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Background  
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The advantages of structured gas‐puff loads have been investigated
for > 20 yrs. 
The most advanced loads consist of 2 shells and a center jet. The inner
shell mitigates RT instabilities [1,2] via “snowplow stabilization”. The 
central jet serves as a high‐density, shock‐and‐compression heated 
radiator [3].  

On Z, double‐shell Ar loads radiate efficiently without a central jet [6,7].
With a jet, further yield increases were expected and achieved [8]. Do x‐
ray spectroscopy and imaging support the above picture?

For currents of 3‐4 MA, structured loads have increased Ar K‐shell
yields by 17‐100% [4,5]. 
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K‐shell imaging is qualitatively consistent with the
expectation of a better defined and more tightly 
compressed emitting core when central jet is used. 

8 cm outer diameter nozzle
was developed by
Alameda Applied Sciences Corp.
[M. Krishnan et al., Rev. Sci. 
Instrum. 84, 063504 (2013).]
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Fitting model calculations to x‐ray  data in 
order to infer pinch conditions

• The pinch is assumed to consist of 2 cylindrical zones: a hot K‐shell 
radiating core of the measured diameter surrounded by an 8 mm 
diameter blanket. There are 5 free parameters: inner and outer ion 
densities and electron temperatures, and mass load. There are 6 
variables to fit: 3 line ratios, the total and K‐shell powers, and mass 
load. 

• Preliminary fits from a fast model* were recalculated and fine‐
tuned using a more detailed, 186‐level, 611‐line model that 
transports 15488 photon energies to resolve the line profiles. The 
best overall fit (minimizing  2) is selected. Minimizing 2
maximizes the confidence level that the fit is significant.

• The effective ion temperature is often determined by fitting the
width of the He‐ line, whose Stark width (< 3 eV) is much less than 
observed widths. The He‐ width was not measured on all shots.
*J. P. Apruzese, K. G. Whitney, J. Davis, and P. C. Kepple, JQSRT 57, 41 (1997).  JA   11 June 2015   4



2.470.721.570.711.162 for fit

2.32.43.53.42.5Ni outer (1019 cm‐3)

2.217.27.18.6.7Ni inner (1019 cm‐3)

2.802.001.102.002.45Te inner (keV)

78%99%81%99%98%fit significance 
confidence level

2.8281.12950T ion (eff, keV) 

3.671.380.621.202.80K‐shell diam. (mm)

436 ± 17%894 ± 17%1140 ± 17%1023 ± 17%1005 ± 20%total yield (kJ)

143 ± 9%375 ± 9%129 ± 9%373 ± 9%363 ± 8%K‐shell yield (kJ)

0.385 : 0.385 : 00.385 : 0.385 : 0.20.385 : 0.615 : 0.2 0.385 : 0.615 : 0.2 0.385 : 0.615 : 0Outer: inner: jet  
masses (mg/cm)

0.77 ± 10% (0.76)0.97 ± 10% (0.95)1.20 ± 10% (1.22)1.20 ± 10% (1.25)1.00 ± 10% (1.01)mass load (mg/cm)

1.20 ± 20% (1.06)

0.77 ± 20% (0.73)

1.66 ± 20% (1.57)

18.2 ± 20% (16.2)

11.0 ± 10% (11.0) 

Z 2605 

not measurable

0.19 ± 20% (0.23)

0.74 ± 20% (0.58)

25.0 ± 20% 

2.89 ± 10% (2.93)

Z 2603*

1.16 ± 20% (1.04)

0.78 ± 20% (0.89)

1.69 ± 20% (1.55)

17.9 ± 20% (18.5) 

13.3 ± 10% (13.2)

Z 2604 

1.20 ± 20% (1.32)

0.85 ± 20% (0.91)

2.00 ± 20% (1.54)

16  ± 20% (16)

11.4 ± 10% (11.5)

Z 2560

1.40 ± 20% (1.76)

artifacts in data

2.31 ± 20% (1.67)

4.04 ± 20% (4.24)

2.33 ± 10% (2.31)

Z 2628Property     

peak K‐shell power 
(TW/cm)

Ly‐/He‐

Ly‐/He‐

Ly‐/(He‐+IC)

total  power at K‐
shell peak (TW/cm)

Properties of the shots at peak K‐shell power 
(numbers alongside in parentheses are from best‐fit model)

* 0.8% Xe dopant in center jet for this shot only. All shots contained a 1% Kr dopant in the middle plenum.
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The Xe‐doped shot Z 2603 showed better compression and
achieved 50% higher density than the non‐Xe‐doped 
shot Z 2605. These are K‐shell images at peak power. 

