
Communication Characterization and Optimization of
Applications Using Topology-Aware Task Mapping on

Large Supercomputers

Sarat Sreepathi
Oak Ridge National

Laboratory
Oak Ridge, TN, USA
sarat@ornl.gov

Ed D’Azevedo
Oak Ridge National

Laboratory
Oak Ridge, TN, USA

dazevedoef@ornl.gov

Bobby Philip
Oak Ridge National

Laboratory
Oak Ridge, TN, USA
philipb@ornl.gov

Patrick Worley
Oak Ridge National

Laboratory
Oak Ridge, TN, USA

worleyph@ornl.gov

ABSTRACT
On large supercomputers, the job scheduling systems may
assign a non-contiguous node allocation for user applica-
tions depending on available resources. With parallel ap-
plications using MPI (Message Passing Interface), the de-
fault process ordering does not take into account the actual
physical node layout available to the application. This con-
tributes to non-locality in terms of physical network topol-
ogy and impacts communication performance of the appli-
cation. In order to mitigate such performance penalties,
this work describes techniques to identify suitable task map-
ping that takes the layout of the allocated nodes as well
as the application’s communication behavior into account.
During the first phase of this research, we instrumented
and collected performance data to characterize communica-
tion behavior of critical US DOE (United States - Depart-
ment of Energy) applications using an augmented version of
the mpiP tool. Subsequently, we developed several reorder-
ing methods (spectral bisection, neighbor join tree etc.) to
combine node layout and application communication data
for optimized task placement. We developed a tool called
mpiAproxy to facilitate detailed evaluation of the various
reordering algorithms without requiring full application ex-
ecutions. This work presents a comprehensive performance
evaluation (14,000 experiments) of the various task map-
ping techniques in lowering communication costs on Titan,
the leadership class supercomputer at Oak Ridge National
Laboratory.

Publication rights licensed to ACM. ACM acknowledges that this contribution was
authored or co-authored by an employee, contractor or affiliate of the United States
government. As such, the Government retains a nonexclusive, royalty-free right to
publish or reproduce this article, or to allow others to do so, for Government purposes
only.

ICPE’16, March 12 - 18, 2016, Delft, Netherlands
c© 2016 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ACM ISBN 978-1-4503-4080-9/16/03. . . $15.00

DOI: http://dx.doi.org/10.1145/2851553.2851575

Categories and Subject Descriptors
D.4.8 [Performance]: Measurements; H.3.4 [Systems and
Software]: Performance evaluation (efficiency and effective-
ness

Keywords
Communication Characterization, Reordering algorithms,
Topology-Aware Optimization

1. INTRODUCTION
Modern leadership class supercomputers have a large num-

ber of processing elements (PEs) and the trends point to in-
creasing complexity (beyond O(1M) PEs). Moreover, such
systems have a wide range of users with different require-
ments resulting in a plethora of job sizes and compute re-
quirements. The job schedulers perform a critical role by
allocating available resources to jobs based on numerous fac-
tors (e.g., queue type, request size, priority, wait time, other
jobs etc. [11])

During typical operations, a job scheduler can assign a
non-contiguous allocation to a user request depending on
resource availability. In the worst case, an application could
end up with an allocation where the nodes are sparsely scat-
tered across the machine. This results in performance degra-
dation due to long routes taken by communication messages
and can be further impacted by network congestion. Even

This manuscript has been authored by UT-Battelle, LLC
under Contract No. DE-AC05-00OR22725 with the U.S.
Department of Energy. The United States Government
retains and the publisher, by accepting the article for
publication, acknowledges that the United States Govern-
ment retains a non-exclusive, paid-up, irrevocable, world-
wide license to publish or reproduce the published form
of this manuscript, or allow others to do so, for United
States Government purposes. The Department of En-
ergy will provide public access to these results of feder-
ally sponsored research in accordance with the DOE Pub-
lic Access Plan(http://energy.gov/downloads/doe-public-
access-plan).

http://dx.doi.org/10.1145/2851553.2851575

supercomputers with advanced interconnects exhibit scala-
bility issues in such scenarios.

Task-mapping refers to the assignment of an application’s
tasks to available processing elements. With parallel appli-
cations using MPI (Message Passing Interface), the default
task order is sequential. It does not consider the non-locality
aspects of the actual physical node layout that was allocated
to the application.

In order to mitigate such performance penalties, this work
describes techniques to optimize task placement for the tar-
get application based on its behavior as well as network
topology of the allocated nodes.

The primary contributions of this research are:

• Task mapping techniques that consider the target ap-
plication’s communication pattern and physical net-
work topology to reduce communication costs (Section
2.2)

• mpiAproxy: A tool that simulates target application’s
communication behavior to estimate communication
costs (Section 2.3).

• Detailed communication characterization of critical sci-
entific applications from the Co-Design ecosystem and
big science applications in the domains of nuclear fu-
sion, climate and radiation diffusion. (Section 6)

The rest of the paper is organized as follows: We elaborate
on the methodology for this study in Section 2. Related work
is discussed in Section 3. As part of this research, we investi-
gated communication behavior of several DOE applications.
The applications are summarized in Section 4. Titan, the
experiment platform is described in Section 5. We present
a comprehensive performance evaluation of the various task
mapping techniques along with communication characteri-
zation data in section 6 and conclude with future work.

2. METHODOLOGY
In this section, we detail the various phases of our exper-

iment methodology. Section 2.1 presents an overview of our
communication characterization tool. We discuss the details
of the various reordering algorithms in section 2.2 and Sec-
tion 2.3 describes the communication estimation tool that
was developed to facilitate a detailed evaluation of the dif-
ferent methods.

2.1 Augmented mpiP Tool
For communication characterization, we used an augmented

version of the mpiP [37] profiling library that was previ-
ously used in our application characterization studies [36].
We used this tool to perform a detailed analysis of an ap-
plication’s communication pattern. It was used to record
the point-to-point communication data between communi-
cating MPI tasks; message volume in .mpiPpv files and mes-
sage counts in .mpiPpc files. Additionally, it generates his-
tograms for the point-to-point and collective communication
message sizes in .mpiPpsh and .mpiPcsh respectively.

