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Outline	
  
•  research	
  ques8ons	
  

•  direct	
  numerical	
  simula8ons	
  in	
  solid	
  mechanics	
  

•  example:	
  elas8c	
  structure	
  with	
  microstructure	
  

•  example:	
  plas8c	
  response	
  

•  applica8ons	
  to	
  addi8ve	
  manufacturing	
  

•  mul8scale	
  modeling	
  using	
  geometric	
  mul8grid	
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Research	
  ques8ons	
  (why	
  DNS?)	
  
•  What	
  is	
  “material	
  variability”?	
  	
  	
  

•  What	
  is	
  the	
  error	
  in	
  homogeniza8on	
  theory?	
  	
  

•  What	
  is	
  the	
  error	
  induced	
  when	
  the	
  assump8on	
  of	
  scale-­‐separa8on	
  
no	
  longer	
  holds?	
  

•  Can	
  we	
  find	
  evidence	
  of	
  surface-­‐effects?	
  

•  Can	
  we	
  find	
  evidence	
  of	
  strain-­‐gradient	
  effects	
  or	
  nonlocality	
  in	
  the	
  
mean-­‐field	
  response?	
  

•  How	
  to	
  include	
  known	
  spa8al	
  varia8ons	
  in	
  microstructure	
  in	
  our	
  
macroscale	
  simula8ons,	
  e.g.	
  arising	
  from	
  manufacturing	
  processes?	
  

•  How	
  does	
  material	
  variability	
  impact	
  engineering	
  quan88es	
  of	
  
interest?	
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Direct	
  numerical	
  simula8ons	
  

•  Key	
  postulate:	
  	
  we	
  have	
  a	
  fine	
  scale	
  representa8on/model	
  that	
  is	
  
predic8ve	
  (e.g.	
  microstructural	
  model,	
  crystal-­‐plas8city	
  model)	
  

•  Perform	
  direct	
  numerical	
  simula8ons	
  (DNS)	
  of	
  macroscopic	
  boundary-­‐
value	
  problems	
  with	
  microstructure	
  and	
  compare	
  with	
  the	
  solu8on	
  from	
  
the	
  homogenized	
  PDE.	
  

•  Iden8fy	
  any	
  evidence	
  of	
  higher-­‐order	
  effects	
  (gradient	
  or	
  surface	
  effects).	
  

•  Can	
  currently	
  model	
  ~	
  500,000	
  grains	
  in	
  a	
  macroscale	
  structure.	
  	
  	
  

•  Goal	
  is	
  ~	
  100	
  M	
  grains.	
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DNS	
  Approach	
  

•  Use	
  voxela8on	
  approach	
  to	
  mesh	
  grains	
  
•  Use	
  macroscale	
  hexahedral	
  mesh	
  as	
  “overlay”	
  grid	
  
•  Use	
  idealized	
  Voronoi	
  microstructure	
  (for	
  now)	
  
•  Use	
  Maximal	
  Poisson	
  Sampling	
  (MPS)	
  to	
  seed	
  Voronoi	
  microstructure	
  
(results	
  in	
  equiaxed	
  grain	
  morphology)	
  

•  No	
  texture	
  (for	
  now)	
  

Advantage	
  of	
  voxela8on	
  approach	
  

•  Easy	
  meshing	
  of	
  microstructure	
  
•  Only	
  need	
  implicit	
  representa8on	
  of	
  microstructure	
  
•  Can	
  robustly	
  generate	
  many	
  microstructural	
  realiza8ons	
  
•  Robust	
  under	
  large	
  deforma8on	
  
•  Experimental	
  data	
  is	
  typically	
  pixelated	
  anyway	
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Voronoi	
  Microstructure	
  from	
  
MPS	
  Seeding	
  

Maximal	
  Poisson	
  Sampling	
  
•  constraint	
  on	
  minimum	
  distance	
  
•  seed	
  un8l	
  ‘max’	
  packing	
  
•  Ebeida/Mitchell	
  Algorithm	
  (1400)	
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Hierarchy	
  of	
  hexahedral	
  meshes	
  
R0	
   R1	
   R2	
  

R3	
   R4	
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Microstructural	
  overlay	
  of	
  hex	
  mesh	
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R1	
   R2	
  

R3	
   R4	
  

Voronoi	
  overlay	
  of	
  hierarchy	
  of	
  hex	
  meshes	
  
One	
  grain	
  realiza8on	
  with	
  ~	
  12	
  grains	
  through	
  the	
  diameter	
  	
  (~	
  6200	
  grains)	
  

