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Dielectric Resonators
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Dielectric Resonators for E&M Manipulation-- Historical Interiude...

*  Mie’s paper: 1908
* Gans & Happel, Annalen der Physik, 1909, same equation as in Lewin!

* Schaefer & Stallwitz Annalen der Physik, 1916, 2D (rods)
e Lewin’s paper: 1946

e Sakurai 1949, “Artificial Matter for electromagnetic wave”.

 Bell Labs, etc. (artificial dielectrics): 40°s-60’s

Early 2000’s: Kuester & Holloway (RF), Hasman (near IR), Connie J.
Chang-Hasnain (high contrast gratings)

Last ~10 years:

» Visible&Near IR: Kuznetsov, Luk 'yanchuk, Evlyukhin, Polman,
Kivshar, Brener, Brongersma, Valentine, etc, etc. |II-V semiconductors

» IR: Brongersma, Sandia, ... Magnetic mirrors @~9um
» RE: Cummer, Gopinath, Lippens, Kuester&Holloway, etc.

Please let us know if we miss any important work!

For a complete reference list, see Kuester& Holloway,
Many thanks to Ed Kuester, CU Boulder Antennas and Propagation, IEEE Transactions on 51, no.
10 (2003): 2596,PIER B, vol. 33, p. 175 (2011).
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Dipoles emitter close to surfaces

Electric dipole emitter on top of a
perfect electric conductor (PEC)
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Because of boundary condition of the PEC surface, the electric field at the dashed plane has

IMAGE THEORY

to be zero
* This means that the radiation of an electric dipole close to PEC is quenched

Electric dipole on top of a perfect
magnetic conductor (PMC)
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* This means that the radiation of an electric dipole on a PMC is enhanced
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Magnetic Dipoles

However, a perfect magnetic conductor does not exist in nature

Array of magnetic dipoles

Because the magnetic dipole responds in phase with the electric field, this
represents an artificial magnetic conductor

Jop el We can create magnetic dipoles with dielectric
resonators in optical frequencies

Inductors on Magnetic

E
Inner Layer |
Solid Conduction
Lower Plate
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Fabrication of Cubic Dielectric Metamaterial

1. Deposition of Te (n~5) on BaF,
2. Patterned using E-beam lithography

3. Etching (Reactive Ion Etching) - 3
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»Good uniformity over large areas (cm?) 68 72 76 80 84 88 92 96
> Slight over-etching Wavelength (um)

Works in mid-infrared
J. Ginn, PRL 108, 097402 (2012)

S. Liu, APL 102, 161905 (2013)
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How to experimentally demonstrate magnetic mirror behavior?

Height of Gold mirror is placed at the center of the cubes
The red and white sections of the beams represent positive and negative
phase fronts of the optical field.

« Time Domain Spectroscopy (TDS)
> Typical spectroscopy is frequency domain based spectroscopy.

___» Time domain spectroscopy technique provides both amplitude and
R phase information—full information of EM wave.
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Mid-IR time domain spectroscopy setup
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FOTD Simulation of Reflected Electric Field
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Experimental Results of Reflected Electric Field
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Fourier Transform of Experimental Results (Phase)
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 Phase difference between magnetic (~170 degree) and
electric (10 degree) resonance is ~160 degree (close to TT)

Optical magnetic mirrors without metals, Optica, 1, 250 (2014)
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Potential applications—enhancing emission and absorption

Dipole = 4.. >
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radiation of a transverse electric radiation of a transverse electric
dipole close to PEC is quenched dipole on a PMC is enhanced
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III-V semiconductor based dielectric metamaterials

* Single layer
* Multi-layer—why do we need it?
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Limitations of Si (indirect bandgap materials)

Inefficient light emission (hard to incorporate active media)
Free carrier absorption of Silicon due to long electron lifetime

Centrosymmetry of Silicon =» NO second order nonlinearity

Direct bandgap semiconductor: 111I-V
(AlGaAs, InGaAs, GaAs)

LETTERS

nature
PhOtOﬂlCS PUBLISHED ONLINE: 25 AUGUST 2013 | DOI: 10,

Realization of an all-dielectric zero-index
optical metamaterial

anmu Yang", Zachary Anderson? Ivan I. Kravchenko®, Dayrl P. Briggs®

GaAs based disk resonators

Demonstration 3[) & No ﬂip Chip b()nding?

Nanoparticles
Steven Person,” Manish Jajn;' Zachary J_.apinf'f Juan Jose Sienz,’ Gary Wicks,” and Lukas l\Jcn‘vcnttl}.f*'i‘'4r

flip-chip bonding to fused silica
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Fabrication of Al(In)GaAs based dielectric MM

Epitaxially grown:
- MBE, MOCVD Low refractive index
. . surrounding 1s needed!

GaAs
Substrate
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GaAs disk resonators (1 layer)

A GaAs disk height ~300nm

Different diameters
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Nonlinear optical generation in metasurfaces

Metallic
= metasurfaces with

L -0 different shapes.
Bjesmen “'Tmef o7 i Field localization
m |1| M EU 5 cld
ln = ;lil-lll ;n:I /'/ .. g .H] Wlthln the

T = e - nanostructures

Yuri et al, Laser Photonics Review, 9, 195 (2015)

Dielectric metasurfaces—Silicon disk efficiently generate 3™ harmonic.

Nano Lett, 2014, 14 (11). pp 6488—-6492
DOI: 10.1021/n1503029

Non-centrosymmetric materials are
needed for second harmonic generation

p
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Nonlinear optical generation in metasurfaces
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Second harmonic- pump wavelength dependence

Pump @ 1040nm=>»520nm
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data
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Different diameter resonators show different SHG efficiency

More experiments are needed
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III-V semiconductor based dielectric metamaterials

* Single layer
* Multi layer—why we need?
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Huygens Metasurface

Huygens Principle (Love formalism) Huygens sources radiate
unidirectional as superposition of electric and magnetic
dipoles.