The translation of collective operations into underlying
point-to-point messages depends on the MPI implementa-
tion and the compute platform. For instance, a collection
operation like MPI Allreduce on Cray XK7 using MPICH
could result in a set of point-to-point messages that could
be different for the same operation on IBM BlueGene using

OpenMPI. In contrast, the point-to-point communication
pattern is platform-independent for a target application for
a specified experiment configuration. This work focuses on
on the point-to-point communication data and we intend to
encompass collective communication data in the future.

2.2 Reordering Methods
Three graph based heuristics are compared for generat-

ing a mapping between the communication graph of the ap-
plication and the network topology of the allocated nodes
at run-time. The recursive spectral bisection and Reverse
Cuthill-McKee (RCM) [17, 20] orderings were used in topol-
ogy mapping in [23]. A bottom-up neigbor-join tree [24,
32] clustering heuristic commonly used in bioinformatics for
the creation of phylogeneitc trees was also used. The gen-
eral approach follows Hoefler and Snir [23] in generating an
ordering (or permutation of the graph vertices) on the com-
munication graph and an ordering for the network topology
and matching the vertices of the two orderings to produce
the topology-aware mapping.

The communication graph C(i, j) is the volume of data
sent from MPI process i to process j. A threshold value
(e.g. 95% of total message volume) was used to ignore
small transfers and obtain a sparse communication graph.
The heuristics were computed using Matlab and completed
in only a few seconds.

The network topology is obtained by querying the co-
ordinates of the allocated compute nodes on the 3D torus
network on Titan using rca_get_meshcoord function from
Cray’s Resiliency Communication Agent (RCA) library. Ti-
tan has a 25 × 16 × 24 3D torus network where 2 compute
nodes share a network interface. However, the links in the
”y” direction have half the bandwidth of the links in the ”x”
and ”z” directions. The number of hops through the 3D net-
work was used as an indicator of the communication cost
with ”y” direction hops being twice as costly. For details on
Titan, the experiment platform see Section 5.

2.2.1 Spectral bisection techniques
The spectral bisection technique can be used to perform

nested dissection reordering [21] to reduce the amount of
fill-in in sparse direct Cholesky factorization of large sym-
metric positive matrices. The recursive spectral bisection
method attempts to find a nearly equal partitioning of the
graph with a small separator. The symmetrized communi-
cation graph ((C+transpose(C))/2) or the communication
hop graph was used as the weighted Laplacian graph. The
eigenvector corresponding to the second smallest eigenvalue
of the weighted Laplacian graph (also called the Fiedler vec-
tor) was used to partition the graph into two clusters. The
spectral bisection algorithm was recursively applied to the
two remaining subgraphs. The idea being clusters of nodes
that exchange high volume of data should be mapped to
compute nodes that have high network connectivity. The
METIS library [34] was used to compute a balanced parti-
tion in [23]. Here the matlab eig() is used for small matri-
ces (N ≤ 512) and eigs() eigensolver based on the Lanczos
algorithm was used to find the Fiedler vector.

There are two variants of the spectral methods used in
this work. In SPECTRAL0, an unweighted Laplacian matrix
is used where all off-diagonal entries are equal. The Fiedler
eigenvector is computed from the unweighted Laplacian ma-
trix. In SPECTRAL1, a weighted laplacian matrix is used to

where the weights are related to the MPI communication
graph or the network topology.

2.2.2 Reverse Cuthill-McKee (RCM) algorithm
The RCM ordering is commonly used as a heuristic for

reducing the matrix band-width before performing sparse
direct Cholesky factorization. It is a variant of breadth-first
ordering starting from an extremal peripheral vertex in the
graph. RCM was very fast but RCM ignores the numerical
weight of edges and considers only the sparsity pattern of
the matrix. The Matlab rcm() function was used.

2.2.3 Neighbor-join tree methods
The Neighbor-join tree is a bottom up clustering method

where given a distance or cost matrix, the algorithm finds a
hierarchical clustering of nodes to form a tree. The method
find the smallest distance, say d(x, y) and merge the nodes
to form a new super node [x, y]. The cost matrix is then
updated where distance([x, y], z) = max(d(x, z), d(y, z)). A
post-order labeling of the leaf nodes (label all left sub-tree,
then right subtree) is given as the final ordering. The algo-
rithm has O(n3) costs in the worst case.

We used two different algorithms in this family. In NJTREE1,
the cost matrix is computed as the number of hops needed
through the 3D torus where the hops in the y-direction has
twice the cost. In NJTREE0, the cost matrix is the original
network topology matrix but with negative weights so that
links with high bandwidth have smaller costs.

2.3 mpiAproxy: Communication Estimation
We developed a tool called mpiAproxy to facilitate de-

tailed evaluation of the various reordering algorithms with-
out requiring full application executions.

The tool takes as input the detailed communication data
of the application collected by the augmented mpiP tool.
First, the target application is linked with the mpiP libraries
and executed. This generates the point-to-point communi-
cation data; aggregate message counts and volume between
communicating processes.

The mpiAproxy tool computes the average message size
between communicating neighbors and simulates the com-
munication pattern to obtain an estimate of the applica-
tion’s communication costs. The execution time of the tool
depends on the target application it is emulating, typical
runs take under a few minutes. It does this by sending a
representative number of messages between communicating
tasks with the relevant message size and records the time.

The tool uses an asynchronous communication protocol
to avoid deadlocks. This approximation does not capture
all the intricacies of a complex application but presents a
broad overview for a significantly lower computation cost.
For instance, it does not not reflect any load imbalances
that are present in the target application. However, it fa-
cilitates extensive experimentation of task mapping layouts
as the cost of each experiment is small, thereby enabling a
comprehensive search for an optimal layout.

3. RELATED WORK
Finding the optimal mapping between the communica-

tion graph and network topology may be viewed as deter-
mining the graph isomorphism problem, which is NP-hard.
Thus heuristics are needed to generate the topology map-
ping. One approach finds the mapping as the optimization

of a cost function (such as the combination of hop-byte and
dilation metrics), another approach uses graph-based algo-
rithm to find a good mapping.