~	
  1	
  hex	
  per	
  grain	
   ~	
  8	
  hexas	
  per	
  grain	
  

~	
  64	
  hexas	
  per	
  grain	
   ~	
  512	
  hexas	
  per	
  grain	
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Stainless	
  steel	
  304L	
  single	
  crystal	
  
elas8city	
  constants	
  

C11 = 204.6 GPa

C12 = 137.7 GPa

C44 = 126.2 GPa

anisotropy	
  ra8o,	
   A =
2C12

C11 � C44
= 3.5

(Ledbe2er,	
  1984) 

single	
  crystal	
  elas8c	
  constants	
  (cubic	
  symmetry) 

•  assume	
  random	
  crystallographic	
  orienta8ons	
  
•  no	
  correla8on	
  between	
  grains	
  (no	
  texture)	
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RPI	
  crystal	
  plas8city	
  model	
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Convergence	
  of	
  stochas8c	
  volume	
  elements	
  (SVE)	
  to	
  
representa8ve	
  volume	
  element	
  (RVE)	
  

How	
  to	
  get	
  homogenized	
  proper8es?	
  

~	
  43	
  grains	
   ~	
  83	
  grains	
   ~	
  163	
  grains	
   plas8c	
  response	
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Convergence	
  to	
  effec8ve	
  isotropic	
  
elas8c	
  proper8es	
  

•  mean	
  of	
  100	
  simula8ons	
  at	
  each	
  “grain	
  level”	
  
•  ra8onal	
  func8on	
  extrapola8on	
  to	
  ∞	
  

These	
  values	
  will	
  be	
  used	
  as	
  the	
  homogenized,	
  isotropic,	
  elas8c	
  proper8es. 

number	
  of	
  grains	
   apparent	
  Young’s	
  Modulus	
  
(GPa)	
  

apparent	
  Poisson’s	
  ra8o	
  

~43	
  grains	
   185.2	
   0.307	
  
~83	
  grains	
   190.5	
   0.301	
  
~163	
  grains	
   193.9	
   0.298	
  
~323	
  grains	
   195.7	
   0.296	
  

∞	
   197.6	
   0.294	
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•  Ideally,	
  would	
  use	
  computa8onal	
  homogeniza8on	
  (FE2)	
  for	
  nonlinear	
  
homogeniza8on.	
  

•  Since	
  this	
  is	
  not	
  available,	
  use	
  a	
  simple	
  piece-­‐wise	
  linear	
  hardening	
  J2-­‐plas8city	
  
model.	
  	
  This	
  results,	
  however,	
  in	
  a	
  model-­‐form	
  error.	
  

Effec8ve	
  plas8city	
  model?	
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Model-­‐form	
  error	
  –	
  RVE	
  vs.	
  J2-­‐plas8city	
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Model-­‐form	
  error	
  –	
  RVE	
  vs.	
  J2-­‐plas8city	
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stress paths in 
principal-stress space 
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I-­‐Beam	
  example	
  -­‐	
  elas8c	
  

•  tension	
  
•  bending	
  
•  torsion	
  



•  R0	
  
•  8,576	
  hexas	
  

Hierarchy	
  of	
  hexahedral	
  meshes	
  

•  R1	
  
•  69K	
  hexas	
  

•  R2,	
  549K	
  hexas	
  
•  R3,	
  4.4M	
  hexas	
  
•  R4,	
  35M	
  hexas	
  (~	
  2000	
  cores,	
  FETI	
  solver)	
  
•  R5,	
  280M	
  hexas	
  (~	
  20,000	
  cores,	
  3-­‐level	
  FETI)	
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Thickness/grain	
  ra8o	
  =	
  8	
  

•  uniformly	
  random	
  crystal	
  orienta8ons	
  
•  ~420,000	
  grains	
  
•  hex	
  mesh	
  overlay	
  =	
  R4	
  (35M	
  elements)	
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VonMises	
  stress	
  field	
  

homogenized	
  solu8on	
  

direct	
  numerical	
  simula8on	
  



Stress	
  extrac8on	
  lines/curves	
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DNS, realization 2
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realiza8on	
  1	
  

realiza8on	
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Homogenized	
  solu8on	
  vs.	
  DNS	
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homogenized solution
DNS solution, ensemble−average (100)

Homogenized	
  solu8on	
  vs.	
  ensemble	
  average	
  
Beran	
  and	
  McCoy	
  (1970)	
  showed	
  that	
  the	
  governing	
  equa8on	
  for	
  
the	
  mean	
  field	
  is	
  nonlocal.	
  

See	
  no	
  evidence	
  for	
  nonlocality	
  here.	
  

