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ABSTRACT benchmarking]

We present 3D pore-scale simulations of multi-phase flows
in a porous medium using a consistent smoothed particle
hydrodynamics (SPH) formulation. Unlike grid-based La-
grangian methods, classical SPH formulations are trivially
scalable but introduce stiff timestep restrictions and are in-
consistent with the governing equations. The present work
recovers consistency by using local compact corrections to
achieve second order spatial convergence with less overall in-
terprocessor communication. We use an implicit projection
scheme to implement the continuum surface force model for
multi-phase flow. To achieve a scalable implementation, an
interface between two high-performance libraries has been
developed: LAMMPS to handle discretization and particle
dynamics, and Trilinos to solve the discretized equations us-
ing algebraic multigrid. The resulting approach has been
demonstrated to scale to more than 150 million particles on
11k cores. Benchmarks demonstrating the accuracy of the
method and large scale single-phase and two-phase simula-
tions are used to demonstrate the capabilities of the code.

Categories and Subject Descriptors

X.XX [Applications]: [Computational earth and atmospheric
sciences, Computational materials science and engineering,
Computational astrophysics/astronomy, chemistry, fluid dy-
namics, mechanics and physics]; X.X.XX [Performance]:
[Empirical measurement of performance, power and/or re-
silience on real-world systems Workload characterization and



1. INTRODUCTION

Lagrangian methods provide a natural framework for solv-
ing fluid dynamics problems. By advecting degrees of free-
dom with the streamlines of the underlying flow, the Navier-
Stokes equations reduce to a linear system of equations and
advection is handled exactly. For multi-phase flow prob-
lems and geometries with moving boundaries, this allows
for direct tracking of the interface without the need for solv-
ing additional equations for the interface dynamics or intro-
ducing diffuse boundary representations. For moving mesh
discretizations of the Lagrangian Navier-Stokes equations,
this strategy is often limited to flows with simple interface
dynamics or small boundary motion since the cost associ-
ated with maintaining a high quality mesh is prohibitive
and scales poorly.

Smooth particle hydrodynamics (SPH) and other meshless
particle methods provide a more natural framework, as dis-
cretization of the underlying PDE relies only on assembling
lists of nearby particles to calculate compact interaction
forces. For this reason, SPH has been successfully employed
for large scale problems by using a fully explicit discretiza-
tion and artificial equation of state in the weakly compress-
ible SPH (WCSPH) formulation|14]. This approach is em-
barrassingly parallel and well suited to implementation on
GPU architectures, where simulations of up to a billion par-
ticles have been performed|7} [8]. Both the spatial discretiza-
tion and the artificial equation of state introduce inconsis-
tencies to the system, and convergence can only be recovered
by taking increasingly large numbers of neighbors or an in-
creasingly stiff equation of state [17] |2 |9} [21]. As a result,
the scalability of the method can only be exploited to study
increasingly large problems, rather than study more chal-
lenging physics with increased fidelity.

In the current work, small local correction matrices are in-
verted for each particle to ensure convergent differential op-
erators, while projection methods are used to remove the
stiff equation of state in a variation of the so-called incom-
pressible SPH (ISPH) approach|6]. The resulting discretiza-
tion gives second order convergence in space and time and,
by using algebraic multigrid to solve the resulting systems of
equations, the resulting approach is weakly scalable in the
number of particles. Because the accuracy of the method
relies on the correction matrices and not increased numbers
of neighbors to control accuracy, the resulting discretization
allows a smaller interaction radius between particles, lead-
ing to smaller bandwidth when solving the global systems
of equations and reduced communication between proces-
sors[21].

We have developed a 3D parallel ISPH code within the
LAMMPS framework by developing an interface to Trilinos
solver libraries[16, [11]. LAMMPS is a molecular dynam-
ics (MD) code originally designed for traditional MD simu-
lations that provides software infrastructure for any parti-
cle based simulation with efficient parallel algorithms imple-
mented using message-passing interface and domain decom-
position. Trilinos is a package including libraries for solv-
ing large matrices with algebraic multigrid, provided that
a graph of the underlying matrix can be efficiently con-
structed. The performance of the current implementation
stems from the fact that the graph of the matrix can be

easily extracted from the neighbor lists in LAMMPS, allow-
ing the integration of the two libraries with little additional
overhead communication. To introduce an implicit time in-
tegration capability into LAMMPS, we use Trilinos solver
libraries: Belos for a GMRES linear solver|3| and ML for
algebraic multigrid (AMG) preconditioner|10].

