skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Charge Disproportionation in Tetragonal La2MoO5 , a Small Band Gap Semiconductor Influenced by Direct Mo–Mo Bonding

Abstract

The structure of the novel compound La2MoO5 has been solved from powder X-ray and neutron diffraction data and belongs to the tetragonal space group P4/m (no. 83) with a = 12.6847(3) Å and c = 6.0568(2) Å and with Z = 8. It consists of equal proportions of bioctahedral (Mo2O10) and square prismatic (Mo2O8) dimers, both of which contain direct Mo-Mo bonds and are arranged in 1D chains. The Mo-Mo bond length in the Mo2O10dimers is 2.684(8) Å, while there are two types of Mo2O8 dimers with Mo-Mo bonds lengths of 2.22(2) and 2.28(2) Å. Although the average Mo oxidation state in La2MoO5 is 4+, the very different Mo-Mo distances reflect the fact that the Mo2O10 dimers contain only Mo5+ (d(1)), while the prismatic Mo2O8 dimers only contain Mo3+ (d3), a result directly confirmed by density function theory calculations. This is due to the complete disproportionation of Mo4+, a phenomenon which has not previously been observed in solid-state compounds. La2MoO5 is diamagnetic, behavior which is not expected for a nonmetallic transition-metal oxide whose cation sites have an odd number of d-electrons. The resistivity displays the Arrhenius-type activated behavior expected for a semiconductor with a band gap of 0.5 eV, exhibitingmore » an unusually small transport gap relative to other diamagnetic oxides. Diffuse reflectance studies indicate that La2MoO5 is a rare example of a stable oxide semiconductor with strong infrared absorbance. Lastly, we show that the d-orbital splitting associated with the Mo2O8 and Mo2O10 dimeric units can be rationalized using simple molecular orbital bonding concepts.« less

Authors:
 [1];  [2];  [3];  [2];  [4]
  1. Stony Brook Univ., NY (United States). Dept. of Chemistry
  2. Brookhaven National Lab. (BNL), Upton, NY (United States). Center for Functional Nanomaterials (CFN)
  3. Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Spallation Neutron Source (SNS)
  4. Stony Brook Univ., NY (United States). Dept. of Chemistry; Brookhaven National Lab. (BNL), Upton, NY (United States). Dept. of Chemistry
Publication Date:
Research Org.:
Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Spallation Neutron Source (SNS)
Sponsoring Org.:
USDOE Office of Science (SC), Basic Energy Sciences (BES)
OSTI Identifier:
1261409
Grant/Contract Number:  
AC05-00OR22725; DMR-095564; AC02-06CH11357; AC02-98CH10886.
Resource Type:
Journal Article: Accepted Manuscript
Journal Name:
Journal of the American Chemical Society
Additional Journal Information:
Journal Volume: 137; Journal Issue: 3; Journal ID: ISSN 0002-7863
Publisher:
American Chemical Society (ACS)
Country of Publication:
United States
Language:
English
Subject:
37 INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY; Metal-metal bonding; small band gap oxide semiconductor; charge disproportionation; infrared absorption; structure solution from powder diffraction data; 1D chains; edge-sharing bioctahedra; square prisms

Citation Formats

Colabello, Diane M., Camino, Fernando E., Huq, Ashfia, Hybertsen, Mark, and Khalifah, Peter G. Charge Disproportionation in Tetragonal La2MoO5 , a Small Band Gap Semiconductor Influenced by Direct Mo–Mo Bonding. United States: N. p., 2014. Web. doi:10.1021/ja511218g.
Colabello, Diane M., Camino, Fernando E., Huq, Ashfia, Hybertsen, Mark, & Khalifah, Peter G. Charge Disproportionation in Tetragonal La2MoO5 , a Small Band Gap Semiconductor Influenced by Direct Mo–Mo Bonding. United States. https://doi.org/10.1021/ja511218g
Colabello, Diane M., Camino, Fernando E., Huq, Ashfia, Hybertsen, Mark, and Khalifah, Peter G. 2014. "Charge Disproportionation in Tetragonal La2MoO5 , a Small Band Gap Semiconductor Influenced by Direct Mo–Mo Bonding". United States. https://doi.org/10.1021/ja511218g. https://www.osti.gov/servlets/purl/1261409.
@article{osti_1261409,
title = {Charge Disproportionation in Tetragonal La2MoO5 , a Small Band Gap Semiconductor Influenced by Direct Mo–Mo Bonding},
author = {Colabello, Diane M. and Camino, Fernando E. and Huq, Ashfia and Hybertsen, Mark and Khalifah, Peter G.},
abstractNote = {The structure of the novel compound La2MoO5 has been solved from powder X-ray and neutron diffraction data and belongs to the tetragonal space group P4/m (no. 83) with a = 12.6847(3) Å and c = 6.0568(2) Å and with Z = 8. It consists of equal proportions of bioctahedral (Mo2O10) and square prismatic (Mo2O8) dimers, both of which contain direct Mo-Mo bonds and are arranged in 1D chains. The Mo-Mo bond length in the Mo2O10dimers is 2.684(8) Å, while there are two types of Mo2O8 dimers with Mo-Mo bonds lengths of 2.22(2) and 2.28(2) Å. Although the average Mo oxidation state in La2MoO5 is 4+, the very different Mo-Mo distances reflect the fact that the Mo2O10 dimers contain only Mo5+ (d(1)), while the prismatic Mo2O8 dimers only contain Mo3+ (d3), a result directly confirmed by density function theory calculations. This is due to the complete disproportionation of Mo4+, a phenomenon which has not previously been observed in solid-state compounds. La2MoO5 is diamagnetic, behavior which is not expected for a nonmetallic transition-metal oxide whose cation sites have an odd number of d-electrons. The resistivity displays the Arrhenius-type activated behavior expected for a semiconductor with a band gap of 0.5 eV, exhibiting an unusually small transport gap relative to other diamagnetic oxides. Diffuse reflectance studies indicate that La2MoO5 is a rare example of a stable oxide semiconductor with strong infrared absorbance. Lastly, we show that the d-orbital splitting associated with the Mo2O8 and Mo2O10 dimeric units can be rationalized using simple molecular orbital bonding concepts.},
doi = {10.1021/ja511218g},
url = {https://www.osti.gov/biblio/1261409}, journal = {Journal of the American Chemical Society},
issn = {0002-7863},
number = 3,
volume = 137,
place = {United States},
year = {Wed Dec 31 00:00:00 EST 2014},
month = {Wed Dec 31 00:00:00 EST 2014}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 7 works
Citation information provided by
Web of Science

Save / Share: