plant
Elec File Location	
Project File Location	V:\1111\active\111100080\design\1900\230\coe_case10_ADA_bt_20110530_rev.Exlsx

Proj No 111100208
Calc No
Phase/CTR

INITIAL DESIGN / DOE INDIRECT COSTS

Rev	Date	By	Checked	Rev	Date	By	Checked	Rev	Date	By	Checked	Rev	Date	By	Checked	Rev	Date	By	Checked	Rev	Date	By	Checked		
Elec File Location	26-Nov-15	BT	MER																						
Line No.	Description		unit	CASE 9 - (REF. PP)						CASE 10 - (REF. PP WITH FLUOR'S AMINE BASED CAPTURE)						CASE 10 WITH POLYSTYRENE BN SORBENT						NOTE			
	Daily coal consumption @ 100% CF		(ton/day)		5,249			5,249			7,380			7,380						8,364					
	Annual coal consumption @ 85% CF		(ton/year)		1,628,358			1,628,358			2,289,624			2,289,624						2,595,050					
	Cost of coal		(\$/ton)		\$ 38.18			\$ 43.59			\$ 38.18			\$ 43.59						\$ 43.59					
199	Total Fuel Costs			\$ -	\$62,175,575	0.01518	\$ -	\$70,974,670	0.01733	\$ -	\$ 87,425,787	0.02135	\$ -	\$ 99,798,295	0.02437	\$ -	\$ -	\$ 113,110,975	0.02762						
200																									
201	C. CO ₂ Transport, Storage & Monitoring																								
202	C.1 Transport Costs			June		2007	Oct		2015	June		2007	Oct		2015	Oct		2015	Oct		2015				
203	· Pipeline Costs			\$ -	-		\$ -	-		\$ -	-		\$ -	-		\$ -	-		\$ -	-					
204	· Related Capital Expenditures			\$ -	-		\$ -	-		\$ -	-		\$ -	-		\$ -	-		\$ -	-					
205	· O&M Costs			\$ -	-		\$ -	-		\$ -	-		\$ -	-		\$ -	-		\$ -	-					
206	C.2 Storage Costs																								
207	· Site Screening and Evaluation			\$ -	-		\$ -	-		\$ -	-		\$ -	-		\$ -	-		\$ -	-					
208	· Injection Wells			\$ -	-		\$ -	-		\$ -	-		\$ -	-		\$ -	-		\$ -	-					
209	· Injection Equipment			\$ -	-		\$ -	-		\$ -	-		\$ -	-		\$ -	-		\$ -	-					
210	· O&M Costs			\$ -	-		\$ -	-		\$ -	-		\$ -	-		\$ -	-		\$ -	-					
211	· Pore Volume Acquisition			\$ -	-		\$ -	-		\$ -	-		\$ -	-		\$ -	-		\$ -	-					
212	C.3 Monitoring Costs			\$ -	-		\$ -	-		\$ -	-		\$ -	-		\$ -	-		\$ -	-					
213	Total CO ₂ TS&M Costs			\$ -	-		\$ -	-		\$ 23,751,018	43	\$ 27,112,265	49	\$ 30,675,509	56	Scaling CO ₂ Removal Rate line (Line: 63)									
214																									
215	Economic Parameters																								
216	Type of Risk			June		2007	Oct		2015	June		2007	Oct		2015	Oct		2015	Oct		2015				
217	Type of Risk			Low			Low			High			High			High			High						
218	1. Capital Charge Factor, 5 Years			COE	LCOE		COE	LCOE		COE	LCOE		COE	LCOE		COE	LCOE		COE	LCOE					
219	2. Nominal (Apparent) Escalation Rate			0.116	0.116		0.116	0.116		0.124	0.124		0.124	0.124		0.124	0.124		0.124	0.124					
220	3. General Inflation Rate			3%	0%		3%	0%		3%	0%		3%	0%		3%	0%		3%	0%					
221	4. Real Escalation Rate			0%	0%		0%	0%		0%	0%		0%	0%		0%	0%		0%	0%					
222	5. Debt (% of Total)			50	50		50	50		45	45		45	45		45	45		45	45					
223	6. Equity (% of Total)			50	50		50	50		55	55		55	55		55	55		55	55					
224	7. Real Discount Rate (Nominal)			8.25%	8.25%		8.25%	8.25%		9.08%	9.08%		9.08%	9.08%		9.08%	9.08%		9.08%	9.08%					
225	8. Real Discount Rate (After Tax)			7.39%	7.39%		7.39%	7.39%		8.13%	8.13%		8.13%	8.13%		8.13%	8.13%		8.13%	8.13%					
226																									
227	COE contribution (€/kWh)			June		2007	Oct		2015	June		2007	Oct		2015	Oct		2015	Oct		2015				
228	1. Capital Costs				3.11					3.55				6.01			6.86			18.14					
229	2. Fixed Operating Costs				0.78					0.89				1.31			1.49			3.45					
230	3. Variable Operating Costs				0.51					0.59				0.92			1.05			3.29					
231	4. Fuel Costs				1.52					1.73				2.13			2.44			2.76					
232	5. CO ₂ T&SM Costs				0.00					0.00				0.58			0.66			0.75					
233	Total COE (2007)				5.93	7.53				6.76	8.59			10.95	13.9		12.50	15.87		28.39	35.99				
234						5.94				6.78				10.97			12.52								
235	Total COE (2012, @ 3% average annual inflation rate)				6.89	8.73				7.86	9.96			12.72	16.1		14.52	18.40		32.91	41.72				
236																									
237	Year	0	base Year - Con	COE	LCOE		COE	LCOE		COE	LCOE		COE	LCOE		COE	LCOE		COE	LCOE					
238	2007	0	base Year - Con	(2,681)	(2,681)		(3,061)	(3,061)		(4,848)	(4,848)		(5,534)	(5,534)		(5,534)	(5,534)		(14.63)	(14.63)					
239	2008	1	Construction	(8,334)	(8,334)		(9,513)	(9,513)		(15,067)	(15,067)		(17,200)	(17,200)		(17,200)	(17,200)		(45.47)	(45.47)					
240																									