Sankaran et al [33] used a genetic algorithms for opti-
mizing the mapping for two large-scale parallel S3D and
LAMMPS on the Cray XK7 machine. Bhanot et al [13]
used simulated annealing to optimize task layout of parallel
applications SAGE and UMT2000 on the BlueGene/L ma-
chine. Bollinger and Midkiff [15] proposed process annealing
for assigning tasks to processors and connection annealing
for scheduling communication to reduce network contention.

Solomonik et al [35] considered mapping 2.5D dense ma-
trix LU factorization algorithms onto the BlueGene/P sys-
tem. However, optimization-based heuristics are quite costly
and are appropriate only for applications with well char-
acteristized fixed communication pattern (such as nearest
neighbor communication for stencil computation on a 2D
or 3D rectangular grid or dense matrix computation) and
mapping to known network partitions such as the BlueGene
machine.

Another approach is to use graph-based heuristic algo-
rithms to determine the mapping. Ercal [19] considered
recursive bisection in the context of a hypercube topology
where at each step the algorithm finds a minimum cut of
the communication graph while maintaining approximately
equal load and recursively assigns the subgraphs onto sub-
cubes. Hoefler and Snir [23] considered heuristics based
on graph similarity for irregular communication patterns.
They considered several heuristics including recursive bisec-
tion, Reverse Cuthill-McKee (RCM) and a greedy heuris-
tic for picking the node with highest communication need
and paired with its closest neighbor to minimize communi-
cation cost. In his PhD thesis, Bhatele [14] considered sev-
eral heuristics for general communication graphs. Deveci at
al. [18] proposed a geometric partitioning algorithm for task
placement and demonstrated performance improvements for
a structured finite difference application among others.

The breadth-first traversal (BFT) simply visit nodes by
breadth-first order. Note BFT has some similarity to RCM.
The max heap traversal starts with the node that has maxi-
mum number of neighbors and place it at center of 2D mesh.
All unmapped neighbors are placed on the heap sorted by
the number unmapped neighbors. At each step, the node
with highest number of unmapped neighbors is placed close
to the centroid of its mapped neighbors. Since the Cray XT
batch system cannot guarantee a contiguous partition and
the applications of interest (such as the XGC particle-in-cell
code or climate simulation) have unstructured and not easily
predictable communication patterns, the focus of this work
is on exploration of fast graph-based heuristic that can be
computed dynamically in a short amount of time.

4. APPLICATIONS OVERVIEW

4.1 Co-Design Benchmarks, Proxies
and Applications

We have looked at a broad range of applications that
are widely used in the Co-Design community. There are
three Co-Design Centers under the purview of DOE, namely
Exascale Co-Design Center for Materials in Extreme En-
vironments (ExMatEx), Center for Exascale Simulation of
Advanced Reactors (CESAR) and Center for and Exascale
Simulation of Combustion in Turbulence (ExaCT). Addi-

tionally we studied the performance of several benchmarks
associated with the CORAL (Collaboration of Oak Ridge,
Argonne and Livermore)[16] acquistion effort to purchase
next generation supercomputers.

4.1.1 AMG2013
AMG2013 [1] is a parallel algebraic multigrid solver for

linear systems arising from problems on unstructured grids.
It has been derived directly from the BoomerAMG solver
in the hypre library, a large linear solver library. The de-
fault problem is a Laplace type problem on an unstructured
domain with various jumps and an anisotropy in one part.

AMG2013 is a highly synchronous code. The commu-
nications and computations patterns exhibit the surface-
to-volume relationship common to many parallel scientific
codes.

4.1.2 BoxLibAMR
BoxLibMiniAMR is a proxy app developed by the ExaCT

Co-Design center [2]. It uses a structured-grid Adaptive
Mesh Refinement (AMR) approach to study combustion. It
is being used to address challenges that arise in investigation
of advanced low-emissions combustion systems.

4.1.3 HPCG
The HPCG (High Performance Conjugate Gradients) Bench-

mark project [3] is an new benchmark effort to create a more
relevant metric for ranking HPC systems than the High Per-
formance LINPACK (HPL) benchmark, that is currently
used by the TOP500 listing. HPCG is designed to better
match the computational, communication and data access
patterns of a broad range of applications in contrast to HPL.

4.1.4 LULESH
The Livermore Unstructured Lagrange Explicit Shock Hy-

drodynamics (LULESH) proxy application [4, 25] is being
developed at Lawrence Livermore National Laboratory. Orig-
inally developed as one of five challenge problems for the
DARPA UHPC program, it has since evolved and has re-
ceived widespread use in DOE research programs as a mini-
app representative of simplified 3D Lagrangian hydrody-
namics on an unstructured mesh.

4.1.5 MCB
Monte Carlo Benchmark (MCB) [5] is a Co-Design appli-

cation developed at LLNL that is intended for use in ex-
ploring the computational performance of Monte Carlo al-
gorithms on parallel architectures. It models the solution of
a simple heuristic transport equation using a Monte Carlo
technique.

4.1.6 MultiGrid_C
MultiGrid C is a proxy app developed by the ExaCT Co-

Design center [7]. It is a finite-volume multigrid solver that
supports different variants.

4.1.7 Nek5000
Nek5000 [8] is a large application designed to simulate

laminar, transitional, and turbulent incompressible or low
Mach-number flows with heat transfer and species transport.
It is also suitable for incompressible magnetohydrodynamics
(MHD).

4.1.8 Nekbone
The Nekbone mini-app [9] developed by the Center for Ex-

ascale Simulation of Advanced Reactors (CESAR) is used to
to study the computationally intense linear solvers that ac-
count for a large percentage of Nek5000, the full application
it is modeled after. It is also meant to emulate the commu-
nication behavior of Nek5000, specifically nearest-neighbor
data exchanges and vector reductions.

4.2 Big Science Applications
In addition to benchmarks and proxy apps, we were specif-

ically interested in large scientific applications that have in-
tricate communication patterns that vary based on experi-
ment configuration. Such applications manifest in hard to
predict communication behavior that makes optimization ef-
forts more challenging.

