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Abstract. Ultrasound signals have been used extensively for non-destructive evaluation (NDE). However, typical reconstruction
techniques, such as the synthetic aperture focusing technique (SAFT), are limited to quasi-homogenous thin media. New ultrasonic
systems and reconstruction algorithms are in need for one-sided NDE of non-homogenous thick objects. An application example
space is imaging of reinforced concrete structures for commercial nuclear power plants (NPPs). These structures provide important
foundation, support, shielding, and containment functions. Identification and management of aging and degradation of concrete
structures is fundamental to the proposed long-term operation of NPPs. Another example is geothermal and oil/gas production
wells. These multi-layered structures are composed of steel, cement, and several types of soil and rocks. Ultrasound systems with
greater penetration range and image quality will allow for better monitoring of the well’s health and prediction of high-pressure
hydraulic fracturing of the rock. These application challenges need to be addressed with an integrated imaging approach, where the
application, hardware, and reconstruction software are highly integrated and optimized. Therefore, we are developing an ultrasonic
system with Model-Based Iterative Reconstruction (MBIR) as the image reconstruction backbone. As the first implementation of
MBIR for ultrasonic signals, this paper document the first implementation of the algorithm and show reconstruction results for
synthetically generated data.'

INTRODUCTION

Non-Destructive Evaluation (NDE) of complex, non-homogenous, thick objects may extend the operational life
of nuclear facilities, bridges, and production wells and provide better characterization of hard to access sub-surfaces.
For example, all commercial nuclear power plants (NPPs) in the United States contain concrete structures. Fig. la
shows the Chapelcross Nuclear Power Station in Scotland [1]. Typical concrete structures in these plants can be
grouped into four general categories: primary containment buildings, containment internal structures, secondary con-
tainments/reactor buildings, and other structures, such as spent fuel pools and cooling towers. These structures pro-
vide important foundation, support, shielding, and containment functions. Identification and management of aging
and degradation of concrete structures is fundamental to the proposed long-term operation of NPPs. Replacement
of concrete structures is impractical; therefore, it is necessary that any safety issues related to plant aging and the
acceptability of concrete structures for supporting long-term plant operations are resolved using sound scientific and
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FIGURE 1. Illustrations of (a) Nuclear Power Plant (NPP) large concrete structures [1] and (b) the complexity of
geothermal enhanced systems [2].

engineering understanding. Unlike most metallic materials, reinforced concrete is an heterogenous material, a com-
posite with a low-density matrix, a mixture of cement, sand, aggregate and water, and a high-density reinforcement
(typically 5% in NPP containment structures), made up of steel rebar or tendons. Concrete structures in NPPs have
typically been built with local cement and aggregate fulfilling the design specification regarding material strength,
workability and durability; therefore, each plant’s concrete composition is unique and complex. In addition, concrete
structures in NPPs are often inaccessible and contain large volumes of massively thick concrete.

Similarly, production wells in Engineered Geothermal Systems (EGS), see Fig. 1b [2], are large complex struc-
tures typically composed of layers of steel, cement, soil, and rock. The oil industry, which has been using sonic logging
since 1935 [3], began developing downhole acoustic imaging capabilities in earnest since first introduced in 1970 [4].
Since that time, several companies have developed and manufactured sonic tools for inspection such as GE Sondex
and Schlumberger. These currently available tools concentrate on measuring anomalies in the steel well casing and
the integrity of the steel-to-grout bond. Farther penetration into the surrounding rock formation is not done [5, 6].
The industry is in need of near-wellbore in-situ characterization capabilities that will significantly improve wellbore
integrity evaluation and near-wellbore fracture network mapping. A more detailed image of the fracture network near
the wellbore in particular will enable the selection of optimal locations for stimulation along the wellbore, provide
critical data that can be used to improve stimulation design, and provide a means for measuring evolution of the frac-
ture network to support long-term management of reservoir operations. Note that NDE challenges for EGS are present
in other well-based industries, such as carbon sequestration and the oil and gas industries.