Page 5 of 6

Stantec

Calculation Sheet

Customer ADA-ES
 Project Title Solid Sorbent CO₂ Capture Pilot System
 Calculation Title Performance and Cost Analysis for an Integration of Sorbent BN-based CO₂ Capture with a 550 MW (net) Subcritical Pulverized Coal-fired Power Plant
 Elec File Location
 Project File Location V:\1111\active\11110080\design\1900\230\lcoe_case10 ADA_bt_20110530_rev.xlsx

Proj No 111100208
 Calc No
 Phase/CTR

INITIAL DESIGN / DOE INDIRECT COSTS

Rev	Date	By	Checked	Rev	Date	By	Checked	Rev	Date	By	Checked	Rev	Date	By	Checked	Rev	Date	By	Checked	Rev	Date	By	Checked					
Elec File Location		26-Nov-15	BT	MER																								
Line No.	Description		unit	CASE 9 - (REF. PP)						CASE 10 - (REF. PP WITH FLUOR'S AMINE BASED CAPTURE)						CASE 10 WITH POLYSTYRENE BN SORBENT						NOTE						
258	2027	20	Operating		10.728	8.728		12.247	9.963		19.81	16.120		22.61	18.401		51.27	41.720						3. If only the economic parameters are changed, follow Procedure 2.				
259	2028	21	Operating		11.050	8.728		12.614	9.963		20.41	16.120		23.29	18.401		52.81	41.720						4. A change in Thermal Input affects the CO ₂ Captured Flow Rate and Gross Output.				
260	2029	22	Operating		11.382	8.728		12.992	9.963		21.02	16.120		23.99	18.401		54.40	41.720										
261	2030	23	Operating		11.723	8.728		13.382	9.963		21.65	16.120		24.71	18.401		56.03	41.720										
262	2031	24	Operating		12.075	8.728		13.784	9.963		22.30	16.120		25.45	18.401		57.71	41.720										
263	2032	25	Operating		12.437	8.728		14.197	9.963		22.97	16.120		26.22	18.401		59.44	41.720										
264	2033	26	Operating		12.810	8.728		14.623	9.963		23.66	16.120		27.00	18.401		61.22	41.720										
265	2034	27	Operating		13.194	8.728		15.062	9.963		24.37	16.120		27.81	18.401		63.06	41.720										
266	2035	28	Operating		13.590	8.728		15.514	9.963		25.10	16.120		28.65	18.401		64.95	41.720										
267	2036	29	Operating		13.998	8.728		15.979	9.963		25.85	16.120		29.51	18.401		66.90	41.720										
268	2037	30	Operating		14.418	8.728		16.458	9.963		26.62	16.120		30.39	18.401		68.91	41.720										
269	2038	31	Operating		14.850	8.728		16.952	9.963		27.42	16.120		31.30	18.401		70.98	41.720										
270	2039	32	Operating		15.296	8.728		17.461	9.963		28.25	16.120		32.24	18.401		73.10	41.720										
271	2040	33	Operating		15.755	8.728		17.985	9.963		29.09	16.120		33.21	18.401		75.30	41.720										
272	2041	34	Operating		16.228	8.728		18.524	9.963		29.97	16.120		34.21	18.401		77.56	41.720										
273	2042	35	Operating		16.714	8.728		19.080	9.963		30.87	16.120		35.23	18.401		79.88	41.720										
274				NPV	18.43	18.43		21.04	21.04		34.89	34.89		39.83	39.83		74.43	74.43										
275				D NPV	(0.00)			0.00			(0.00)			(0.00)			-											
276				IRROE		0.1225			0.1225			0.1224			0.1224			0.1224										