4.2.1 XGC
XGC is a whole-device modeling code, with a special strength

in modeling the edge plasma (and its effect on the core
plasma) in tokamak fusion reactors at first-principles level.
To be precise, XGC is a full-function 5D gyro kinetic particle-
in-cell (PIC)/finite element code that is uniquely capable of
simulating the tokamak plasma in realistic diverted mag-
netic geometry, as well as covering core plasma all the way
to the magnetic axis, together with neutral particle recycling
at material wall surface and their Monte-Carlo transport us-
ing atomic charge-exchange and ionization cross-sections.

Figure 1: XGC Triangular Mesh

XGC is based upon the conventional particle-in-cell ODE
solver method, with options such as electron fluid solves for
kinetic-fluid hybrid physics. To be more specific, the La-
grangian ODE particle information is scattered to unstruc-
tured triangular mesh nodes on which the PDE electromag-
netic force field equations are solved. The force field infor-
mation is then gathered back to the particle locations for
time-advancing the ODE cycle of the particles. Unlike the
conventional particle-in-cell codes, all the dissipative physi-
cal processes are solved on 5D configuration-velocity space
grid using finite element, finite difference schemes, which
include the non-linear Fokker-Planck collisions, charge ex-
change, ionization, and radiation. Due to the enormity of

the particle number required for full- function multiscale gy-
rokinetic simulation of tokamak plasma, over 95% of the
computing time is spent on the ODE particle push that
scales very well on extreme number of compute processors.
The PDE solver parts of the code, which encapsulates the
long range data dependencies in the PIC method are more
demanding in extreme scale computing. One advantage of
the full-function method used in XGC is that it encapsulates
these global data dependencies with a small fraction of the
total work: Thus, solvers currently account for less than 2%
of the total computing time.

The tokamak device is partition into multiple domains by
poloidal planes. Each plane consists of the identical un-
structured triangular mesh (see Figure1). The mesh is used
for charge deposition and the calculation of the electric field
by finite element method and resulting linear systems are
solved using PETSc iterative linear solvers preconditioned
with Hypre multi-grid library.

The XGC code can be configure to assign MPI tasks con-
tiguously within the same plane (called plane major mode)
or to assign MPI tasks contiguously in the toroidal direction
across planes (called inter-plane major mode).

4.2.2 MPAS-Ocean
The Model for Prediction Across Scales (MPAS) [6] is a

collaborative project for developing atmosphere, ocean and
other earth-system simulation components for use in cli-
mate, regional climate and weather studies. MPAS-Ocean,
the ocean component of this effort is designed for the simu-
lation of the ocean system across different time and spatial
scales. Additionally, it is intended for the study of anthro-
pogenic climate change.

4.2.3 NRDF
NRDF is a 3D non-equilibrium radiation diffusion code

[31] that solves the time dependent non-equilibrium radia-
tion diffusion equations that are important for solving the
transport of energy through radiation in optically thick regimes
with applications in several fields including astrophysics and
inertial confinement fusion. The associated initial boundary
value problems that are encountered often exhibit a wide
range of scales in space and time and are extremely chal-
lenging to solve. The non-equilibrium radiation diffusion
problem is discretized on structured adaptive mesh refine-
ment (SAMR) hierarchies which consist of nested refinement
levels with each level a union of non-overlapping patches at
the same resolution. A method of lines (MOL) approach is
used with a cell centered finite volume spatial discretization
followed by discretization in time. To solve the nonlinear
systems arising at each timestep an inexact Newton method
is used with GMRES for the linear solver. The linear sys-
tem is preconditioned on SAMR grids with components that
involve either a multilevel Fast Adaptive Composite Grid
(FAC) solver or an asynchronous version of FAC (AFACx).

The Fast Adaptive Composite grid (FAC) method [30,
29] extends techniques from multigrid on uniform grids to
locally refined grids. FAC solves problems on locally refined
grids by combining smoothing on refinement levels with a
coarse grid solve using an approximate solver, such as a V-
cycle of multigrid. On parallel computing systems, the mul-
tiplicative nature of FAC introduces synchronization points
during every correction step. Moreover, there is little oppor-
tunity to overlap communication with computation. These

considerations led to development of asynchronous, or ad-
ditive, versions of FAC that removes these synchronization
points (AFAC, AFACx) [26, 27, 28].

5. TITAN: EXPERIMENT PLATFORM
We conducted our experiments on Titan [10], a Cray su-

percomputer installed at Oak Ridge National Laboratory.
Titan is a hybrid-architecture Cray XK7 system with a the-
oretical peak performance exceeding 27 petaflops. It com-
prises of 18,688 compute nodes, wherein each node contains
16-core AMD Opteron CPUs and NVIDIA Kepler K20X
GPUs for a total of 299,008 CPU cores and 18,688 GPUs.
It has a total system memory of 710 terabytes, and uti-
lizes Cray’s high-performance Gemini network. Titan has a
25×16×24 3D torus network where 2 compute nodes share
a network interface. As of June 2015, it is the second fastest
supercomputer in the world according to the TOP500 list
[12].

The software environment for the reported experiments
is as follows: Cray PGI programming environment (version
5.2.40) which uses PGI 15.3 compilers and Cray’s MPICH
implementation (version 7.2.2).

6. RESULTS
Large supercomputing systems exhibit a high degree of

performance variability due to various factors, e.g., jitter,
load imbalances, prevailing network traffic etc. Hence it is
not prudent to compare best execution times or a few data
points for each scenario to obtain an accurate performance
comparison.

In this section, we present highlights from a large set of
experiments that show the efficacy of the various reordering
techniques in improving communication performance of tar-
get scientific applications. Each plot shows experiment data
for 40 mpiAproxy executions for each reordering method (7
mappings) for a total of 280 data points.
DEFAULT refers to the baseline task mapping scenario where

MPI ranks are sequentially assigned to the corresponding
nodes. NJTREE0, NJTREE1 are task mappings that are ob-
tained from the heirarchical clustering/neighbor-join tree al-
gorithms. SPECTRAL0, SPECTRAL1 refer to the task map-
pings from the spectral methods. Finally, RCM refers to the
Reverse CutHill McKee ordering and RANDOM is a random or-
dering of MPI ranks that acts a control for the experiments.