While the discretizations used in this paper have been out-
lined carefully in a previous work investigating single-phase
flow in relatively simple geometries [21], the current work
uses a variant of the continuum surface force (CSF) method
to discretize multi-phase flow and account for fluid-fluid-
solid interactions in complex geometries|l, 5]. After in-
troducing validation results with benchmarks for the mul-
tiphase flow solver, a large pore-scale geometry is used to
demonstrate the ability of the method to maintain scalabil-
ity for extremely complex geometries for both single-phase
and multi-phase flow. While recent work done using ISPH
schemes to study multiphase flow have been restricted to
2D simulations in relatively simple geometries (e.g. [20 |23,
19]), the capabilities developed here marks the first large
scale fully 3D multiphase ISPH implementation.

2. NUMERICAL APPROACH

2.1 Governing equations

We seek a discretization of the Navier-Stokes equations in
Lagrangian form on €2 with boundary 02 with no-slip bound-
ary conditions:
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for velocity (u), position (x), pressure (p), density (p), dy-
namic viscosity (v). F is the net body force, e.g. the grav-
ity acceleration g and in the case of multiphase flows the
volumetric force F°7 used to model the effect of surface
tension. To discretize this, we associate with the set of par-
ticles x; C € the point values {u, pi, ps, vi, i}, where ¢ is
a flag denoting the particle phase. For the current work,
we assume uniform density in each phase. We first solve a
Helmholtz equation for each particle 7 to obtain an interme-
diate velocity
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after which a Poisson equation is solved for a pressure incre-

ment ¢ = p"*' —p™ to make the velocity u" ! = u* — %Vq
divergence-free,
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and finally the pressure and positions are updated, taking
into account the fact that the predictor pressure p;' and the

corrected pressure p?' ! are associated with different particle
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While the particle degrees of freedom {x;, u;, p;, ¢; } are avail-
able, the derivatives of these functions must be reconstructed
from neighboring values. Defining the neighbour set N¢; =
{x;s.t.|x; — xi| < €} and a positive radially symmetric func-
tion W (r) with compact support €, the differential operators
V and V? are defined as:
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where xi; = x;i — X5, 1ij = ||z, ey = Xij/rij, Wiy =
W (rs;), Vi denotes the particle volume
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and G; and L; are correction tensors used to guarantee exact
reproduction of linear functions for the gradient and Lapla-
cian, respectively. For the sake of brevity, readers are re-
ferred to [21] for details of their derivation, relation to clas-
sical SPH, and efficient calculation. We note however that
their construction requires only the neighbour list N, ; and
the inversion of a 3x3 and a 6 x6 matrix and therefore no ad-
ditional interprocessor communication. Further, this scheme
provides second order accuracy for a smaller value of €, there-
fore simultaneously providing higher accuracy and reduced
communication as compared to classical SPH approaches.
To handle discontinuities in material parameters for multi-
phase problems, the elliptic operators in Eqgns. [2] and [3] are
discretized using the identity V - (aVf) = aV>f + Va -V
and the discrete operators Vj and V3 defined in Eqns.
and [6

As the particles advect under the flow, near stagnation points
in the flow particles will clump together or form voids. Fol-
lowing the approach in Xu et al. [18], at the end of every
timestep an anisotropy indicator is used to shift particles to
enforce a uniform particle number density in the domain.
Details of the calculation of the anisotropy shift dr can be
found in [18|, but after shifting the particles the pressure
and velocity are corrected using the consistent gradient
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2.2 Boundary conditions

The accuracy of approximation in SPH relies on having full
support of the kernel contained in the domain (Vi, supp(W (|z—
z;]) € Q). For particles near the wall, the truncation is

remedied by introducing several layers of fixed dummy par-
ticles in the wall and performing a linear extrapolation using
the boundary conditions to impose a consistent extension
of the function on the interior [15]. So for example, for a
Dirichlet boundary condition, the function f is extended

fDZ(fTD(fw—fI)-FfW (11)
I

where the subscript {D, I, W} denote dummy, interior and
wall values, and dp and d; denote closest perpendicular dis-
tances to the wall for the dummy and interior particle, re-
spectively. Computing dp and d; for general geometries
would require a spline representation of the boundary, rein-
troducing a mesh into the problem. In practice, these dis-
tances can be approximated using a smoothed approxima-
tion|12]. Defining a state specific particle density differenti-
ating fluid and solid particles

Xq _ Z{j@j:a} Wij
! > Wij
the distance to the wall can be approximated for either fluid

or dummy particles using

do = 2¢(x§ —0.5). (13)

(12)

In practice this allows the specification of an arbitrarily com-
plex geometry by simply placing a lattice of particles over
a domain 2 and marking particles as either fluid or dummy
particles. For many applications this framework allows triv-
ial discretization of experimentally available datasets (e.g.
geometry specified from voxel data such as MRI applica-
tions).