Stantec

Calculation Sheet

Customer	ADA-ES	Proj No	111100208																					
Project Title	Solid Sorbent CO ₂ Capture Pilot System	Calc No																						
Calculation Title	Performance and Cost Analysis for an Integration of Sorbent BN-based CO ₂ Capture with a 550 MW (net) Subcritical Pulverized Coal-fired Power Plant	Phase/CTR																						
Elec File Location																								
Project File Location	V:\1111\active\11110080\design\1900\230\lcoe_case10_ADA_bt_20110530_rev.xlsx																							
Rev	Date	By	Checked	Rev	Date	By	Checked	Rev	Date	By	Checked	Rev	Date	By	Checked	Rev	Date	By	Checked	Rev	Date	By	Checked	
Elec File Location	26-Nov-15	BT	MER																					
Line No.	Description		unit	CASE 9 - (REF. PP)						CASE 10 - (REF. PP WITH FLUOR'S AMINE BASED CAPTURE)						CASE 10 WITH POLYSTYRENE BN SORBENT						NOTE		
1	PLANT PERFORMANCE																							
2	A. Gross Power Output		kWe	582,600						672,700						718,738								
3																								
4	B. Parasitic Power																							
5	· Auxiliary Power Requirement																							
6	· Power Plant + FGD																							
7	Coal Handling and Conveying		kWe	450						540						612,00								
8	Pulverizers		kWe	2,970						4,180						4,738								
9	Sorbent Handling & Reagent Prepara		kWe	950						1,370						1,553								
10	Ash Handling		kWe	570						800						907								
11	Primary Air Fans		kWe	1,400						1,960						2,222								
12	Forced Draft Fans		kWe	1,780						2,500						2,833								
13	Induced Draft Fans		kWe	7,540						12,080						13,671								
14	SCR		kWe	50						70						79								
15	Baghouse		kWe	70						100						113								
16	Wet FGD		kWe	3,180						4,470						5,066								
17	Miscellaneous Balance of Plant		kWe	2,000						2,000						2,000								
18	Steam Turbine Auxiliaries		kWe	400						400						400								
19	Condensate Pumps		kWe	890						700						621								
20	Circulating Water Pump		kWe	5,250						11,190						3,703								
21	Ground Water Pumps		kWe	530						1,020						775								
22	Cooling Tower Fans		kWe	2,720						5,820						1,918								
23	Transformer Losses		kWe	1,830						2,350						2,511								
24	Sub-Total		kWe	32,580						51,550						43,722								
25																								
26	<u>Flue Gas Polishing Scrubber Unit</u>																							
27	Recirculation Pump		kWe	0						0						1,138								
28	Recirculation Pump		kWe	0						0						1,138								
29	Bleed Pump		kWe	0						0						284								
30	Bleed Pump		kWe	0						0						284								
31	Sub-Total		kWe	0						0						2,845								
32																								
33	<u>CO₂ Capture</u>																							
34	Econamine FG Plus Auxiliaries (including Flue Gas Supply, SO ₂ polishing, CO ₂ abs. Solvent stripping and reclaiming)		kWe	0						22,400						0								
35	Condensate Return Pump		kWe	0						0						325						68)		
36	Cooling Tower Fan Power		kWe	0						0						2,503						83) / CO ₂ removal rate		
37	Circulating Water Pump		kWe	0						0						4,802						83) / CO ₂ removal rate		
38	Flue Gas Compressor		kWe	0						0						53,617						Scaling CO ₂ Removal Rate line (Line: 63)		
39	CO ₂ Recycle Compressor		kWe	0						0						14,787						Scaling CO ₂ Removal Rate line (Line: 63)		
40	Lean Sorbent Lift Compressor (NEW)		kWe	0						0						16,527						Scaling CO ₂ Removal Rate line (Line: 63)		
41	Sub-Total		kWe	0						22,400						92,562								
42																								
43	<u>CO₂ Compressor</u>																							
44	CO ₂ Compressor		kWe	0						48,790						62,165								
45	Sub-Total		kWe	0						48,790						62,165								
46	Total Auxiliary Power		kWe	32,580						122,740						201,293								
47																								
48	GRAND Total Parasitic Power		kWe	32,580						122,740						201,293								
49																								
50	C. Back Pressure Turbine Generator Outp		kWe	0						0						32,525								
51	D. Net Power Output		kWe	550,020						549,960						549,970								
52	E. Net Power Reduction		kWe	N/A						0						0								
53	F. Coal HHV		Btu/lbm	11,666						11,666						11,666								
54	G. Coal Flow Rate		lbm/hr	437,378						614,994						697,032								
55	H. Thermal Input		kW _{th}	1,495,379						2,102,644						2,383,129								
56	I. Power Plant		kW _{th}	1,495,379						1,513,467														
57	· CO ₂ Capture		kW _{th}	N/A						589,177														
58	J. Gross Output to Thermal Input to PP		%	39.0						44.4						44.4								