We utilized violin plots to accurately portray the efficacy,
performance variability and robustness of the various sce-
narios to facilitate an informed comparison. The violin plots
[22] are similar to box plots, except that they also show the
probability density of the data at different values. The plot
includes markers for the median and inter-quartile ranges
of the data. Overlaid on this box plot is a kernel density
estimation. The length of the violin plot reflects the degree
of variability across experiments.

For each application, we present the point-to-point mes-
sage volume diagram and summarize its communication be-
havior. Subsequently, we present the communication costs
with various task mappings that are derived from the re-
ordering algorithms. These communication costs are ob-
tained by executing mpiAproxy with the target application’s
communication profile (point-to-point communication mes-
sage count and volume data).

The first subsection focuses on the various benchmarks

and proxy applications from the DOE Co-Design centers.
The second section presents results for several large scientific
applications.

6.1 Co-Design Benchmarks, Proxies
and Applications

6.1.1 AMG2013
The communication behavior of AMG2013 is shown in

Figure 2. Figure 3 shows the relative performance of the
various methods. In this case, RCM performs slightly better
than the default mapping.

Figure 2: AMG-3dlaplace: Point-to-point commu-
nication volume pattern with 64 MPI tasks

DEFAULT NJTREE0 NJTREE1 SPECTRAL0 SPECTRAL1 RCM RANDOM

Reordering Method

0.10

0.15

0.20

0.25

C
om

m
. E

st
im

at
e

fr
om

 m
pi

A
pr

ox
y

(s
ec

)

AMG3dlaplace64p: Comm. Performance

Figure 3: Task Mapping: Communication Perfor-
mance of AMG-3dlaplace with 64 MPI tasks

6.1.2 BoxLibAMR
BoxLibAMR has a very dense communication pattern as

shown in figure 4. Figure 5 shows the relative performance
of the various methods. In this case, all methods outperform
the default mapping as it is ill suited for this kind of dense
communication that results in congestion.

6.1.3 HPCG
HPCG has a nearest neighbor communication pattern (Fig-

ure 6) with the dense communication concentrated along

Figure 4: BoxLibMiniAMR-inputs3d: Point-to-
point communication volume pattern with 64 MPI
tasks

DEFAULT NJTREE0 NJTREE1 SPECTRAL0 SPECTRAL1 RCM RANDOM

Reordering Method

4.5

5.0

5.5

6.0

6.5

7.0

7.5

8.0

C
om

m
. E

st
im

at
e

fr
om

 m
pi

A
pr

ox
y

(s
ec

)

BoxLibMiniAMRinputs3d64p: Comm. Performance

Figure 5: Task Mapping: Communication Perfor-
mance of BoxLibMiniAMR-inputs3d with 64 MPI
tasks

the diagonal. All reordering methods outperform the de-
fault mapping with SPECTRAL0 providing the best mapping
(Figure 7).

Figure 6: HPCG: Point-to-point communication
volume pattern with 64 MPI tasks

DEFAULT NJTREE0 NJTREE1 SPECTRAL0 SPECTRAL1 RCM RANDOM

Reordering Method

8

9

10

11

12

13

14

C
om

m
. E

st
im

at
e

fr
om

 m
pi

A
pr

ox
y

(s
ec

)

HPCG64p: Comm. Performance

Figure 7: Task Mapping: Communication Perfor-
mance of HPCG with 64 MPI tasks

6.1.4 LULESH
LULESH has a communication pattern (Figure 8) that ap-

pears similar to HPCG. The spectral methods deliver a good
mapping in this scenario (Figure 9) with SPECTRAL1 provid-
ing the best results. Please note that although LULESH and
HPCG appear to have similar patterns, the performance of
the mapping algorithms differed due to the difference in the
amount of off-diagonal communication.

Figure 8: LULESH: Point-to-point communication
volume pattern with 64 MPI tasks

6.1.5 MCB
MCB has an interesting scatter pattern originating from

the origin (Figure 10). All algorithms outperform the default
mapping with the spectral methods and RCM providing the
best mapping (Figure 11).

6.1.6 MultiGrid_C
MultiGrid C for solving a 3d problem with 512 cells com-

municates mostly along the diagonal as well as pockets of
nearby neighbors (Figure 12). In this case, the default map-
ping itself seems optimal (Figure 13).

6.1.7 Nek5000
Nek5000 communication pattern with the vortex prob-

lem configuration is shown in Figure 14. Again the default

DEFAULT NJTREE0 NJTREE1 SPECTRAL0 SPECTRAL1 RCM RANDOM

Reordering Method

34

36

38

40

42

44

46

48

50

52

C
om

m
. E

st
im

at
e

fr
om

 m
pi

A
pr

ox
y

(s
ec

)

LULESH64p: Comm. Performance

Figure 9: Task Mapping: Communication Perfor-
mance of LULESH with 64 MPI tasks

Figure 10: MCB: Point-to-point communication vol-
ume pattern with 64 MPI tasks

DEFAULT NJTREE0 NJTREE1 SPECTRAL0 SPECTRAL1 RCM RANDOM

Reordering Method

0.20

0.22

0.24

0.26

0.28

0.30

0.32

0.34

0.36

C
om

m
. E

st
im

at
e

fr
om

 m
pi

A
pr

ox
y

(s
ec

)

MCB64p: Comm. Performance

Figure 11: Task Mapping: Communication Perfor-
mance of MCB with 64 MPI tasks

mapping itself seems optimal and at par with the spectral
techniques (Figure 14)

6.1.8 NEKBONE
Figure 16 shows the communication pattern of NEKBONE

with the mgrid problem. The default mapping is better for
this scenario (Figure 17).

Figure 12: MultiGrid C-3d-512cells: Point-to-point
communication volume pattern with 192 MPI tasks

DEFAULT NJTREE0 NJTREE1 SPECTRAL0 SPECTRAL1 RCM RANDOM

Reordering Method

2.8

3.0

3.2

3.4

3.6

3.8

4.0

4.2

4.4

C
om

m
. E

st
im

at
e

fr
om

 m
pi

A
pr

ox
y

(s
ec

)

MultiGrid_C3d512cells192p: Comm. Performance

Figure 13: Task Mapping: Communication Per-
formance of MultiGrid C-3d-512cells with 192 MPI
tasks

Figure 14: Nek5000-vortex: Point-to-point commu-
nication volume pattern with 64 MPI tasks

6.2 Big Science Applications

6.2.1 XGC
As part of this work, we have performed an in-depth anal-

ysis of a nuclear fusion code, XGC using different problem
configurations (interplane/planemajor ordering and poloidal

DEFAULT NJTREE0 NJTREE1 SPECTRAL0 SPECTRAL1 RCM RANDOM

Reordering Method

2000

2500

3000

3500

4000

4500

5000

5500

C
om

m
. E

st
im

at
e

fr
om

 m
pi

A
pr

ox
y

(s
ec

)

Nek5000vortex64p: Comm. Performance

Figure 15: Task Mapping: Communication Perfor-
mance of Nek5000-vortex with 64 MPI tasks

Figure 16: NEKBONE-mgrid: Point-to-point com-
munication volume pattern with 64 MPI tasks

DEFAULT NJTREE0 NJTREE1 SPECTRAL0 SPECTRAL1 RCM RANDOM

Reordering Method

340

360

380

400

420

440

460

480

500

C
om

m
. E

st
im

at
e

fr
om

 m
pi

A
pr

ox
y

(s
ec

)

NEKBONEmgrid64p: Comm. Performance

Figure 17: Task Mapping: Communication Perfor-
mance of NEKBONE-mgrid with 64 MPI tasks

decomposition).
Figure 18 shows the point-to-point communication volume

without poloidal decomposition and Figure 20 with poloidal
decomposition. Both experiment configurations used inter-

planemajor ordering. There is a marked increase in commu-
nication volume with poloidal decomposition.

In the first case, the tree methods perform better (Figure

19) whereas the spectral methods (Figure 21) fare well with
poloidal decomposition. The SPECTRAL0 method consis-
tently provides a superior task mapping for the poloidal de-
composition configuration.

Figure 18: XGC-interplanemajor: Point-to-point
communication volume pattern with 64 MPI tasks

DEFAULT NJTREE0 NJTREE1 SPECTRAL0 SPECTRAL1 RCM RANDOM

Reordering Method

15

20

25

30

35

40

45

C
om

m
. E

st
im

at
e

fr
om

 m
pi

A
pr

ox
y

(s
ec

)

XGCinterplanemajor64p: Comm. Performance

Figure 19: Task Mapping: Communication Perfor-
mance of XGC-interplanemajor with 64 MPI tasks

Figure 20: XGC-interplanemajor-poldecomp:
Point-to-point communication volume pattern with
64 MPI tasks

DEFAULT NJTREE0 NJTREE1 SPECTRAL0 SPECTRAL1 RCM RANDOM

Reordering Method

25

30

35

40

45

50

55

C
om

m
. E

st
im

at
e

fr
om

 m
pi

A
pr

ox
y

(s
ec

)

XGCinterplanemajorpoldecomp64p: Comm. Performance

Figure 21: Task Mapping: Communication Perfor-
mance of XGC-interplanemajor-poldecomp with 64
MPI tasks

At larger scale, Figure 22 shows the communication be-
havior at 2048 cores. Again, SPECTRAL0 provides the optimal
mapping in this scenario (Figure 23).

Figure 22: XGC-interplanemajor-poldecomp-10ts:
Point-to-point communication volume pattern with
2048 MPI tasks

DEFAULT NJTREE0 NJTREE1 SPECTRAL0 SPECTRAL1 RCM RANDOM

Reordering Method

700

750

800

850

900

950

C
om

m
. E

st
im

at
e

fr
om

 m
pi

A
pr

ox
y

(s
ec

)

XGCinterplanemajorpoldecomp10ts2048p: Comm. Performance

Figure 23: Task Mapping: Communication Per-
formance of XGC-interplanemajor-poldecomp-10ts
with 2048 MPI tasks

6.2.2 MPAS-Ocean
The communication behavior of MPAS-Ocean using 128

processes is shown in Figure 24. The different task map-
ping methods outperform the default ordering with the tree
methods showing the best performance (Figure 25).

Figure 24: MPAS-default-partitioning: Point-to-
point communication volume pattern with 128 MPI
tasks

DEFAULT NJTREE0 NJTREE1 SPECTRAL0 SPECTRAL1 RCM RANDOM

Reordering Method

700

750

800

850

900

950

1000

1050

C
om

m
. E

st
im

at
e

fr
om

 m
pi

A
pr

ox
y

(s
ec

)

MPAS2.1mpip1.0worldOcean_QU_120km30d:defaultpart128p: Comm. Performance

Figure 25: Task Mapping: Communication Perfor-
mance of MPAS-default-part with 128 MPI tasks

At larger scale, MPAS-Ocean replicates the pattern from
the smaller run with mutually exclusive subdomains (Fig-
ure 26). The tree methods still outperform other mappings
(Figure 27)

6.2.3 NRDF
Finally, we did a detailed characterization of NRDF in var-

ious AMR (Adaptive Mesh Refinement) configurations. We
present the highlights here. Figure 28 illustrates the com-
munication pattern of NRDF using the AFACx algorithm
in 256b3l configuration. The tree methods provide the best
performance for this problem (Figure 29).

The communication pattern of NRDF using the FAC algo-
rithm is shown in Figure 30. It is substantially different from
the AFACx algorithm in the same configuration (256b3l).
All reordering algorithms provide a better mapping than the
default in this case (Figure 31).