2.3 Surface tension force

To calculate the surface tension force F97, we follow the
work by Adami et al. |1] for fluid-fluid interaction and exten-
sion by Breinlinger [5] to handle fluid-fluid-solid interaction.
We discretize the exact surface tension

F°T = —oknds (14)

where o is the surface tension coefficient, x is the local in-
terfacial curvature, and dx is a Dirac delta function concen-
trating the force at the fluid interface. Rather than track
the location of the interface, a smoothed representation is
calculated by defining the color function

j{l bi # &5,
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The diffuse interface normal in the bulk is then calculated
at each particle as 7 = V¢;/||Vei||. Ve can be computed
using the corrected gradient operator defined in Eqn.
However, when the densities of the different phases are sig-
nificantly different, we use the following gradient operator
that ensures that particles of different phases experience the
same acceleration at the phase interface, following the ap-
proach in [1]
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Figure 1: Diffuse normals transition smoothly be-
tween Vc in bulk and normal imposed by contact
angle (in this case, 0., = 150°).

For particles near walls, the Young-Laplace relation fixes an
equilibrium contact angle ©., which in turn fixes the normal
near the triple point of the fluid-fluid-solid interface. Near
the wall, the diffuse normal should satisfy

Ay = Al sin ©.q + 1Y cos Oy (18)

where 7! is a diffuse approximation of the wall normal com-
puted from wall number density
~p Z]’EOQ Va, Wi

nt =
I ean Ve Wil

and 7! is a diffuse approximation of the normal in the bulk
projected tangent to the wall

(19)
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Finally, we define an indicator function transitioning smoothly
between the bulk and the wall region

d]/dma;z; dl < dma:c
i(dr) = 21
fi(di) {1 g (21)

where dy is the smoothed approximation to the wall distance
defined in the previous section, and d,.q.. is a length scale
used to define the transition region and is set to 2¢ in this
work. This function is used to smoothly transition between
the bulk and near wall estimates of the interfacial normal

(See Fig.
o Jod 4 (1= fo)ny
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With a diffuse normal finally defined that is faithful to the

Young-Laplace equation, the curvature can be estimated as
from particles of identical phase

2 (hpime} (i = 15) - Vo, WiV

(22)
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and the surface tension force can be estimated as
FfT = —oki;Ve;. (24)

2.4 Linear algebra

As the discretization of the Poisson equation (Eqn. [3)) con-
tains a constant vector in its kernel, and the resulting global
system is asymmetric, there exists a vector in the cokernel of
the matrix to which the right hand side of the equation must
be orthogonal for a solution to exist @ Although theoret-
ically this left null vector can be computed with a singular
value decomposition and projected out of the right hand
side, this is prohibitively expensive. Instead we use Trili-
nos’ capability to project out the kernel during each matrix-
vector product occurring in the matrix-vector product of the
Krylov subspace iterations, i.e. solving the problem

PAPp=Pb (25)
where A is the discretized Poisson equation with boundary
conditions, p is the pressure, b is the discretized right hand
side, and P is a projection matrix to remove constant vectors

(26)

where c is any constant vector. This forces the right hand
side to lie in the range of A, and since A is a consistent ap-
proximation to the continuous (symmetric) Laplacian, the
error introduced by projecting out the kernel as an approx-
imation to the cokernel is negligible. This approach is ex-
pected to be more faithful to the spectrum of the operator
(and therefore provide better convergence), as opposed to
approaches such as using Lagrange multipliers to remove
the singularity or replacing a single row with a one on the
diagonal. We note that the generation of the AMG precon-
ditioner is based on matrix A, as the matrix PAP is never
formed.

When constructing the correction matrices (Eqns. and
@ the process is entirely local with no extra communica-
tion with neighboring processors. Correction matrices are
assembled by looping over nearest neighbors and matrix in-
version is done in place using LAPACK’s LU-decomposition
with partial pivoting. When solving the global Poisson and

Helmholtz matrices, the matrix graph is constructed in LAMMPS

and then passed to Trilinos to handle the solution. In Trili-
nos the Epetra package is used for distributed memory lin-
ear algebra, the Belos package for a GMRES linear solver,
and the ML package for smoothed aggregation AMG pre-
conditioners for block GMRES. Although the Poisson and
Helmholtz matrices are M-matrices only for uniform Carte-
sian particle arrangements, standard preconditioners per-
form well without special treatment.

3. RESULTS: VALIDATION AND BENCH-
MARKING

We begin by briefly demonstrating the accuracy of the cur-

rent implementation for equilibrium multi-phase benchmarks,
as the single-phase behavior of the solver has been docu-

mented in a previous work , and continuum surface force

type models have been thoroughly verified elsewherel[l]

. Then, we present weak scaling studies for single-phase

and multi-phase fluid applications. All simulations are run

on NERSC’s Cray XE6 (Hopper).

3.1 Multi-phase validation



Figure 2: Relaxation of a square drop to circle with uniform pressure at equilbrium.
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Figure 3: Scaling of droplet pressure with droplet
radius in accordance with Young-Laplace relation
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We first validate against the relaxation of a droplet from
a square shape into a sphere and demonstrate that the re-
sulting pressure field respects the equilibrium hydrostatic
pressure predicted by the Young-Laplace equation. Fig.
demonstrates a droplet of unit radius, equal density to the
surrounding fluid, and unit surface tension coefficient relax-
ing to a spherical shape. To validate the implementation
for fluid-fluid interactions, a L x L square of fluid A was
placed in a periodic box of fluid B with size 2L x 2L for L €
{0.1,0.2,0.3,0.4}. A 36 x 36 particle lattice is initialized and
evolved forward with dt = 0.2dx/Upae until reaching steady
state. For parameters of o = 1,p4 = pp = 1,v = 0.02, the
scaling of the droplet pressure with equilibrium droplet size
is given in Figureand demonstrated to obey the derivation
from the equilbrium Young-Laplace equation

g

Pout — Pin = (27)

Rdrop '
To validate the implementation for fluid-fluid-solid interac-
tions, a 0.2x 0.2 m? drop is placed beside a wall in a 0.8 x 0.6
m? fluid channel and discretized with a 22 x 22 particle res-
olution across the droplet. Fig. [d] demonstrates the initial
configuration and final equilibrium shapes for contact angles
of 6.y = 60° and 6., = 150°.

3.2 Single-phase application and benchmark-

ing
To further demonstrate the scalability and accuracy of the
developed ISPH code for flow in bounded domains with com-

plex geometry, we simulate a single-phase flow in a bead
pack consisting of 6864 beads of diameter 0.5 mm randomly
placed inside a cylinder with a diameter of 8.8 mm. Such
placement resulted in a 12.8 mm long bead pack. In the
simulations, SPH particles are initially placed on a Carte-
sian mesh with the grid size A = 23um, resulting in 151
million SPH particles. The particles lying within beads or
outside of the cylinder wall are designated as dummy parti-
cles. The dummy particle positions are fixed in space and
these particles are used to impose the no-slip boundary con-
dition at the boundaries between the fluid and cylinder and
glass beads. The rest of the particles are designated as fluid
particles with velocities computed according to Eqns. [2]and
and positions advected according to Eqn. At time
zero, the particle velocities are set to zero. Periodic bound-
ary conditions for pressure and velocity are applied at the
top and the bottom boundaries of the cylinder, and a body
force is applied in the direction parallel to the main axis of
the cylinder to drive the flow. The viscosity and density of
the fluid are assumed to be those of water. In the simu-
lations, the SPH equations are integrated until the average
velocity reaches steady state. Fig. shows the steady-
state velocity distribution obtained from a simulation with
the body force per unit mass g = 1.06 m/sZ.

The simulation results are compared with a high fidelity fi-
nite volume solution validated against an experimental MRI
dataset . Fig. |§| shows comparison of the cross-sectional
velocity profiles obtained from the SPH and F'V simulations.
This figure shows an overall good agreement between the
ISPH and FV methods. The steady-state average velocity
and point velocities (measured in the center of the column),
obtained from the ISPH and FV, are found to agree within
2%. To further validate the model we simulate flow for three
different body forces. Fig. [7] shows that the average veloc-
ity v scales linearly with the magnitude of the body force g
according to the Darcy Law:

v = k—pg, (28)

I
where k is the permeability of the bead pack.