Stantec

Calculation Sheet

Customer	ADA-ES	Proj No	111100208																									
Project Title	Solid Sorbent CO ₂ Capture Pilot System	Calc No																										
Calculation Title	Performance and Cost Analysis for an Integration of Sorbent BN-based CO ₂ Capture with a 550 MW (net) Subcritical Pulverized Coal-fired Power Plant	Phase/CTR																										
Elec File Location																												
Project File Location	V:\1111\active\11110080\design\1900\230\coe_case10 ADA_bt_20110530_rev.xlsx																											
Rev	Date	By	Checked	Rev	Date	By	Checked	Rev	Date	By	Checked	Rev	Date	By	Checked	Rev	Date	By	Checked	Rev	Date	By	Checked					
Elec File Location	26-Nov-15	BT	MER																									
Line No.	Description	unit		CASE 9 - (REF. PP)					CASE 10 - (REF. PP WITH FLUOR'S AMINE BASED CAPTURE)					CASE 10 WITH POLYSTYRENE BN SORBENT					NOTE									
55	J. Net Plant HHV Efficiency	%		36.8					26.2					23.1														
56	K. Energy Penalty	%		N/A					10.6					13.7														
57	L. Net Plant HHV Heat Rate	Btu/kWh		9,277					13,046					14,785														
58	M. Capacity Factor	%		85					85					85														
59	N. Net kWh @ 85% Capacity Factor	kWh-net		4,095,448.920					4,095,002,160					4,095,075,837.00														
60																												
61	CO ₂ CAPTURE PROFILE																											
62	A. CO ₂ Produced	lbm/hr		1,038,691					1,459,838					1,651,831.00														
63	B. CO ₂ Captured	lbm/hr		0					1,313,960					1,486,648														
64	C. CO ₂ Emission	lbm/hr		1,038,691					145,878					165,183														
65																												
66	CO ₂ REMOVAL SYSTEM PARAMETERS																											
67	A. Solvent Regeneration Energy	Btu/lbm CO ₂		N/A					1,530					2,042														
68	B. Total Energy Requirement	MMBtu/hr		N/A					2,010					3,036														
69	· Heat of Desorption	MMBtu/hr		N/A					2,010																			
70	· Sensible Heat of Solid / Liquid	MMBtu/hr		N/A					0																			
71	- Heat Capacity of Solid	(Btu/lbm °F)		N/A					0																			
72	- Delta Temp	(°F)		N/A					0																			
73	- Solid/liquid recirc. Rate	(lbm/hr)		N/A					0																			
74	· Sensible Heat of CO ₂	MMBtu/hr		N/A					0																			
75	- Heat Capacity of CO ₂	(Btu/lbm°F)		N/A					0																			
76	- Delta Temp	(°F)		N/A					0																			
77	C. Steam Pressure	psia		N/A					74					45														
78	D. Steam Temperature	°F		N/A					306					274														
79	J. Steam Extraction Flow	lbm/hr		N/A					1,931,497					2,709,721														
80																												
81	CIRC. COOLING WATER RATE																											
82	A. CW Requirement for Power Plant	gpm		170,000					200,000					226,679														
83	B. CW Requirement for Carbon Capture	gpm		0					340,000					260,441					Scaling CO ₂ Removal Rate line (Line: 113)									
84	Total	gpm		170,000					540,000					487,120														
85																												
86	CW PARAMETERS																											
87	A. Cooling Water to condenser	°F		60					60					60					DOE's Report - 2010/1397, p.327									
88	B. Cooling Water from condenser	°F		80					80					80					DOE's Report - 2010/1397, p.327									
89	C. Cooling Water Temp. range	°F		20					20					20					DOE's Report - 2010/1397, p.42									
90	D. Cooling Water Makeup Rate	gpm																										
91	· Evaporative losses	%		0.8					0.8					0.8					% of Circ. Water flow rate/10°F of range, DOE's Report-2010/1397, p.42									
92	· Drift losses	%		0.001					0.001					0.001					% of Circ. Water flow rate DOE's Report - 2010/1397, p.42									
93	· Blowdown losses	-		= Evaporative losses / (Cycles of Concentration - 1)					= Evaporative losses / (Cycles of Concentration - 1)					= Evaporative losses / (Cycles of Concentration - 1)					DOE's Report - 2010/1397, p.42									
94	: Cycles of concentration	-		4					4					4					DOE's Report - 2010/1397, p.42									
95																												
96	WATER DEMAND FOR COOLING TOWER																											
97	A. Calculated Water Demand																		Assume the CW makeup flow rate (p.42) is equal to the water demand.									
98	· Evaporative losses	gpm		2,720					8,640					7,794														
99	· Drift losses	gpm		1.7					5.4					4.9														
100	· Blowdown losses	gpm		906.7					2,880					2,598														
101	Total	gpm		3,628.4					11,525					10,397														
102	B. DOE's Water Demand	gpm		5,404					11,580					N/A					DOE's Report - 2010/1397, p.333 for Case 9 and p.359 for Case 10									
103	C. % Error	%		33					0.5					N/A														
104																												
105	RAW WATER CONSUMPTION			(Exhibit 4-11, p.333)					(Exhibit 4-24, p.359)					(Calculation)														
106	A. RW Consumption		Demand	Internal	Withdraw.	Discharge	Consumption	Demand	Internal	Withdraw.	Discharge	Consumption	Demand	Internal	Withdraw.	Discharge	Consumption											
107	· Capture Makeup	gpm	0	0	0	0	0	0	39	0	39	0	39	0	0	0	0	0	Assumed									
108	· FGD Makeup	gpm	1,017	0	1,017	0	1,017	1,460	0	1,460	0	1,460	2,052	0	0	2,052	0	2,052	Scaling coal flow rate * 1.24 for Demand; Assume zero for Int. & Withdraw									
109	· BFW Makeup	gpm	74	0	74	0	74	104	0	104	0	104	146	0	0	146	0	14,032	Scaling coal flow rate * 1.24 for Demand; Assume zero for Int. & Withdraw									
110	· Cooling Tower	gpm	5,404	600	4,804	1,215	3,589	11,580	1,959	9,621	2,604	7,017	10,397	1,758.83	8,638	2,337.93	6,300	Scaling Case 10 - Internal and Discharge.										
111	Total	gpm	6,495	600	5,895	1,215	4,680	13,183	1,959	11,224	2,604	8,620	12,595	1,759	10,836	2,338	22,384											
112		(1000 gal/D)	9,353	864	8,489	1,750	6,739	18,983.52	2,820.96	16,163	3,750	12,413	18,137	2,533	15,604	3,367	12,237											
113	B. 50% RW Withdrawal (Calculated)	(1000 gal/D)		4,244					8,081					7,802														
114	C. DOE's RW Consumption	(1000 gal/D)		(Exhibit 4-17, p.352)					4,245					(Exhibit 4-30, p.379)					8,081					N/A	Daily consumption is calculated on a 100% operating capacity basis.			
115	D. % Error	%		0.0					0.0					0.0					N/A									