Stress	
  magnitude	
  along	
  lower	
  fillet	
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realiza8on	
  1	
  

realiza8on	
  2	
  

Stress	
  magnitude	
  around	
  hole	
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homogenized
DNS, realization 1
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Homogenized	
  solu8on	
  vs.	
  ensemble	
  average	
  

See	
  some	
  evidence	
  for	
  nonlocality	
  here.	
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  magnitude	
  around	
  hole	
  

0 2 4 6 8 10 12 14 16
0

0.5

1

1.5

2

2.5

3

3.5

4

distance along hole circumference, mm

str
es

s m
ag

ni
tu

de

 

 
homogenized solution
DNS solution, ensemble−average (100) 100	
  realiza8ons	
  



26	
  

3D	
  moving	
  average	
  using	
  Gaussian	
  filter	
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DNS, realization 1
homogenized
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DNS, realization 1
homogenized

unfiltered	
  

filtered	
  

3D	
  moving	
  average	
  using	
  Gaussian	
  filter	
  

Homogenized	
  
solu8on	
  is	
  a	
  
surprisingly	
  good	
  
approxima8on.	
  

↵ = 0.125mm
(moving	
  average	
  
over	
  ~2x2x2	
  grains)	
  

Stress	
  magnitude	
  along	
  lower	
  fillet	
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Summary	
  (elas8c	
  results)	
  

•  Found	
  li2le	
  evidence	
  of	
  higher-­‐order	
  effects	
  for	
  this	
  material	
  and	
  these	
  
BVPs.	
  	
  This	
  is	
  possibly	
  due	
  to	
  the	
  small	
  correla8on	
  length	
  inherent	
  in	
  the	
  
microstructure.	
  	
  

•  Fluctua8ons	
  (10-­‐20%)	
  on	
  the	
  length	
  scale	
  of	
  several	
  grains	
  are	
  present	
  as	
  
evidenced	
  by	
  spa8ally	
  filtered	
  DNS	
  results.	
  	
  

•  What	
  about	
  plas8c	
  regime?	
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Plas8c	
  example:	
  stainless-­‐steel	
  tube	
  under	
  
combined	
  tension-­‐torsion	
  

(elas8c-­‐plas8c)	
  

•  thickness/grain	
  ra8o	
  =	
  8	
  
•  352,000	
  grains	
  
•  uniformly	
  random	
  crystal	
  orienta8ons	
  

Axial	
  Load	
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Axial	
  Load	
  Only	
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Axial	
  load	
  +	
  torsion	
  



32	
  

Strain	
  under	
  combined	
  tension-­‐torsion	
  



Strain	
  magnitude	
  along	
  length	
  of	
  tube	
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DNS, realization 1
homogenized
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midsec8on	
  between	
  holes,	
  combined	
  tension-­‐torsion 
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DNS, realization 1
homogenized

Strain	
  magnitude	
  around	
  hole	
  
inside	
  circumference,	
  combined	
  tension-­‐torsion 
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Global	
  stretch	
  and	
  rota8on	
  of	
  tube	
  

axial	
  stretch	
   rota8on	
  

Homogenized	
  solu8on	
  good	
  in	
  tension-­‐only	
  region	
  but	
  less	
  accurate	
  in	
  
combined	
  tension-­‐torsion.	
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Summary	
  (plas8c	
  results)	
  

•  See	
  appreciable	
  difference	
  between	
  a	
  basic	
  J2	
  plas8city	
  model	
  and	
  DNS	
  
results.	
  

•  Need	
  full	
  FE2	
  for	
  true	
  homogeniza8on	
  in	
  the	
  plas8c	
  regime.	
  
•  What	
  about	
  more	
  complex	
  microstructures,	
  e.g.	
  from	
  addi8ve?	
  	
  

Bishop,	
  J.,	
  Emery,	
  J.,	
  Field,	
  R.,	
  Weinberger,	
  C.,	
  Li2lewood,	
  D.	
  2015,	
  "Direct	
  numerical	
  simula8ons	
  in	
  
solid	
  mechanics	
  for	
  understanding	
  the	
  macroscale	
  effects	
  of	
  microscale	
  material	
  variability,"	
  	
  
CMAME,	
  287,	
  pp.	
  262-­‐289.	
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Applica8on	
  to	
  addi8ve	
  manufacturing	
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Schema8c	
  of	
  LENSTM	
  laser-­‐
based	
  deposi8on	
  process	
  

LENS	
  acellular	
  structure	
  

LENS	
  mesostructure	
  

Laser	
  Engineered	
  Net	
  Shape	
  (LENS)	
  

•  LENS	
  “hatch”	
  structure	
  results	
  in	
  a	
  
complex	
  mesoscale	
  structure.	
  