Figure 26: MPAS-60km-30d: Point-to-point com-
munication volume pattern with 512 MPI tasks

DEFAULT NJTREE0 NJTREE1 SPECTRAL0 SPECTRAL1 RCM RANDOM

Reordering Method

1000

1100

1200

1300

1400

1500

1600

1700

C
om

m
. E

st
im

at
e

fr
om

 m
pi

A
pr

ox
y

(s
ec

)

MPAS60km30d512p: Comm. Performance

Figure 27: Task Mapping: Communication Perfor-
mance of MPAS-60km-30d with 512 MPI tasks

Figure 28: NRDF-AFACx-256b3l: Point-to-point
communication volume pattern with 512 MPI tasks

7. CONCLUSIONS
This paper presented various task mapping algorithms

that combine the insights from the application’s behavior
with the network topology information to provide an effi-
cient task assignment. We developed a communication es-
timation tool, mpiAproxy that simulates the target appli-
cation to provide a good approximation of communication

DEFAULT NJTREE0 NJTREE1 SPECTRAL0 SPECTRAL1 RCM RANDOM

Reordering Method

400

450

500

550

600

650

700

750

800

850

C
om

m
. E

st
im

at
e

fr
om

 m
pi

A
pr

ox
y

(s
ec

)

BDF2.AFACx.256b3l512p: Comm. Performance

Figure 29: Task Mapping: Communication Perfor-
mance of NRDF-AFACx-256b3l with 512 MPI tasks

Figure 30: NRDF-FAC-256b3l: Point-to-point com-
munication volume pattern with 512 MPI tasks

DEFAULT NJTREE0 NJTREE1 SPECTRAL0 SPECTRAL1 RCM RANDOM

Reordering Method

650

700

750

800

850

C
om

m
. E

st
im

at
e

fr
om

 m
pi

A
pr

ox
y

(s
ec

)

BDF2.FAC.256b3l512p: Comm. Performance

Figure 31: Task Mapping: Communication Perfor-
mance of NRDF-FAC-256b3l with 512 MPI tasks

costs. We presented detailed communication characteriza-
tion data for several scientific applications from the DOE
Co-Design ecosystem as well as large scientific applications
from the domains of nuclear fusion, climate and radiation
diffusion. Finally, we presented a comprehensive perfor-
mance evaluation (14,000 experiments) to understand the
efficacy of the various task mapping techniques to optimize
communication of our target application set.

The results demonstrate that our methods were able to
extract significant performance improvements for a diverse
pool of applications ranging from benchmarks and proxy
apps to full scientific applications. We believe that the ro-
bustness of the techniques is amply reflected by the violin
plots (that show the probability density of the data at differ-
ent values) while accounting for system variability on mod-
ern supercomputers.

7.1 Future Work
We would like to extend this work to applications with

multiple components that exhibit different communication
patterns. For instance, the Community Earth Systems Model
(CESM) comprises of several different component with vastly
different communication patterns. Finding an optimal task
mapping while taking the inter-component interactions into
account is an open research problem.

The current implementation of our algorithms is not amenable
for scaling to large core counts. We intend to address that
by porting to a programming language that is more suitable
for high performance computing.

During this research, we have identified several opportuni-
ties to customize algorithms specifically to a target applica-
tion. Especially for NRDF, we are interested in algorithmic
exploration that is intended to further reduce communica-
tion while retaining solution fidelity.

Acknowledgments
Support for this work was provided through the Scientific
Discovery through Advanced Computing (SciDAC) program
funded by the U.S. Department of Energy Office of Ad-
vanced Scientific Computing Research (ASCR). Early com-
munication characterization work was partially supported
by the Oxbow project, another ASCR program. Awards
of computer time was provided by the Innovative and Novel
Computational Impact on Theory and Experiment (INCITE)
program. This research used resources of the Oak Ridge
Leadership Computing Facility, which is a DOE Office of
Science User Facility supported under Contract DE-AC05-
00OR22725.

8. REFERENCES
[1] AMG2013 - parallel algebraic multigrid solver.

https://codesign.llnl.gov/amg2013.php, 2015.

[2] BoxLibAMR- Block Structured AMR for Combusion
Studies.
http://exactcodesign.org/sample-page/s3dboxlib/,
2015.

[3] HPCG:High Performance Conjugate Gradients
Benchmark. http://www.hpcg-benchmark.org, 2015.

[4] LULESH: Livermore Unstructured Lagrangian
Explicit Shock Hydrodynamics.
https://codesign.llnl.gov/lulesh.php, 2015.

[5] MCB - Monte Carlo Benchmark.
https://codesign.llnl.gov/mcb.php, 2015.

[6] MPAS: Model for Prediction Across Scales.
https://mpas-dev.github.io/, 2015.

[7] MultiGridC.
http://exactcodesign.org/proxy-app-software/, 2015.

[8] Nek500. http://nek5000.mcs.anl.gov/, 2015.

[9] NEKBONE. https://cesar.mcs.anl.gov/content/
software/thermal hydraulics, 2015.

https://codesign.llnl.gov/amg2013.php
http://exactcodesign.org/sample-page/s3dboxlib/
http://www.hpcg-benchmark.org
https://codesign.llnl.gov/lulesh.php
https://codesign.llnl.gov/mcb.php
https://mpas-dev.github.io/
http://exactcodesign.org/proxy-app-software/
http://nek5000.mcs.anl.gov/
https://cesar.mcs.anl.gov/content/software/thermal_hydraulics
https://cesar.mcs.anl.gov/content/software/thermal_hydraulics

[10] Titan - Cray XK7 Supercomputer at Oak Ridge
National Laboratory. https://www.olcf.ornl.gov/
computing-resources/titan-cray-xk7/, 2015.

[11] Titan - Job Scheduling Policy. https://www.olcf.ornl.
gov/kb articles/titan-scheduling-policy/, 2015.

[12] TOP500 - Top 500 Supercomputer Sites in the World
- June 2015. http://top500.org/lists/2015/06/, 2015.

[13] G. Bhanot, A. Gara, P. Heidelberger, E. Lawless, J. C.
Sexton, and R. Walkup. Optimizing task layout on the
Blue Gene/L supercomputer. IBM Journal of
Research and Development, 40:489–500, 2005.

[14] A. Bhatele. Automating topology aware mapping for
supercomputers. PhD thesis, University of Illinois at
Urbana-Champaign, 2010.

[15] S. W. Bollinger and S. F. Midkiff. Processor and link
assignment in multicomputers using simulated
annealing. In Proceedings of the International
Conference on Parallel Processing, ICPP ’88, The
Pennsylvania State University, University Park, PA,
USA, August 1988. Volume 1: Architecture., pages
1–7, 1988.

[16] CORAL Collaboration. CORAL Request for Proposal
B604142, 2015.