Stantec

Calculation Sheet

Customer	ADA-ES	Proj No	111100208																					
Project Title	Solid Sorbent CO ₂ Capture Pilot System	Calc No																						
Calculation Title	Performance and Cost Analysis for an Integration of Sorbent BN-based CO ₂ Capture with a 550 MW (net) Subcritical Pulverized Coal-fired Power Plant	Phase/CTR																						
Elec File Location																								
Project File Location	V:\1111\active\11110080\design\1900\230\coe_case10 ADA_bt_20110530_rev.xlsx																							
Rev	Date	By	Checked	Rev	Date	By	Checked	Rev	Date	By	Checked	Rev	Date	By	Checked	Rev	Date	By	Checked	Rev	Date	By	Checked	
Elec File Location	26-Nov-15	BT	MER																					
Line No.	Description		unit	CASE 9 - (REF. PP)					CASE 10 - (REF. PP WITH FLUOR'S AMINE BASED CAPTURE)					CASE 10 WITH POLYSTYRENE BN SORBENT					NOTE					
116																								
117	COSTS																							
118	A. Capital Cost			June	2007	Feb	2011	June	2007	Feb	2011	June	2007	Feb	2011	June	2007	Feb	2011	June	2007	Feb	2011	
119	· Bare Erected Cost (BEC)																							
120	· Acct 1. Coal & Sorbent Handling		\$	31,895,000	58	\$ 33,878,487	62	\$ 39,542,000	72	\$ 42,001,039	76	\$ 45,562,557	83	Scaling coal flow rate linearly (Line: 54)										
121	· Acct 2. Coal & Sorbent Prep & Feed		\$	15,075,000	23	\$ 16,012,485	29	\$ 18,984,000	35	\$ 20,164,578	37	\$ 21,874,452	40	Scaling coal flow rate linearly (Line: 54)										
122	· Acct 3. Feedwater & Misc. BOP Syster		\$	58,766,000	102	\$ 62,420,542	113	\$ 78,063,000	142	\$ 82,917,584	151	\$ 89,948,660	164	Scaling coal flow rate linearly (Line: 54)										
123	· Acct 4. PC Boiler		\$	221,527,000	403	\$ 235,303,327	428	\$ 280,980,000	511	\$ 298,453,592	543	\$ 323,761,249	589	Scaling coal flow rate linearly (Line: 54)										
124	· Acct 5. Flue Gas Cleanup		\$	112,287,000	204	\$ 119,269,907	217	\$ 144,350,000	262	\$ 153,326,842	279	\$ 166,328,338	302	Scaling coal flow rate linearly (Line: 54)										
125	· Acct 6. Combustion Turbine/Accesso		\$	-	0	\$ -	-	\$ -	0	\$ -	-	\$ -	0	Scaling coal flow rate linearly (Line: 54)										
126	· Acct 7. HRSG, Ducting & Stack		\$	31,679,000	58	\$ 33,649,055	61	\$ 33,792,000	61	\$ 35,893,458	65	\$ 38,937,078	71	Scaling coal flow rate linearly (Line: 54)										
127	· Acct 8. Steam Turbine Generator		\$	93,508,000	170	\$ 99,323,078	181	\$ 105,470,000	192	\$ 112,028,971	204	\$ 121,528,575	221	Scaling coal flow rate linearly (Line: 54)										
128	· Acct 9. Cooling Water System		\$	32,189,000	59	\$ 34,190,770	62	\$ 52,626,000	96	\$ 55,898,707	102	\$ 60,638,691	110	Scaling coal flow rate linearly (Line: 54)										
129	· Acct 10. Ash/Spent Sorbent Handling		\$	10,833,000	20	\$ 11,506,683	21	\$ 13,088,000	24	\$ 13,901,917	25	\$ 15,080,743	27	Scaling coal flow rate linearly (Line: 54)										
130	· Acct 11. Accessory Electric Plant		\$	42,692,000	78	\$ 45,346,931	82	\$ 68,316,000	124	\$ 72,564,437	132	\$ 78,717,608	143	Scaling coal flow rate linearly (Line: 54)										
131	· Acct 12. Instrumentation & Control		\$	17,451,000	32	\$ 18,536,243	34	\$ 20,024,000	34	\$ 21,269,253	39	\$ 23,072,800	42	Scaling coal flow rate linearly (Line: 54)										
132	· Acct 13. Improvements to Site		\$	10,679,000	19	\$ 11,343,106	21	\$ 12,006,000	22	\$ 12,752,629	23	\$ 13,834,001	25	Scaling coal flow rate linearly (Line: 54)										
133	· Acct 14. Buildings & Structures		\$	45,727,000	83	\$ 48,570,672	88	\$ 50,207,000	91	\$ 53,329,274	97	\$ 57,851,381	105	Scaling coal flow rate linearly (Line: 54)										
134	· CO ₂ Removal System		\$	-	0	\$ -	-	\$ 284,795,000	518	\$ 302,505,839	550	\$ 1,990,546,844	3,619	Back pressure turbine included and Stantec-Shaw indirect costs included										
135	· CO ₂ Compression & Drying		\$	-	0	\$ -	-	\$ 38,060,000	69	\$ 40,426,876	74	\$ 95,551,636	174											
136	· Total BEC		\$	724,308,000	1,317	\$ 769,351,286	1,390	\$ 1,240,303,000	2,255	\$ 1,317,434,998	2,396	\$ 3,143,234,612	5,715											
137																								
138	· ECM + Home Office Expenses + Fee		\$	68,082,000	124	\$ 72,315,885	131	\$ 117,071,000	213	\$ 124,351,415	226	\$ 296,686,873,52	539	9.4% of TPC										
139	· Process Contingencies (20% of CO ₂ Removal System)		\$	-	-	\$ -	-	\$ 57,960,000	105	\$ 61,564,418	112	\$ 405,105,760,51	737	20% of the CO ₂ Removal System										
140	· Project Contingencies (15 - 30% of BEC + EPC + Process Contingency)		\$	100,043,000	182	\$ 106,264,477	193	\$ 203,025,000	369	\$ 215,650,724	392	\$ 551,556,492	1,003	Project Contingencies is about 14.34% of the BEC + ECM + Process Contingency.										
141	· Total Plant Cost		\$	892,433,000	1,623	\$ 947,931,648	1,723	\$ 1,618,359,000	2,943	\$ 1,719,001,555	3,126	\$ 4,396,583,739	7,994											
142																								
143	· Preproduction Costs		\$	28,543,000	52	\$ 30,318,033	55	\$ 48,733,000	89	\$ 51,763,609	94	\$ 140,617,491	256	Scaling (Preproductio/TPC) _{case 9} ~3%										
144	· Inventory Capital		\$	18,287,000	33	\$ 19,424,232	35	\$ 28,281,000	51	\$ 30,039,740	55	\$ 90,091,163	164	Scaling (Inv. Ca./TPC) _{case 9} ~2%										
145	· Initial Cost for Catalyst and Chemicals		\$	-	-	\$ -	-	\$ 2,712,000	5	\$ 2,880,654	5	\$ 168,237,113	306											
146	· Land		\$	900,000	2	\$ 955,969	2	\$ 900,000	2	\$ 955,969	2	\$ 955,969	2	Equal to Case 10										
147	· Other Owner's Costs		\$	133,865,000	240	\$ 142,189,800	259	\$ 242,754,000	441	\$ 257,850,393	469	\$ 659,487,807	1,199	Scaling (Other Own./TPC) _{case 9,10} ~15%										
148	· Financing Costs		\$	24,096,000	44	\$ 25,594,483	47	\$ 43,696,000	79	\$ 46,413,368	84	\$ 118,709,283	216	Scaling (Fin. Cost/TPC) _{case 9,10} ~27%										
149	· Total Overnight Cost		\$	1,098,124,000	1,990	\$ 1,166,414,166	2,071	\$ 1,985,435,000	3,011	\$ 2,108,905,287	3,835	\$ 5,574,682,566	10,136											
150																								
151	· TASC Multiplier (IOU, 35 Years)			1.134	Low Risk				1.140	High Risk			1.140	High Risk										
152	· Total As-Spent Cost (TASC)		\$	1,245,272,616	2,264	\$																		

