
Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin
Corporation, for the U.S. Department of Energy’s National Nuclear Security Administration under contract DE-AC04-94AL85000. SAND NO. 2011-XXXXP

Asynchronous Many-Task Programming

Models for Next Generation Platforms

Jeremiah Wilke, Ken Franko, David Hollman, Samuel
Knight, Hemanth Kolla, Paul Lin, Greg Sjaardema,
Nicole Slattengren, Keita Teranishi

Janine Bennett (PI), Robert Clay (PM)

SAND2015-5106PE

We expect a lot from our programming models

 Expressive
 Data parallelism: Same computation on different data

 Task parallelism: Different computations on same or different data

 Performant

 Performance portable
 Abstractions separate code specification from

optimization for different architectures

 Future-proof
 How much of the application code needs to be

rewritten when moving to next generation
architectures?

2

Exascale introduces significant complexities

3

Challenges
 Increases in concurrency

 Deep memory hierarchies

 Increased fail-stop errors

 Performance heterogeneity
 Accelerators
 Thermal throttling
 General system noise
 Responses to transient

failures

Image courtesy of www.cal-design.org

Overarching abstract machine
model of an exascale node

Bulk synchronous MPI+X does not address all the
challenges posed by the exascale machine model

4

Challenges
 Increases in concurrency

 Deep memory hierarchies

 Increased fail-stop errors

 Performance heterogeneity
 Accelerators
 Thermal throttling
 General system noise
 Responses to transient

failures

 Complexity of application code
increases with proposed solutions

 Complexity of application code
increases with proposed solutions

 Over-decomposition on node can
help but does not solve the problem

 Algorithmic research required

 Over-decomposition on node can
help but does not solve the problem

 Algorithmic research required

Asynchronous many-task (AMT) programming
models show promise against exascale challenges

 Runtime systems show promise at
sustaining performance despite node-
degradation and failure

 Directed Acyclic Graph (DAG) of Tasks

 Active area of research
 Charm++, DAGuE, DHARMA, HPX, Legion,

OCR, STAPL, Uintah, …

5

B
u

lk syn
ch

ro
n

o
u

s +
n

o
d

e-leve
l A

M
T

H
o

listic A
M

T

Images courtesy of Jack Dongarra

Asynchronous many-task (AMT) programming
models show promise against exascale challenges

 Runtime systems show promise at
sustaining performance despite node-
degradation and failure

 Directed Acyclic Graph (DAG) of Tasks

 Active area of research
 Charm++, DAGuE, DHARMA, HPX, Legion,

OCR, STAPL, Uintah, …

6

B
u

lk syn
ch

ro
n

o
u

s +
n

o
d

e-leve
l A

M
T

H
o

listic A
M

T

Images courtesy of Jack Dongarra

Expressive Performant Portable Future-Proof

Expressive Performant Portable Future-Proof

AMT programming models facilitate the
expression of task and data parallelism

7

Task graph
Nodes: Tasks
Edges: Precedence constraints

Every program has a
task graph,
implicitly or explicitly!

Imperative coding style can be easier conceptually,
but defines strict execution

8

Expressive Performant Portable Future-Proof

Declarative coding style describes program,
flexible execution by task runtime

9

Expressive Performant Portable Future-Proof

Declarative coding style describes program,
flexible execution by task runtime

10

 Execution is deferred
 DAG runtime can

 Detect parallelism
 Maximize concurrency
 Pipeline communication
 Load balance/work-steal
 Move work to data
 Do transparent fault-tolerance

Expressive Performant Portable Future-Proof

Distinction between programming and execution
models is important in the context of portability

 Programming model: API and
abstractions in application
 Do we code via procedure calls with

pointers and scalar types? Or do we code
via task declarations on logical handles?

 Can be performance portable

 Execution model: API and abstractions
in runtime system (RTS)
 Does the code run in a sequential, step-by-

step way? Event-driven?

 Performance portable only within very
similar architectures

11

Expressive Performant Portable Future-Proof

Runtime

Applications

Prog. Model

Exec. Model

OS

Hardware

AMT programing models shield application code
from dynamic imablance/faults

 Task graph encodes provenance
information for applications

 Logical identification of tasks and
data facilitates data and task
migration, enabling transparent
load-balancing and fault-recovery via
runtime when nodes degrade or fail

12

Expressive Performant Portable Future-Proof

If statements handling dynamic
faults/performance variation can
complicate MPI applications

DHARMA project: Distributed asyncHronous
Adaptive and Resilient Models for Applications

 Project Mission: Assess & address fundamental challenges
imposed by the need for performant, portable, scalable, fault-
tolerant programming models at extreme-scale
 Assess rich feature sets/usability/performance of existing AMT runtimes

in the context of Sandia workloads

 Research in programmability, dynamic load-balancing, and fault-tolerance
of AMT runtimes

13

DHARMA is a fundamental Hindu concept referring to
• the order and custom which make life and a universe possible
• the behaviors appropriate to the maintenance of that order

The classical Sanskrit noun DHARMA derives from dhr
• meaning to hold, maintain, keep