[17] E. Cuthill and J. McKee. Reducing the bandwidth of
sparse symmetric matrices. In Proceedings of the 1969
24th National Conference, ACM ’69, pages 157–172,
New York, NY, USA, 1969. ACM.

[18] M. Deveci, K. Kaya, B. Uçar, and Ü. V. Çatalyürek.
Fast and high quality topology-aware task mapping.
In Proceedings of 29th IEEE International Parallel
and Distributed Processing Symposium (IPDPS).
IEEE, 2014.

[19] F. Ercal, J. Ramanujam, and P. Sadayappan. Task
allocation onto a hypercube by recursive mincut
bipartitioning. In Proceedings of the 3rd Conference on
Hypercube Concurrent Computers and Applications,
pages 210–221. ACM Press, 1988.

[20] A. George and J. W. Liu. Computer Solution of Large
Sparse Positive Definite. Prentice Hall Professional
Technical Reference, 1981.

[21] J. A. George. Nested dissection of a regular finite
element mesh. SIAM Journal on Numerical Analysis,
10(2):345–363, 1973.

[22] J. L. Hintze and R. D. Nelson. Violin plots: A box
plot-density trace synergism. The American
Statistician, 52(2):181–184, May 1998.

[23] T. Hoefler and M. Snir. Generic topology mapping
strategies for large-scale parallel architectures. In
Proceedings of the international conference on
Supercomputing, pages 75–84. ACM, 2011.

[24] S. C. Johnson. Hierarchical clustering schemes.
Psychometrika, 32(3), 1967.

[25] I. Karlin, J. Keasler, and R. Neely. Lulesh 2.0 updates
and changes. Technical Report LLNL-TR-641973,
August 2013.

[26] B. Lee, S. McCormick, B. Philip, and D. Quinlan.
Asynchronous fast adaptive composite-grid methods:
numerical results. SIAM journal on scientific
computing, 25(2), 2004.

[27] B. Lee, S. McCormick, B. Philip, and D. Quinlan.
Asynchronous fast adaptive composite-grid methods

for elliptic problems: Theoretical foundations. SIAM
journal on numerical analysis, 42(1), 2005.

[28] S. McCormick and D. Quinlan. Asynchronous
multilevel adaptive methods for solving partial
differential equations on multiprocessors: Performance
results* 1. Parallel computing, 12(2), 1989.

[29] S. F. McCormick. Multilevel Adaptive Methods for
Partial Differential Equations. SIAM, Philadelphia,
PA, 1989.

[30] S. F. McCormick and J. W. Thomas. The Fast
Adaptive Composite grid (FAC) method for elliptic
equations. Math. Comp., 46:439–456, 1986.

[31] B. Philip, Z. Wang, M. Berrill, M. Birke, and
M. Pernice. Dynamic implicit 3d adaptive mesh
refinement for non-equilibrium radiation diffusion.
Journal of Computational Physics, 262:17 – 37, 2014.

[32] N. Saitou and M. Nei. The neighbor-joining method:
A new method for reconstructing phylogenetic trees.
Mol. Biol. Evol., 4(4):406–425, 1987.

[33] R. Sankaran, J. Angel, and W. M. Brown. Genetic
algorithm based task reordering to improve the
performance of batch scheduled massively parallel
scientific applications. Concurrency and Computation:
Practice and Experience, 2015.

[34] K. Schloegel, G. Karypis, and V. Kumar. Parallel
static and dynamic multi-constraint graph
partitioning. Concurrency and Computation: Practice
and Experience, 14(3):219–240, 2002.

[35] E. Solomonik, A. Bhatele, and J. Demmel. Improving
communication performance in dense linear algebra
via topology aware collectives. In Proceedings of 2011
International Conference for High Performance
Computing, Networking, Storage and Analysis, SC ’11,
pages 1–11, New York, NY, USA, 2011. ACM.

[36] S. Sreepathi, M. L. Grodowitz, R. Lim, P. Taffet, P. C.
Roth, J. Meredith, S. Lee, D. Li, and J. Vetter.
Application Characterization Using Oxbow Toolkit
and PADS Infrastructure. In Proceedings of the 1st
International Workshop on Hardware-Software
Co-Design for High Performance Computing, Co-HPC
’14, pages 55–63. IEEE Press, 2014.

[37] J. Vetter and C. Chambreau. mpip: Lightweight,
scalable mpi profiling, 2004. URL http://mpip.
sourceforge. net.

https://www.olcf.ornl.gov/computing-resources/titan-cray-xk7/
https://www.olcf.ornl.gov/computing-resources/titan-cray-xk7/
https://www.olcf.ornl.gov/kb_articles/titan-scheduling-policy/
https://www.olcf.ornl.gov/kb_articles/titan-scheduling-policy/
http://top500.org/lists/2015/06/

	1 Introduction
	2 Methodology
	2.1 Augmented mpiP Tool
	2.2 Reordering Methods
	2.2.1 Spectral bisection techniques
	2.2.2 Reverse Cuthill-McKee (RCM) algorithm
	2.2.3 Neighbor-join tree methods

	2.3 mpiAproxy: Communication Estimation

	3 Related Work
	4 Applications Overview
	4.1 Co-Design Benchmarks, Proxies and Applications
	4.1.1 AMG2013
	4.1.2 BoxLibAMR
	4.1.3 HPCG
	4.1.4 LULESH
	4.1.5 MCB
	4.1.6 MultiGrid_C
	4.1.7 Nek5000
	4.1.8 Nekbone

	4.2 Big Science Applications
	4.2.1 XGC
	4.2.2 MPAS-Ocean
	4.2.3 NRDF

	5 Titan: Experiment Platform
	6 Results
	6.1 Co-Design Benchmarks, Proxies and Applications
	6.1.1 AMG2013
	6.1.2 BoxLibAMR
	6.1.3 HPCG
	6.1.4 LULESH
	6.1.5 MCB
	6.1.6 MultiGrid_C
	6.1.7 Nek5000
	6.1.8 NEKBONE

	6.2 Big Science Applications
	6.2.1 XGC
	6.2.2 MPAS-Ocean
	6.2.3 NRDF

	7 Conclusions
	7.1 Future Work

	8 References