While acoustic imaging using the synthetic aperture focusing technique (SAFT) works adequately well for thin
specimens of concrete or for steel inspection, enhancements are needed for heavily reinforced, thick concrete and for
near-wellbore fracture network mapping. We pursue a unique approach in order to suppress noise from ultrasound
echoes and extend the imaging capabilities of borehole imaging and evaluation methods. In particular, we intend to
research and develop the use of ultrasound phased arrays and model-based iterative reconstruction (MBIR) techniques.
Although MBIR has been a success in the field of X-Ray CT imaging, this technique has not been ported to the field of
ultrasound tomography yet. In contrast to delay-and-sum approaches like SAFT, where reconstructed pixel intensities
are an integration of signal amplitudes under poor wave propagation assumptions (i.e., constant acoustic speed), our
end goal is to include in MBIR comprehensive models for the acoustic system and media (e.g., approximations of
wave propagation models for longitudinal and shear waves that include changes in acoustic speed throughout the
media). In addition, MBIR will iterate until it finds the intensity reflectivity coefficients distribution over the field of
view that best fits the data. Our end-goal is to contribute with a reconstruction method that increases the depth range
of current ultrasonic probes and image quality, and provides quantitative measurements of the physical properties
of the medium under interrogation. For this initial implementation, we define a forward model for acoustic p-wave
propagation from an ultrasonic phased array with the following assumptions: the media is homogenous, and the Born
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approximation and coherent integration hold. The paper includes a detailed description of the forward, inverted, and
discretized models. Finally, we offer a toy reconstruction sample with synthetic data.

MODEL-BASED ITERATIVE RECONSTRUCTION

Model-Based Iterative Reconstruction (MBIR) is an image reconstruction framework that embraces the inte-
grated imaging philosophy, where the hardware and software are tailored to provide the most informative measure-
ment. It is a powerful probabilistic tool that has been proven to be very effective for reconstruction in many appli-
cations.The method has been extensively applied to the reconstruction of X-ray Computed Tomography (CT) with a
superior image quality than state-of-the-art filter back projection techniques. MBIR shows equivalent image quality
even after X-ray dose reductions of up to 80%. This reduction in X-ray dose is a testament of the robustness of the
system in the presence of noise and sparse information collection, which are usually the interrogation conditions for
thick concrete.

MBIR models the system and reconstructs the solution using the inverse problem method. MBIR works by
designing a probabilistic model for the measurements (forward model) and a probabilistic model for the object (prior
model). Both models are used to formulate an objective function (cost function), such as the maximum a posteriori
(MAP) cost function. A typical MBIR problem revolves around finding

X = argmin{f(x)} = argmin{-log p(ylx) — log p(x)} ,

where x is the unknown that we would like to estimate, f(x) is the cost function, y is the measured data, X is the
estimate of x, p(y|x) is the forward model, and p(x) is the prior model [7]. The final step in MBIR is to optimize
the cost function. While more accurate models produce high quality solutions, they make the cost function more
complicated. This in return makes solving the inverse problem very computationally expensive. Therefore, many
iterative reconstruction algorithms have been adopted to speed up the computation, such as Gradient Descent (GD),
Conjugate Gradient (CG), Iterative Coordinate Descent (ICD), etc.

There are many iterative reconstruction methods, such as iterative maximum likelihood estimation (MLE) [8],
and simultaneous iterative reconstruction technique (SIRT) [9]. The main difference between MBIR and MLE is that
MLE does not require a prior model of the object, which can be sensitive to random variation in data. The prior model
is necessary to regulate the estimation and reduce variance. However, this will require having an accurate prior model.
Similarly, SIRT does not require a prior model, either, and does not require a probabilistic model for the measurements
[10].

MBIR has been used in many tomographic applications. It has been used in X-Ray computed tomography (CT)
[11], positron emission tomography (PET) [12], electron tomography [13], etc. However, MBIR has not been applied
to ultrasound tomography yet. There are a few iterative non-MBIR reconstruction methods for ultrasound, such as the
Born Iterative Method (BIM), which is combined with Total Variation (TV) minimization to reconstruct ultrasound
computed tomography (UCT) using compressed sensing (CS) [14], and the Iterative Inverse Nonuniform Fast Fourier
Transform (NUFFT), which is used in diffraction UCT [15]. While these methods can produce good results, they are
intended for transmission measurements. In this paper, we show an MBIR implementation for one-sided ultrasound
applications.

Our First MBIR Forward and Prior Models

To apply MBIR to the ultrasonic signals, we need to formulate the forward model p,;.(y|x) and the prior model
p(x), where y is the observed data and x is the unknown Intensity Reflectivity Coefficients (IRC).
The forward model —log(p,«(ylx)) is approximated by

SO AD A A,

where A is an diagonal matrix with statistical weights and A is the system matrix defined below.
In order to compute the system matrix A, we will consider an ultrasound system that probes a position p € R? in
a homogeneous medium [16] by transmitting a signal from the i transducer located at position r; € R3 and receives

the reflected signal at the j transducer located at position r ;€ R3.
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If the medium is linear, homogeneous, and isotropic, then the transfer function from the transmitter to the point
p is given by
G(ri, p, /) = ima exp {=(a(f) + JBIIp = rill}

where
a(f) = aolf]
is the rate of attenuation in N;’;j”,
117
2nf
B() = 7

is the phase delay due to propagation through the medium [17]. Similarly, the transfer function from the point p to the
receiver is given by