Results from a weak scalability study are reported in Fig.
[8l and the problem setup is detailed in Tab. [I} In order to
improve the load balancing we performed a rebalance op-
eration using the recursive coordinate bisection algorithm
implemented in LAMMPS. Fig. [§ shows that the com-
putational time per time step is almost constant for the
Helmholtz problem whereas it is slowly increasing for the
Poisson problem, which is likely due to the increase in the



Figure 4: From left to right: Initial configuration of square droplet beside wall. Equilibrium configuration

for 0., = 60°. Equilibrium configuration for 6., = 150°.

Figure 5: Steady-state solution of flow in the bead
pack.
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Figure 7: Average velocity as a function of applied
body force. The results are in agreement with the
linear Darcy law in Eqn. and consistent with

results in I@II

Discretization Per Processor

N dx # Particles || # Processor | # Particles | Load balance
128 | 6.875e-05 6,083,687 432 14,083 1.0003
192 | 4.583e-05 | 19,701,287 1,440 13,682 1.0004
256 | 3.437e-05 | 45,803,537 3,432 13,347 1.0007
384 | 2.291e-05 | 151,438,991 11,376 13,313 1.0006

Table 1: Setup for weak scaling study for both
single-phase and multi-phase problems

number of iteration per time step.

3.3 Multi-phase application and benchmark-
ing

Finally, we demonstrate the scalability of the ISPH code for
modeling multiphase flow in bounded domains, which con-
stitutes a highly non-linear problem due to presence of the
moving interface separating two fluids. To do so, we simu-
late bubbles of supercritical carbon dioxide (CO2) in water.
The inital domain is represented by a pack of spherical bub-
bles with the diameter 0.5 mm randomly placed inside a
cylinder with the diameter 4.4 mm and length 6.4 mm (see
Fig. E[) As in the single phase flow simulations, SPH parti-
cles are initially placed on a BCC lattice with the grid size
A = 23um. Periodic boundary conditions for pressure and
velocity are used at the top and the bottom boundaries of
the cylinder whereas we prescribe no-slip Dirichlet condi-
tions at the cylinder lateral wall. At time zero, the particle
velocities are set to zero and the body force g = 4.9 m/s?
is applied in the direction parallel to the main axis of the
cylinder to drive the flow. In these simulations, the CO;
density is assumed to be half of the density of water and
the COs viscosity is 10 times smaller than the water vis-
cosity. Fig. [I0] shows the evolution of the two-phase fluid
at different time instants and the agglomeration of the CO2
bubbles. We perform a weak scalability study on the de-
scribed problem, using the same setup described in Tab. [I]
in and report the results in Fig. The results, in term of
scalability, are comparable with those for single-phase fluid,
showing that the parallel implementation is rather robust
and not significantly affected by the intrinsic nonlinearity of
the multi-phase problem.

4. CONCLUSIONS

A highly scalable implementation of a consistent second or-
der incompressible SPH scheme has been implemented using
an interface between the LAMMPS and Trilinos libraries to
provide a means for studying multiphase flow in complex



Figure 9: Initial configuration of the spherical CO,
bubbles for multi-phase problem.

geometry. The current work has demonstrated the ability of
this approach to simulate hundreds of millions of particles
while maintaining load balancing and favorable weak scaling.
While these results have focused primarily on demonstrat-
ing the performance of the implementation, another work is
currently underway carefully benchmarking the accuracy of
this approach for multiphase flows.
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Figure 6: Steady state flow for the bead pack problem using the current approach (left) and a finite volume
solution (right) computed with 30 million tetrahedral element smoothed-surface boundary-fitted mesh solver
computed in STAR-CCM+ .
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Figure 8: Weak scalability for single-phase problem (the number of particles per process is kept approximately
constant, see Tab. . Left: computational average times per time step for assembling terms and solving
linear systerms vs number of particles. Right: Number of iterations of the GMRES solver vs the number of
particles for the Poisson problem.



Figure 10: Fluid phases at different time steps, CO: in green and water in blue. From left to right, top to
bottom, t=1.125ms, 2.25ms, 3.375ms, 4.5ms.
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Figure 11: Weak scalability for multi-phase problem. Left: computational average times per time step for
assembling terms and solving linear systerms vs number of particles. Right: Number of iterations of the
GMRES solver vs the number of particles for the Poisson problem.
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