Calculation Sheet

Customer	ADA-ES	Proj No	111100208																								
Project Title	Solid Sorbent CO ₂ Capture Pilot System	Calc No																									
Calculation Title	Performance and Cost Analysis for an Integration of Sorbent BN-based CO ₂ Capture with a 550 MW (net) Subcritical Pulverized Coal-fired Power Plant	Phase/CTR																									
Elec File Location																											
Project File Location	V:\1111\active\11110080\design\1900\230\coe_case10 ADA_bt_20110530_rev.xlsx																										
Rev	Date	By	Checked	Rev	Date	By	Checked	Rev	Date	By	Checked	Rev	Date	By	Checked	Rev	Date	By	Checked	Rev	Date	By	Checked				
Elec File Location	26-Nov-15	BT	MER																								
Line No.	Description	unit		CASE 9 - (REF. PP)					CASE 10 - (REF. PP WITH FLUOR'S AMINE BASED CAPTURE)					CASE 10 WITH POLYSTYRENE BN SORBENT					NOTE								
173	Corrosion Inhibitor (MEA Carbon Capture)		\$ -	\$ -	\$ -	\$ -	\$ -	\$ -	\$ 154,511	\$ 7,358	0.00000	\$ 164,120	\$ 7,816	0.00000	\$ -	\$ -	\$ -	\$ -	\$ -	\$ -	\$ -	\$ -	\$ -				
174	Activated Carbon (MEA Carbon Capture)		\$ -	\$ -	\$ -	\$ -	\$ -	\$ -	\$ 616,433	0.00015	\$ -	\$ 654,768	0.00016	\$ -	\$ -	\$ -	\$ -	\$ -	\$ -	\$ -	\$ -	\$ -	\$ -	\$ -			
175	Ammonia (19% NH ₃) (SCR)		\$ -	\$ 3,136,289	0.00077	\$ -	\$ 3,331,329	0.00081	\$ -	\$ 4,446,378	0.00109	\$ -	\$ 4,722,889	0.00115	\$ -	\$ -	\$ 5,352,903	0.00131	Scaling coal flow rate linearly (Line: 54)								
176	Solid Sorbent		\$ -	\$ -	\$ -	\$ -	\$ -	\$ -	\$ -	\$ -	\$ -	\$ -	\$ -	\$ -	\$ -	\$ 168,183,335	\$ 51,746,077	0.01264	¥ % attrition rate (0.005%) and CO ₂ removal rate								
	Initial fill																		Total mass, lb (44 trains)								
	Adsorber-1																		169,450								
	Adsorber-2																		134,562								
	Adsorber-3																		383,401								
	Regenerator																		69,700								
	Total	(lbm)																	757,112								
	Total for 44 Trains	(lbm)																	33,312,929								
	Grand Total	(Ton)																	16,656								
	Cost of Sorbent	(\$/ton)																	\$ 10,097								
	Solid Consumption (Mainly Attrition)																		0.005								
	%Attrition	(% / Cycle)																									
	Total Sorbent flow rate	(lbm/hr)																	27,530,510	The solid circ. rate linearly depends on the CO ₂ captured flow rate.							
	Spent solid	(lbm/hr)																	1,377								
	Daily solid consumption @ 100% CF	(ton/day)																	16,52								
	Annual solid consumption @ 85% CF	(ton/year)																	5,125								
177	NaOH (ct - Solid CC)		\$ -	\$ -	\$ -	\$ -	\$ -	\$ -	\$ -	\$ -	\$ -	\$ -	\$ -	\$ -	\$ -	\$ -	\$ -	\$ -	204,717	0.00005	Scaling CW requirement for CO ₂ capture (83)						
	Old CW recir. Rate	(gpm)																	27,300								
	Old NaOH requirement	(lbm/day)																	300,30								
	New NaOH requirement	(lbm/day)																	2,864,85								
	Daily NaOH consumption @ 100% CF	(ton/day)																	1.43								
	Annual NaOH consumption @ 85% CF	(ton/year)																	444,41								
	Cost of NaOH	(\$/ton)																	460,65								
178	Lime (ct - Solid CC)		\$ -	\$ -	\$ -	\$ -	\$ -	\$ -	\$ -	\$ -	\$ -	\$ -	\$ -	\$ -	\$ -	\$ -	\$ -	\$ -	646,170	0.00016	Scaling CW requirement for CO ₂ capture (83)						
	Old CW recir. Rate	(gpm)																	27,300								
	Old Lime requirement	(lbm/day)																	1,965,60								
	New Lime requirement	(lbm/day)																	18,751,76								
	Daily Lime consumption @ 100% CF	(ton/day)																	9,38								
	Annual Lime consumption @ 85% CF	(ton/year)																	2,908,87								
	Cost of Lime	(\$/ton)																	222,14								
179	H ₂ SO ₄ (ct - Solid CC)		\$ -	\$ -	\$ -	\$ -	\$ -	\$ -	\$ -	\$ -	\$ -	\$ -	\$ -	\$ -	\$ -	\$ -	\$ -	\$ -	220,354	0.00005	Scaling CW requirement for CO ₂ capture (83)						
	Old CW recir. Rate	(gpm)																	27,300								
	Old H ₂ SO ₄ requirement	(lbm/day)																	1,010,10								
	New H ₂ SO ₄ requirement	(lbm/day)																	9,636,32								
	Daily H ₂ SO ₄ consumption @ 100% CF	(ton/day)																	4,82								
	Annual H ₂ SO ₄ consumption @ 85% CF	(ton/year)																	1,494,83								
	Cost of H ₂ SO ₄	(\$/ton)																	147,41								
180	Subtotal Chemicals		\$ -	\$ 7,735,950	0.00189	\$ -	\$ 8,217,033	0.00201	\$ 2,712,445	\$ 14,705,446	0.00359	\$ 2,881,127	\$ 15,619,949	0.00381	\$ -	\$ 168,237,113	\$ -	\$ 73,086,061	0.01785								
181	- Other																										
182	Supplemental Fuel		\$ -	\$ -	\$ -	\$ -	\$ -	\$ -	\$ -	\$ -	\$ -	\$ -	\$ -	\$ -	\$ -	\$ -	\$ -	\$ -	\$ -								
183	SCR Catalyst		\$ -	\$ 592,641	0.00014	\$ -	\$ 629,496	0.00015	\$ -	\$ 831,516	0.00020	\$ -	\$ 883,226	0.00022	\$ -	\$ -	\$ 1,001,045	0.00024	Scaling coal flow rate linearly (Line: 54)								
184	Emission Penalties		\$ -	\$ -	\$ -	\$ -	\$ -	\$ -	\$ -	\$ -	\$ -	\$ -	\$ -	\$ -	\$ -	\$ -	\$ -	\$ -	\$ -								
185	Subtotal Other		\$ -	\$ 592,641	0.00014	\$ -	\$ 629,																				