•  Classical	
  assump8on	
  of	
  scale-­‐separa8on	
  
may	
  no	
  longer	
  be	
  applicable.	
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Microstructure:	
  wrought	
  vs.	
  LENS	
  
LENS,	
  SS	
  304L,	
  3.8	
  kW	
  Wrought,	
  SS	
  304L	
  

1.0 mm 

(Images	
  shown	
  
at	
  same	
  scale.)	
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LENS	
  microstructure	
  

8	
  mm	
  	
  x	
  10	
  mm	
  



Idealized	
  LENS	
  microstructures	
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sampling	
  

hatch	
  offset	
  

+ 

texture? 
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+ 

equiaxed	
   addi8ve,	
  LENS	
  

DNS	
  modeling	
  	
  

bead size = 1 mm"
grain size = 40 microns"

grain size = 40 microns"
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Engineering	
  stress-­‐strain	
  

addi8ve,	
  LENS	
  

equiaxed,	
  no	
  texture	
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Idealized	
  microstructures	
  

equiaxed	
   LENS	
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Macroscopic	
  stress	
  field	
  
homogeneous,	
  isotropic	
  

equiaxed,	
  no	
  texture,	
  isotropic	
  

idealized	
  LENS	
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Future	
  8e-­‐in	
  with	
  process	
  modeling:	
  
grain	
  growth	
  simula8on	
  

(Veena	
  Tikare,	
  SNL)	
  Process	
  modeling	
  

Kine8c	
  Monte	
  Carlo	
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Mul8scale	
  modeling	
  using	
  
‘geometric	
  mul8grid’	
  concepts	
  

Miehe	
  &	
  Bayreuther,	
  2007	
  
Fish	
  &	
  Belsky,	
  1995	
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Multiscale multigrid solvers 
•  Key	
  postulate:	
  	
  we	
  have	
  a	
  fine	
  scale	
  representa8on/model	
  that	
  is	
  predic8ve	
  
(e.g.	
  microstructural	
  model,	
  crystal-­‐plas8city	
  model)	
  

•  Key	
  idea:	
  use	
  geometric	
  mul8grid	
  concepts	
  to	
  create	
  a	
  mul8scale	
  method	
  
(solver)	
  that	
  op8mally	
  obtains	
  the	
  “solu8on”	
  at	
  all	
  scales	
  

•  No	
  assump8on	
  of	
  scale	
  separa8on	
  
•  Applicable	
  to	
  linear	
  or	
  nonlinear	
  problems	
  
•  Use	
  goal-­‐oriented	
  error	
  es8ma8on	
  to	
  op8mally	
  create	
  mul8grid	
  hierarchy	
  	
  
•  Each	
  grid	
  represents	
  a	
  filtering	
  of	
  the	
  fine-­‐scale	
  physics	
  	
  	
  

h h/2

We	
  have	
  a	
  natural	
  hierarchy	
  of	
  grids	
  in	
  our	
  DNS	
  approach.	
  



Ahuh = fh

f2h = I2hh fh

u2h = I2hh uh

Multigrid iterative V-cycle 

2h

hfinest	
  
microstructural	
  
mesh	
  resolu8on	
  

4h

8hmacroscale	
  

mul8grid	
  itera8ons	
  

Galerkin	
  property	
  

uh = Ih2hu
2h

I2hh =
�
Ih2h

�T
submodeling	
  based	
  prolonga8on	
  	
  

A2h = I2hh AhIh2h

coarser	
  grid	
  operator	
  



Intergrid	
  transfer	
  operators?	
  
•  Intergrid	
  transfer	
  operators	
  (prolonga8on	
  and	
  restric8on)	
  are	
  key	
  elements	
  of	
  
geometric	
  mul8grid	
  methods.	
  

•  Due	
  to	
  material	
  heterogeneity,	
  can	
  NOT	
  use	
  standard	
  prolonga8on	
  and	
  restric8on	
  
operators.	
  

•  Use	
  ‘submodeling’	
  techniques	
  to	
  define	
  prolonga8on	
  operator	
  (coarse	
  to	
  fine).	
  
•  Restric8on	
  operator	
  (fine	
  to	
  coarse)	
  is	
  given	
  by	
  varia8onal	
  op8mality	
  condi8on.	
  