Z 2603 (Xe‐doped) Z 2605 (no Xe)

2 mm

intensity relative to maximum within image
JA   11 June 2015   6



Radiative cooling by 0.8% Xe in the center jet appears to be consistent 
with the lower temperature and internal energy of Z 2603 compared
to its non‐Xe counterpart Z 2605. The Xe‐doped shot also radiated the 
highest total x‐ray power and yield.

Z 2603 (Xe doped) Z 2605 (no Xe)
Inner zone (K‐shell) measured radius: 0.31 mm
Inner zone electron temperature: 1.1 keV
Inner zone ion temperature: 1.1  keV
Inner zone Ar density: 2.7 x 1020 cm‐3

Inner zone Xe density: 2.2 x 1018 cm‐3

Inner zone electron density: 4.5 x 1021 cm‐3

Total inner zone internal energy: 4.8 kJ/cm

Inner zone (K‐shell) measured radius: 0.60 mm
Inner zone electron temperature: 2.0 keV
Inner zone ion temperature: 29 keV
Inner zone Ar density: 1.8 x 1020 cm‐3

Inner zone Xe density: 0.
Inner zone electron density: 3.1 x 1021 cm‐3

Total inner zone internal energy: 34.2 kJ/cm

Radiative cooling coefficient for Xe from
Post et al., At. Data Nucl. Data Tables 20, 
397‐439 (1977) is 1.7 x 10‐25 W cm3.

Difference in internal energy: 34.2‐4.8 = 29.4 kJ/cm
Difference in total power at K peak: 25‐18.2 = 6.8 TW/cm
Volume of 1 cm length of the Z 2603 K‐shell zone is 0.003 cm3

Radiative cooling due to Xe is estimated as:
(0.003 cm3)(1.7 x 10‐25 W cm3)(2.2 x 1018 Xe cm‐3)
(4.5 x 1021 electrons cm‐3) = 5.0 TW/cm.

At 5 TW/cm, 6 ns is needed to radiate the 
internal energy difference of 29.4 kJ/cm between 
the  Xe and non‐Xe shots 
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Summary of Main Results
• Adding a central jet to the 2 shells of an Ar gas‐puff load on Z 

increased the K‐shell yield (by ~ 13%) by creating a denser, but 
still‐hot stagnated core. However, adding the jet also 
increased the overall mass load which may have contributed 
to the observed effects. Use of a Cl‐bearing tracer might be 
able to resolve this. (Sze et al., Ref. 5). 

• A cooler, sub‐keV outer zone contained 73‐96 % of the load 
mass. This region reduces the K‐shell yield by only a few 
percent by inner‐shell absorption of  and higher‐order lines. 
But, the higher‐order line powers and ratios are often 
significantly affected.

• Adding a Xe dopant (0.8% by number) to the central jet 
resulted in greater compression of the core, likely by radiative
cooling. But the cooling halved the electron temperature and 
reduced the K‐shell yield by ~ 66%. 
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The best fit minimizes 2, which also minimizes the 
chance that random excursions of the data are
creating a coincidental but meaningless fit. 

JA   11 June 2015   9  

 


n n
npredictednmeasured

)(
)]()([

2

2
2




The sum is over the variables measured (line ratios, powers, etc).

In the present work, is the estimated experimental uncertainty.

Note that if each measurement is within one standard deviation of 
the model prediction,  will be ≤ the number of data points.

 tables based on standard statistics give the confidence interval
referred to above.
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In most of the present work, 6 variables (K‐shell and total power, mass load, and 3 
line ratios) are measured. A best fit is found by varying 5 free parameters in the model. 
Those parameters are inner and outer zone electron temperatures and ion densities, and
the mass load. If a given best‐fit yields a 2 of 2.20, the probability that the fit is
not due to a coincidental random excursion of the data is 90%.  
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Determining confidence level from 