G(p,rj> ) = itz exp {~(a(f) + BUDIIp = rill} -

Let s(¢) be the transmitted signal, and let x(p) be the IRC of the voxel at location p that we would like to measure.
Then, the received signal due to reflections from the voxel x(p) at location p is given by

Yij(p. f) S(NG(ri, p, Hx(P)G(p, 1), f) ey

T 5x(p)S (N exp |~ (aoel fl + 22 ) Ti () @

where S (f) is the Fourier transform of s(¢), and

lp = rill +1lp = r,ll

T, ;(p) = 3)
c
From Eq. 1, the system point spread function (PSF) is defined as
T j(p),1) = F~{r138 () exp {~aodl fIT: ()]} )
Then, the received signal amplitude at time ¢ is given by
yij(p,t) = W(T;j(p),t = T; ;(p)) x(p) (5

Finally, the full signal transmitted and received by transducer i and j, respectively is computed by integrating over p.

yij() = f} vij(p,dp = fz A j(T; (p), Hx(p)dp , (6)
R’ R’
where the system matrix is defined as
A j(Ti j(p),t) = (T, j(p),t =T, ;(p)). @)

Fig. 2 illustrates the system matrix A coeflicients for the row corresponding a time of 133us. The forward model was
generated for a single transducer pair located at the bottom-left and top-left of the propagation plane. The input signal
s(t) is a five-cycle sine wave tapered with a Hanning Window. As expected, the coefficients’ amplitudes are constant
at equal propagation distances. Similarly, the coefficients at system matrix rows corresponding to a longer propagation
time are smaller due to attenuation.
The prior model is assumed a g-Generalized Gaussian Markov Random Fields (q-GGMREF) [18], which is defined
as
1

voY

|A|u

U(x) = —log(p(x)) = 1 +|A/50[=-

Z biy p(x; — xx) and p(A) =
J.keC

where o is a scalar determined empirically and controls the prior influence on the solution, C is the set of pixels in the
neighborhood of x,and 1 <u <v < 2.
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Discretization

The Quadrature Method [19] was employed for discretization of the forward model. If we observe until ¢ = T,
where T is the maximum expected roundtrip time for the ultrasonic signal, then, there is no need to integrate over R>.
It suffices to integrate over a region where sound reaches % seconds. This makes

P1
P2
p3

peQ= ;0< p1 <My, My < py < My, —M3 < p3 < M3

where M|, M, and M3 are chosen in a way to ensure all points outside Q are neglected in the integral of Eq. 6.
Let Aj, Ay, and Aj be the distance between each pixel along the three dimensional axes. Let

M, M, M3

mp=—, mpy=—, my=—.
Ay’ Ay’ A3

Consequently, we can discretize the system matrix and object to reconstruct by

Aijlki ko, ks, n]l = AAA3A; j(Arky, Acka, Asks, Ton) (8)
xlki, ko, k3]l = x(Arky, Aok, Asks), ©)
then
yijlnl = yij(Ton)

ms3 1y my
AAA, Z Z ZAi,j(A1k1,A2k2,A3k3,Ton)X(Alkl,Azkz,Aaka)

k3=—}’ﬂ3 k2=—mz k1=1

m3 my - my
Z Z Z A; jlky, ko, ks, nlxlky, ko, k3]

ky=—m3 ka=—my k;=1

X

where T, is the time sampling rate. The same approach was employed to discretize the prior model U(p) to
Ulki, ka, k3].
This permits the construction of the forward model for each transducer pair < i, j > as

Yij=A4A;;X

Lateral (cm)

o )
10
Depth (cm) 20

FIGURE 2. Illustration of system matrix coefficient amplitudes for two transducers at time 133pus.
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where

rijl1]
7i,j[2]

ri,j[N— 1]
rijINT s

[ X[lv_m29 _m3] ]
X[z’ —my, _m3]

X[my, —my, —m3]
X[19 1- ma, _m3]

X[my, my, —m3]
X[1,-my, 1 —m3]

Xlmy,my,ms] Lo oy y@ms s yxi

and,

Ai,j[l’_m29_m3’1] Ai,j[ml’_m29_m351] Ai,j[mbmz’mf)"]]
AL, =my,—m3,2] ... Ajjlmy,—m,—m3,2] ... A j[my,my,m3,2]

Ai,j = . (]0)