2h h

Ih2h

I2hh =
�
Ih2h

�T

prolonga8on	
  

restric8on	
  

coarser	
  grid	
   finer	
  grid	
  2h h

Ih2h
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Ih2hConstruct	
   using	
  overlapping	
  submodels	
  

find	
  a2ached	
  elements	
  

submodel	
  

•  repeat submodeling to 
recover all of finer grid 

• average results at 
interfaces 

retained submodel results 

Apply	
  displacement	
  
boundary	
  condi8ons	
  
from	
  coarse-­‐scale	
  
model	
  to	
  finer-­‐scale	
  
model	
  



Thank	
  you!	
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Extra	
  



What	
  about	
  the	
  Governing	
  PDE?	
  

micro-­‐scale	
  

l 

L 

• What	
  is	
  the	
  governing	
  equa8on	
  
at	
  the	
  macroscale?	
  

• What	
  are	
  the	
  effec8ve	
  material	
  
proper8es?	
  

macro-scale 

✏ =
l

L

�✏
ij ,j +fi = 0

�✏
ij = a✏ijkl"

✏
kl

⌦

linear	
  elas8city	
  

Homogenization Theory Answers 
these Questions: 

54	
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Homogeniza8on	
  

fine-­‐scale	
  fluctua8ons	
   replaced	
  with	
  mean	
  behavior	
  

Cons8tu8ve	
  models	
  map	
  average	
  strain	
  to	
  average	
  stress:	
  

�✏
ij �ij = h�✏

iji

�ij = h�✏
iji"ij = h"✏iji

This	
  equivalence	
  is	
  also	
  sa8sfied	
  energe8cally:	
   �ij"ij = h�✏
ijih"✏iji
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ε = 0.32	

 ε = 0.16	

 ε = 0.08	

 ε = 0.04	



effec8ve	
  value	
  

	
  a
pp

ar
en

t	
  p
ro
pe

rt
y	
   displacement	
  b.c.,	
  KUBC	
  

trac8on	
  b.c.,	
  SUBC	
  

periodic	
  b.c.	
  

First	
  order	
  con8nuum	
  uses	
  this.	
  

(determinis8c,	
  no	
  variability)	
  

RVE	
  size	
  	
  

Apparent	
  vs.	
  Effec8ve	
  Material	
  Proper8es	
  
Huet,	
  C.	
  (1990)	
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Huet, C. (1990). "Application of variational concepts to size effects in elastic heterogeneous bodies." 
Journal of the Mechanics and Physics of Solids, 38(6): 813-841. 

Apparent	
  vs.	
  Effec8ve	
  Material	
  Proper8es	
  

SUBC	
   KUBC	
  

Capp
� (!)  C  Capp

" (!)

determinis8c	
  
stochas8c	
   stochas8c	
  

C = s8ffness	
  tensor	
  

B < A

par8al	
  ordering	
  defined	
  in	
  an	
  energe8c	
  sense:	
  

iff	
  	
   " : (A�B) : " > 0 for	
  all	
  	
   " 6= 0

finite	
  RVE,	
  apparent	
   infinite	
  RVE,	
  effec8ve	
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Capp
�,L  Capp

�,2L  Capp
�,4L  · · ·  Capp

�,1 = C

L 2L 4L 8L 

Huet, C. (1990). "Application of variational concepts to size effects in elastic heterogeneous bodies." 
Journal of the Mechanics and Physics of Solids, 38(6): 813-841. 

Apparent	
  vs.	
  Effec8ve	
  Material	
  Proper8es	
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S1	
   S2	
   S3	
  	
  	
  	
  .	
  .	
  .	
  	
  S100	
  

Stochas8c	
  Volume	
  Elements	
  

~	
  83	
  grains	
  

~	
  163	
  grains	
  

~	
  323	
  grains	
  

S1	
   S2	
   S3	
  	
  	
  	
  .	
  .	
  .	
  	
  S100	
  

S3	
  	
  	
  	
  .	
  .	
  .	
  	
  S100	
  S2	
  S1	
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Effect	
  of	
  Mesh	
  Refinement	
  

thickness/grain	
  ra8o	
  =	
  4	
  

mesh	
  refinement	
  R3	
   mesh	
  refinement	
  R4	
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Effect	
  of	
  Mesh	
  Refinement	
  
thickness/grain	
  ra8o	
  =	
  4	
  

mesh	
  refinement	
  R3	
   mesh	
  refinement	
  R4	
  



Effect	
  of	
  Mesh	
  Refinement	
  
thickness/grain	
  ra8o	
  =	
  4	
  

mesh	
  refinement	
  R3	
  

mesh	
  refinement	
  R4	
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DNS, mesh refinement 4
DNS, mesh refinement 3
1st−order homogenization, mesh refinement 4
1st−order homogenization, mesh refinement 3

Effect	
  of	
  Mesh	
  Refinement	
  
thickness/grain	
  ra8o	
  =	
  4	
  