14

Sandia builds system
from scratch

and takes ownership

Sandia relies completely
on external

academic partners

Lots of control,
but lots of extra

investment

Less control,
but less

investment

Sandia faces spectrum of choices/risks in
developing technical roadmap

Comparative analysis of leading AMT RTS

 We considered many runtimes over the summer of FY14

 Charm++, Legion, Uintah, STAPL, HPX, OCR, Swift/T

 We settled on Charm++, Legion, Uintah as our top three study candidates

 Demonstrated science applications at scale

 Maturity of runtime

 Three very different implementations, APIs, sets of abstractions

 Accessibility of teams

 Coding Boot Camps with each University to develop applications in
conjunction with runtime experts

 Both Sandia runtime and application
developers are involved in the study

15

Comparative analysis of leading AMT RTS

 Mini Aero: 3-D, unstructured, finite-volume, computational
fluid dynamics code
 Runge-Kutta fourth-order time marching

 Options for first or second order spatial discretization

 Includes inviscid Roe and Newtonian viscous fluxes

 Baseline application is approximately 3800 lines of C++ code using
MPI+Kokkos

 Three primary evaluation criteria
 Programmability: largely qualitative feedback from application

developers

 Mutability: characterization of software stack, partnership
strategies,...

 Performance studies: strong and weak scaling, load-balancing under
system heterogeneity, task- and data-granularity, power/performance

16

On-going experiments (summer of FY15)

 Strong and weak scaling studies with varying levels of over-decomposition

 Load-balancing in the presence of system performance heterogeneity

 Introduce performance heterogeneity via fine-grained controls on Shepard
(Sandia Advanced Technology Test bed)

 Correlate power measurements to on-node performance counters

 Assessing the role of task-granularity and its implications

 In-situ (same resources, no copies) vs. In-transit (forced copies to shared
resources) data analysis

 Study the effects of task granularity

 Exploring use of performance analysis tools

 Insights into performance of runtimes

 Analysis of state of tools themselves

17

Initial qualitative assessment shows key features
missing from leading runtimes

 Uintah

- Limited to structured meshes

+ Framework easy to code to, familiar

 Charm++

- Task-graph not dynamic, specified at compile time

- Templated programming not well supported

+ Load-balancing and fault tolerance are very easy!

 Legion

- Requires use of their data structures

- Overhead of data-driven runtime is a detractor for our dynamic workloads
(Particle in Cell, Contact applications)

+ Data-driven runtime very powerful for other applications, dynamic task-
graphs, good architectural and conceptual design

18

Initial conclusions from study

The cons:

- All leading AMT programming models and RTS have been designed or
demonstrated on a limited set of applications

- None of the runtimes are production ready

- None of the runtimes appear to satisfy all requirements of our application
workloads (definition of requirements is still in progress)

The pros:

+ AMT runtimes show tremendous potential for addressing exascale
challenges

+ The collective research being performed by AMT RTS developers is a
critically important precursor to establishing community standards

19

Where does the AMT programming model and
RTS community go from here?

20

En
ga

ge
 u

p
 t

h
e

 s
ta

ck

Gather requirements
from a broad set of

HPC applications

Where does the AMT programming model and
RTS community go from here?

21

En
ga

ge
 u

p
 t

h
e

 s
ta

ck

Gather requirements
from a broad set of

HPC applications

En
ga

ge
 d

o
w

n
 t

h
e

st
ac

k

Communicate
requirements to OS
software developers

Where does the AMT programming model and
RTS community go from here?

22

En
ga

ge
 u

p
 t

h
e

 s
ta

ck

Gather requirements
from a broad set of

HPC applications

En
ga

ge
 d

o
w

n
 t

h
e

st
ac

k

Engage the community

Establish common terminology
and best practices with an eye

towards eventual standards

Communicate
requirements to OS
software developers

Sandia’s ongoing and future efforts

 Finish & share comparative analysis study

 Detailed report establishing terminology

 Based on survey of 15+ parallel frameworks

 Community feedback will be sought before
finalizing

 DHARMA programming model research

 Programming model specification

 expressive enough to support many execution
models (using runtime/compile time switches)

 Build out RTS that meets specification and ASC
ATDM application requirements

 Continued engagement with AMT community
to see where and how existing RTS could meet
DHARMA specification and requirements

23

Engage the community

Establish common terminology
and best practices with an eye

towards eventual standards

Classify runtime design patterns, establish
common vocabulary

24

e.g. “Hazard” avoidance models for ensuring correct
parallel execution (correct data-flow, no race conditions)

Engage the community

Establish common terminology
and best practices with an eye

towards eventual standards

Framework
Primary Distributed

Memory Model
Primary Shared
Memory Model

Supported
Distributed

Memory Model

Supported Shared
Memory Model

Legion
Conservative
Disjoint Data

Conservative
Disjoint Data

Speculative
Copy-on-read

Speculative
Atomics

Charm++ Copy-on-read n/a n/a Any

MPI CSPs
Disjoint Data

(OpenMP)
Explicit Sync
(One-sided)