Ai’j[l, —my, —m3,N] . A,;j[ml , —mMyp, —m3y, N] e A,‘gj[l’l’l], nip, ms, N] Nx(my (2my+1)(2ma+1))

Note that multiple transducers pairs can be added to the MBIR forward model by concatenating their corre-
sponding forward models and measurements to A and Y, respectively. The number of pairs is limited by the amount
of computational memory available. However, our initial assessment of the system matrix indicates that the matrix is
sparse. There are methods for sparse large matrices that permit to process such matrices under constrained computa-
tional resources [20]. Consequently, we do not foresee computational memory to be a limiting factor when designing
our ultrasonic phased array. Finally, we can define our optimization function as

1
¥ = argmin{5 (¥ — AX)T A (Y - AX) + U).

SYNTHETIC RESULTS

The initial forward model was tested with synthetic data. This test was performed to confirm the correctness of
the propagation model and to have a better insight on the influence of the q-GGMREF prior model on the solution. For
the initial test, we assumed an homogenous cement slab with acoustic speed of 3,680 m/s and attenuation coeflicient
of 4.8 x 10‘5%. The ultrasound system is defined as non-focused isotropic sources and sensors, where the input
signal is a single-cycle sine wave with a central frequency of 100K Hz and a bandwidth of 150K Hz. Consequently, the
expected axial resolution is approximately 2cm. Two phantom test samples were generated for the synthetic test (See
Fig. 3). The positive pixel intensities in the phantom images correspond to the IRC values for changes in impedance
(i.e., interfaces where the current material ends and a new material starts, for example, the cement to steel interface
with an IRC of 0.525). Fig. 3a shows a one-dimensional object with two interfaces at 35¢m and 65¢m deep with
IRC amplitudes of 0.525 and 0.95, respectively. For this phantom, transmission and receiving are performed by the
same transducer positioned at the origin (i.e., Ocm). Fig. 3b illustrates a two-dimensional phantom sample with two
impedance changes at 18cm and 35¢m deep with IRC amplitudes of 0.525 and 0.95, respectively. Ten transducers
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FIGURE 3. Phantom samples used for the synthetic test. (a) One-dimensional object with two impedance changes
interfaces. (b) Two-dimensional object with two embedded interfaces of different widths and lengths.

were placed at the origin—one at each row. Note that the first interface extends the full width of the medium and the
second interface is a small, highly reflective impurity.

The synthetic signal was generated using conventional sound propagation models. Diffraction and mode-
conversion (i.e., p-wave to s-wave conversion) were not included in the current simulation. We added Gaussian noise
to the synthetic signal to emulate electrical noise in the components of the ultrasound system. Fig. 4a shows a plot
of the synthetic signal generated from the phantom in Fig. 3a. We selected Iterative Coordinate Descent (ICD) as
the optimization algorithm [18], which shows fast and stable convergence. Usually, the algorithm is initialized with a
low frequency (i.e., blurred) version of the object. The low frequency initial object estimate could be obtained from
back projection ¥y = ATY or from other reconstruction techniques such as SAFT. Initializing the object with a quick
low frequency estimate is the ideal reconstruction workflow given that ICD emphasizes high frequency components
during convergence. For the one-dimensional case, in Fig. 4b, the reconstruction algorithm obtained IRC values of
0.536 and 0.953 for the first and second interfaces, respectively. We stopped the ICD algorithm after 500 iterations.
For the two-dimensional case, in Fig. 4c, the estimated interface IRC coeflicients converged to 0.524 and 0.878 af-
ter 5000 iterations. Although these initial results are very encouraging, we can further improve the accuracy of our
reconstructions by adjusting our prior model regularization parameters.
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FIGURE 4. (a) Synthetic measured reflections for the phantom in Fig. 3a, and reconstruction results for the (b)
one-dimensional and (c) two-dimensional phantoms.

CONCLUSION

We have developed an initial implementation of the MBIR algorithm for ultrasonic signals. The current algorithm
assumes isotropic sources and sensors with longitudinal waves (i.e., p-waves) propagating in an homogenous medium.
In contrast to delay and sum approaches as SAFT, our approach reconstructs actual IRC values as shown in the
synthetic experiments. There are a few features that we need to incorporate to our current forward model in order to
successfully reconstruct real data. For example, actual transmitters are not isotropic; the input signal strength typically
decreases for the sound vectors away from the transducer optical axis. Our end-goal is to reconstruct complex and
heterogeneous solid objects. Consequently, future implementations of the forward model most include diffraction and
conversion-mode models. Our biggest challenge is to incorporate these complex features while keeping the forward
model tractable and computational efficient.
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