Using dielectric resonators, we can Resonance overlap: A, ~ A,

achieve this
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Complete 21 phase range in transmission
Near-unity transmittance

No reflection losses, no absorption losses (NIR)
No polarization conversion losses

Single step lithography fabrication

(I. Staude, I. Brener & Y. Kivshar,
Adv. Opt. Mat. 2015
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Femtosecond pulse dispersion compensation by multi-layer
Huygens metasurface

Resonance overlap: 2, = A,

Single layer is not
E;perin)ent _

- - Simulation enough to generate

e sufficient phase

difference within the
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Yuri et al, “High-Efficiency Dielectric Huygens’ Surfaces”, Advanced optical materials, 3, 813
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Another example: Perfect reflector—3 layers of GaAs disks
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Appl. Phys. Lett. 104, 171102 (2014) DOI: 10.1021/acsphotonics.5b00148
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3D dielectric metamaterials

Epitaxially grown multi-layer

GaAs/AlGaAs

N ...

GaAs GaAs
Substrate Substrate

AlGaAs AlLO,
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Summary

* Optical magnetic mirrors without metals

o III-V (AlGaAs/GaAs/InGaAs) based
dielectric metamaterials open new
possibilities for nonlinear optical
generation, realizing 3D and active
devices...??7?

S. Liu, et al, Optical magnetic mirrors without metals, Optica, 1, 250 (2014)
S. Liu, et al, Appl. Phys. Lett., 102, 161905 (2013)
S. Liu, et al, Appl. Phys. Lett., 103, 181111 (2013)
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High refractive index needed for dielectric magnetic

mirror
P o0
4 [y Permittivity
Si Ge Te, PbTe : > 60
4 =
3.5 4 © 30
; b
4 S 0 ili
_'8 i ; Permeability
2 g
= i 7]
<< ] 2 60 ‘
25 B .,::_...-" E -90 1 ] 1'2 ] 1
f 6.5 7.0 7.5 8.0 B.5 8.0 9.5
5 Lez® ) i Wavelength (um)
3.0 3.5 4.0 4.5 5.0 5.5 6.0 * When the effective wavelength in the OMM

Index of refraction becomes equal to the array period, a
photonic crystal band-gap regime is

FIG. 4. (color online). Design metric for 1:1 CDR metama- encountered for which field homogenization
terials. Solid lines correspond to the lowest-order magnetic breaks.down" o
(red) and electric (blue) resonances. The top dashed line de- ¢ In the immediate vicinity of the resonance,

fines the transition to a band-gap regime, and the bottom line the phase advance of the wave across the
defines where the effective parameter has its zero crossing. unit cell becomes significant and spatial
The indices of several materials at 10 pm are also labeled. dispersion effects appear.

The significance of these band-gap and spatial disper-

J. Ginn, et al,, Phys. Rev. Lett. 108, 097402 (2012) sion effects increases as the permittivity of the resonator
decreases since the size of the resonator and unit cell

must grow relative to the operating wavelength. The lim-
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Light reflected upon normal mirror and magnetic mirror

Magnetic
Resonance
A~9m

Electric
Resonance
A~T7 . 1um

“magnetic”
mirror

Electric Resonance
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Reflected from OMM
X axis (um)

@ Magnetic Resonance
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Simulated IR Transmission/Reflection and
S-parameter retrieved effective parameters
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> Negative values of € and p are achieved
near respective resonances

» Impedance phase shows hallmark of
magnetic and electric behavior

» The optical magnetic mirror behavior
occurs near the magnetic dipole
resonance where the impedance is
imaginary and the impedance phase is
positive.

» Permittivity and permeability is retrieve
using the standard algorithm following:
D. R. Smith et al., PRB, 65, 195104 (2002)

J. Ginn, et al., Phys. Rev. Lett. 108, 097402 (2012)



Our mid-IR TDS experimental setup

AOM: acousto-optic modulator 35 f5, 1350 nm
DM: dichroic mirror Gate: 15 £, 1050 nm A S\ N\ w0 130
GS: GaSe nonlinear crystal / Fiber Laser System /\
LP: long-wavelength pass filter 5, _L_ —an \
G: diffraction grating T i
BD: balanced detector 5 '
A2: half-wave plate E D¢ Lock-in
M4:quarter-wave plate 5 ™ /) BD Amptier E E
WP: Wollaston prism i m \/ . E !
; N WP Sampling ' | !
4 Oscilloscope | E !
GS '
‘ DM
E0s _ g
""""""""'"""'."T}éﬁéﬁisfs'ion !
Advantages: N L §
« Smaller footprint (fiber laser) ._. ;
«  Short warm-up time (10 minutes) Reflection
« Exchangeable transmission and

reflection measurements average power ~8 uW (~0.5 W peak)
Mid-IR ~200 fs i) o 30
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Theoretical explanation of the observed reflection phases employing
two-dimensional periodic dyadic Green's functions
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ItWo reflection coefficients from the array of cubes modeled as an array of either -
elfctric (solid blue) or magnetic (dashed red) dipoles. A Ntiona
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Theoretical explanation of the observed reflection phases employing
two-dimensional periodic dyadic Green's functions

= Full-wave == Dipolar **** Experiment
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Magnitude and phase of the reflection coefficient at the array plane computed
with full-wave simulations (blue solid) and dual (electric and magnetic) dipolar
approximation (red dashed). The experimental result is reported for completeness
as a green dotted curve.

http://arxiv.org/abs/1403.1308 (2014)
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http://arxiv.org/abs/1403.1308