Any

UPC
Explicit

Synchronization
Explicit

Synchronization
n/a n/a

X10
Conservative

Forking
Conservative

Forking
n/a n/a

Cilk n/a
Conservative

Forking
n/a n/a

CnC Idempotency Idempotency n/a Any
Chapel Disjoint Data Disjoint Data Any Any

Uintah CSPs
Conservative

Forking
n/a n/a

HPX Data-Flow Data-Flow
Explicit

Synchronization
Explicit

Synchronization

TASCEL
Idempotent Data

Store
Idempotent Data

Store
n/a n/a

OmpSs n/a
Conservative Data-

Flow
n/a Explicit Atomics

STAPL Disjoint Data Disjoint Data
Explicit

Synchronization
Explicit

Synchronization

PARSEC
Conservative Data-

Flow
Conservative Data-

Flow
n/a n/a

Classify runtime design patterns, establish
common vocabulary

25

e.g. “Hazard” avoidance models for ensuring correct
parallel execution (correct data-flow, no race conditions)

Engage the community

Establish common terminology
and best practices with an eye

towards eventual standards

Framework
Primary Distributed

Memory Model
Primary Shared
Memory Model

Supported
Distributed

Memory Model

Supported Shared
Memory Model

Legion
Conservative
Disjoint Data

Conservative
Disjoint Data

Speculative
Copy-on-read

Speculative
Atomics

Charm++ Copy-on-read n/a n/a Any

MPI CSPs
Disjoint Data

(OpenMP)
Explicit Sync
(One-sided)

Any

UPC
Explicit

Synchronization
Explicit

Synchronization
n/a n/a

X10
Conservative

Forking
Conservative

Forking
n/a n/a

Cilk n/a
Conservative

Forking
n/a n/a

CnC Idempotency Idempotency n/a Any
Chapel Disjoint Data Disjoint Data Any Any

Uintah CSPs
Conservative

Forking
n/a n/a

HPX Data-Flow Data-Flow
Explicit

Synchronization
Explicit

Synchronization

TASCEL
Idempotent Data

Store
Idempotent Data

Store
n/a n/a

OmpSs n/a
Conservative Data-

Flow
n/a Explicit Atomics

STAPL Disjoint Data Disjoint Data
Explicit

Synchronization
Explicit

Synchronization

PARSEC
Conservative Data-

Flow
Conservative Data-

Flow
n/a n/a

Starting point for
discussion and debate
within the community

Starting point for
discussion and debate
within the community

Sandia’s ongoing and future efforts

26

 Sandia ASC ATDM program focused on
gathering requirements for

 Unstructured, finite element particle-in-cell

 Reentry application

 Complex workflows (multi-physics, UQ, in
situ analysis)

 Sandia applications deep-dive workshop in
July

 Continued engagement with the tools
community

Gather requirements
from a broad set of

HPC applications

En
ga

ge
 u

p
 t

h
e

 s
ta

ck

Classify application patterns and workloads and
how they challenge existing runtime systems

27

e.g. Classifying application patterns based on mutually
shared knowledge between “producer” and
“consumer”

Gather requirements
from a broad set of

HPC applications

P
ro

d
u

ce
r

Consumer

Oracle Locally Dominant Subordinate Blind

Oracle
Structured

mesh, Dense
linear algebra

- - -

Locally
Dominant

-

Unstructured
mesh, Conjugate

gradient 2nd

iteration

Particle in cell
Molecular
dynamics

Subordinate - -
Adaptive

mesh
refinement

-

Blind -
Conjugate

gradient 1st

iteration
- -

En
ga

ge
 u

p
 t

h
e

 s
ta

ck

Classify application patterns and workloads and
how they challenge existing runtime systems

28

e.g. Classifying application patterns based on mutually
shared knowledge between “producer” and
“consumer”

Gather requirements
from a broad set of

HPC applications

P
ro

d
u

ce
r

Consumer

Oracle Locally Dominant Subordinate Blind

Oracle
Structured

mesh, Dense
linear algebra

- - -

Locally
Dominant

-

Unstructured
mesh, Conjugate

gradient 2nd

iteration

Particle in cell
Molecular
dynamics

Subordinate - -
Adaptive

mesh
refinement

-

Blind -
Conjugate

gradient 1st

iteration
- -

Starting point for
discussion and debate
within the community

Starting point for
discussion and debate
within the community

En
ga

ge
 u

p
 t

h
e

 s
ta

ck

En
ga

ge
 d

o
w

n
 t

h
e

 s
ta

ck

Communicate
requirements to OS
software developers

Sandia’s ongoing and future efforts

29

 DOE AMT RTS Working Group

 POCs: Robert Clay and Ron Brightwell

 Develop pre-standard APIs (not a
standards committee!)

 Augment and support community in
efforts to develop sharable AMT RTS
components

 Engaging Sandia systems software
research groups
 Qthreads, Kelpie, Kokkos (facilitates

statically-defined performance portability)

Extra slides

 Performance analysis slides not ready for prime time –
incorporating changes to baseline miniAero and rerunning
these

30

Initial scaling studies show promise for AMTs

31

Initial scaling studies show promise for AMTs

32

Edison @ NERSC
2 threads spawned per core
No over-decomposition

Both implementations use Kokkos