Stantec

Calculation Sheet

Customer ADA-ES
 Project Title Solid Sorbent CO₂ Capture Pilot System
 Calculation Title Performance and Cost Analysis for an Integration of Sorbent BN-based CO₂ Capture with a 550 MW (net) Subcritical Pulverized Coal-fired Power Plant
 Elec File Location
 Project File Location V:\1111\active\11110080\design\1900\230\coe_case10 ADA_bt_20110530_rev.xlsx

Proj No 111100208
 Calc No
 Phase/CTR

INITIAL DESIGN / DOE INDIRECT COSTS

Rev	Date	By	Checked	Rev	Date	By	Checked	Rev	Date	By	Checked	Rev	Date	By	Checked	Rev	Date	By	Checked	Rev	Date	By	Checked	
Elec File Location	26-Nov-15	BT	MER																					
Line No.		Description		unit		CASE 9 - (REF. PP)						CASE 10 - (REF. PP WITH FLUOR'S AMINE BASED CAPTURE)						CASE 10 WITH POLYSTYRENE BN SORBENT						NOTE
		Daily coal consumption @ 100% CF		(ton/day)		5,249		5,249		7,380		7,380		8,364										
		Annual coal consumption @ 85% CF		(ton/year)		1,628,358		1,628,358		2,289,624		2,289,624		2,595,050										
		Cost of coal		(\$/ton)		\$ 38.18		\$ 40.56		\$ 38.18		\$ 40.56		\$ 40.56										
199	Total Fuel Costs		\$ -	\$ 62,175,575	0.01518	\$ -	\$ 66,042,151	0.01613	\$ -	\$ 87,425,787	0.02135	\$ -	\$ 92,862,624	0.02248	\$ -	\$ 105,250,115	0.02570							
200																								
201	C. CO ₂ Transport, Storage & Monitoring																							
202	C.1 Transport Costs			June		2007		Feb		2011		June		2007		Feb		2011		Feb		2011		
203	· Pipeline Costs		\$	-		\$	-		\$	-		\$	-		\$	-		\$	-		\$	-		
204	· Related Capital Expenditures		\$	-		\$	-		\$	-		\$	-		\$	-		\$	-		\$	-		
205	· O&M Costs		\$	-		\$	-		\$	-		\$	-		\$	-		\$	-		\$	-		
206	C.2 Storage Costs																							
207	· Site Screening and Evaluation		\$	-		\$	-		\$	-		\$	-		\$	-		\$	-		\$	-		
208	· Injection Wells		\$	-		\$	-		\$	-		\$	-		\$	-		\$	-		\$	-		
209	· Injection Equipment		\$	-		\$	-		\$	-		\$	-		\$	-		\$	-		\$	-		
210	· O&M Costs		\$	-		\$	-		\$	-		\$	-		\$	-		\$	-		\$	-		
211	· Pore Volume Acquisition		\$	-		\$	-		\$	-		\$	-		\$	-		\$	-		\$	-		
212	C.3 Monitoring Costs		\$	-		\$	-		\$	-		\$	-		\$	-		\$	-		\$	-		
213	Total CO ₂ TS&M Costs		\$	-		\$	-		\$	-		\$	23,751,018		\$	25,228,047		\$	28,543,657		\$	52		Scaling CO ₂ Removal Rate line (Line: 63)
214																								
215	Economic Parameters			June		2007		Feb		2011		June		2007		Feb		2011		Feb		2011		
216	Type of Risk			Low		Low		High		High		High		High		High		High		High				
217			COE	LCOE		COE	LCOE		COE	LCOE		COE	LCOE		COE	LCOE		COE	LCOE		COE	LCOE		
218	1. Capital Charge Factor, 5 Years		0.116	0.116		0.116	0.116		0.124	0.124		0.124	0.124		0.124	0.124		0.124	0.124		0.124	0.124		
219	2. Nominal (Apparent) Escalation Rate		3%	0%		3%	0%		3%	0%		3%	0%		3%	0%		3%	0%		3%	0%		
220	3. General Inflation Rate		3%	0%		3%	0%		0%	0%		0%	0%		0%	0%		0%	0%		0%	0%		
221	4. Real Escalation Rate		0%	0%		0%	0%		0%															

Stantec

Calculation Sheet

Customer ADA-ES
 Project Title Solid Sorbent CO₂ Capture Pilot System
 Calculation Title Performance and Cost Analysis for an Integration of Sorbent BN-based CO₂ Capture with a 550 MW (net) Subcritical Pulverized Coal-fired Power Plant
 Elec File Location
 Project File Location V:\1111\active\11110080\design\1900\230\lcoe_case10 ADA_bt_20110530_rev.xlsx

Proj No 111100208
 Calc No
 Phase/CTR

INITIAL DESIGN / DOE INDIRECT COSTS

Rev	Date	By	Checked	Rev	Date	By	Checked	Rev	Date	By	Checked	Rev	Date	By	Checked	Rev	Date	By	Checked	Rev	Date	By	Checked					
Elec File Location		26-Nov-15	BT	MER																								
Line No.	Description		unit	CASE 9 - (REF. PP)						CASE 10 - (REF. PP WITH FLUOR'S AMINE BASED CAPTURE)						CASE 10 WITH POLYSTYRENE BN SORBENT						NOTE						
258	2027	20	Operating		10.728	8.728		11.395	9.271		19.81	16.120		21.04	17.122		47.71	38.820						3. If only the economic parameters are changed, follow Procedure 2.				
259	2028	21	Operating		11.050	8.728		11.737	9.271		20.41	16.120		21.67	17.122		49.14	38.820						4. A change in Thermal Input affects the CO ₂ Captured Flow Rate and Gross Output.				
260	2029	22	Operating		11.382	8.728		12.089	9.271		21.02	16.120		22.32	17.122		50.62	38.820										
261	2030	23	Operating		11.723	8.728		12.452	9.271		21.65	16.120		22.99	17.122		52.13	38.820										
262	2031	24	Operating		12.075	8.728		12.826	9.271		22.30	16.120		23.68	17.122		53.70	38.820										
263	2032	25	Operating		12.437	8.728		13.210	9.271		22.97	16.120		24.39	17.122		55.31	38.820										
264	2033	26	Operating		12.810	8.728		13.607	9.271		23.66	16.120		25.13	17.122		56.97	38.820										
265	2034	27	Operating		13.194	8.728		14.015	9.271		24.37	16.120		25.88	17.122		58.68	38.820										
266	2035	28	Operating		13.590	8.728		14.435	9.271		25.10	16.120		26.66	17.122		60.44	38.820										
267	2036	29	Operating		13.998	8.728		14.869	9.271		25.85	16.120		27.46	17.122		62.25	38.820										
268	2037	30	Operating		14.418	8.728		15.315	9.271		26.62	16.120		28.28	17.122		64.12	38.820										
269	2038	31	Operating		14.850	8.728		15.774	9.271		27.42	16.120		29.13	17.122		66.04	38.820										
270	2039	32	Operating		15.296	8.728		16.247	9.271		28.25	16.120		30.00	17.122		68.02	38.820										
271	2040	33	Operating		15.755	8.728		16.735	9.271		29.09	16.120		30.90	17.122		70.06	38.820										
272	2041	34	Operating		16.228	8.728		17.237	9.271		29.97	16.120		31.83	17.122		72.17	38.820										
273	2042	35	Operating		16.714	8.728		17.754	9.271		30.87	16.120		32.78	17.122		74.33	38.820										
274				NPV	18.43	18.43		19.57	19.57		34.89	34.89		37.06	37.06		69.26	69.26										
275				D NPV	(0.00)			(0.00)			(0.00)			(0.00)			-											
276				IRROE		0.1225			0.1225			0.1224			0.1224			0.1224										