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We expect a lot from our programming models

 Expressive
 Data parallelism: Same computation on different data

 Task parallelism: Different computations on same or different data

 Performant

 Performance portable
 Abstractions separate code specification from 

optimization for different architectures

 Future-proof
 How much of the application code needs to be                                        

rewritten when moving to next generation                                       
architectures?
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Exascale introduces significant complexities 
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Challenges
 Increases in concurrency

 Deep memory hierarchies

 Increased fail-stop errors 

 Performance heterogeneity 
 Accelerators
 Thermal throttling
 General system noise
 Responses to transient 

failures

Image courtesy of www.cal-design.org

Overarching abstract machine 
model of an exascale node



Bulk synchronous MPI+X does not address all the 
challenges posed by the exascale machine model
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Asynchronous many-task (AMT) programming 
models show promise against exascale challenges

 Runtime systems show promise at 
sustaining performance despite node-
degradation and failure

 Directed Acyclic Graph (DAG) of Tasks

 Active area of research
 Charm++, DAGuE, DHARMA, HPX, Legion, 

OCR, STAPL, Uintah, …
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Expressive Performant Portable Future-Proof

AMT programming models facilitate the 
expression of task and data parallelism
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Task graph
Nodes: Tasks
Edges: Precedence constraints

Every program has a 
task graph,
implicitly or explicitly!



Imperative coding style can be easier conceptually,
but defines strict execution
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Declarative coding style describes program,
flexible execution by task runtime
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Declarative coding style describes program,
flexible execution by task runtime
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 Execution is deferred
 DAG runtime can

 Detect parallelism
 Maximize concurrency
 Pipeline communication
 Load balance/work-steal
 Move work to data
 Do transparent fault-tolerance

Expressive Performant Portable Future-Proof



Distinction between programming and execution 
models is important in the context of portability

 Programming model: API and 
abstractions in application
 Do we code via procedure calls with 

pointers and scalar types? Or do we code 
via task declarations on logical handles?

 Can be performance portable

 Execution model: API and abstractions 
in runtime system (RTS)
 Does the code run in a sequential, step-by-

step way? Event-driven? 

 Performance portable only within very 
similar architectures
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Runtime
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AMT programing models shield application code
from dynamic imablance/faults

 Task graph encodes provenance 
information for applications

 Logical identification of tasks and 
data facilitates data and task 
migration, enabling transparent 
load-balancing and fault-recovery via 
runtime when nodes degrade or fail
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Expressive Performant Portable Future-Proof

If statements handling dynamic 
faults/performance variation can 
complicate MPI applications



DHARMA project: Distributed asyncHronous 
Adaptive and Resilient Models for Applications 

 Project Mission: Assess & address fundamental challenges 
imposed by the need for performant, portable, scalable, fault-
tolerant programming models at extreme-scale
 Assess rich feature sets/usability/performance of existing AMT runtimes 

in the context of Sandia workloads

 Research in programmability, dynamic load-balancing, and fault-tolerance
of AMT runtimes
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DHARMA is a fundamental Hindu concept referring to 
• the order and custom which make life and a universe possible
• the behaviors appropriate to the maintenance of that order

The classical Sanskrit noun DHARMA derives from dhr
• meaning to hold, maintain, keep



14

Sandia builds system 
from scratch 

and takes ownership

Sandia relies completely 
on external 

academic partners

Lots of control, 
but lots of extra 

investment

Less control, 
but less 

investment

Sandia faces spectrum of choices/risks in 
developing technical roadmap



Comparative analysis of leading AMT RTS

 We considered many runtimes over the summer of FY14

 Charm++, Legion, Uintah, STAPL, HPX, OCR, Swift/T

 We settled on Charm++, Legion, Uintah as our top three study candidates

 Demonstrated science applications at scale

 Maturity of runtime

 Three very different implementations, APIs, sets of abstractions

 Accessibility of teams

 Coding Boot Camps with each University to develop applications in 
conjunction with runtime experts

 Both Sandia runtime and application                                                    
developers are involved in the study                                                                          
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Comparative analysis of leading AMT RTS

 Mini Aero: 3-D, unstructured, finite-volume, computational 
fluid dynamics code 
 Runge-Kutta fourth-order time marching

 Options for first or second order spatial discretization

 Includes inviscid Roe and Newtonian viscous fluxes

 Baseline application is approximately 3800 lines of C++ code using 
MPI+Kokkos

 Three primary evaluation criteria 
 Programmability: largely qualitative feedback from application 

developers

 Mutability: characterization of software stack, partnership 
strategies,...

 Performance studies: strong and weak scaling, load-balancing under 
system heterogeneity, task- and data-granularity, power/performance
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On-going experiments (summer of FY15)

 Strong and weak scaling studies with varying levels of over-decomposition

 Load-balancing in the presence of system performance heterogeneity

 Introduce performance heterogeneity via fine-grained controls on Shepard 
(Sandia Advanced Technology Test bed)

 Correlate power measurements to on-node performance counters

 Assessing the role of task-granularity and its implications

 In-situ (same resources, no copies) vs. In-transit (forced copies to shared 
resources)  data analysis

 Study the effects of task granularity 

 Exploring use of performance analysis tools 

 Insights into performance of runtimes

 Analysis of state of tools themselves
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Initial qualitative assessment shows key features 
missing from leading runtimes

 Uintah 

- Limited to structured meshes

+ Framework easy to code to, familiar

 Charm++ 

- Task-graph not dynamic, specified at compile time

- Templated programming not well supported

+ Load-balancing and fault tolerance are very easy!

 Legion 

- Requires use of their data structures

- Overhead of data-driven runtime is a detractor for our dynamic workloads 
(Particle in Cell, Contact applications)

+ Data-driven runtime very powerful for other applications, dynamic task-
graphs, good architectural and conceptual design
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Initial conclusions from study 

The cons:

- All leading AMT programming models and RTS have been designed or 
demonstrated on a limited set of applications

- None of the runtimes are production ready

- None of the runtimes appear to satisfy all requirements of our application 
workloads (definition of requirements is still in progress)

The pros:

+ AMT runtimes show tremendous potential for addressing exascale
challenges

+ The collective research being performed by AMT RTS developers is a 
critically important precursor to establishing community standards 
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Where does the AMT programming model and 
RTS community go from here?
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Where does the AMT programming model and 
RTS community go from here?
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Sandia’s ongoing and future efforts 

 Finish & share comparative analysis study

 Detailed report establishing terminology

 Based on survey of 15+ parallel frameworks

 Community feedback will be sought before 
finalizing

 DHARMA programming model research

 Programming model specification

 expressive enough to support many execution 
models (using runtime/compile time switches)

 Build out RTS that meets specification and ASC 
ATDM application requirements

 Continued engagement with AMT community 
to see where and how existing RTS could meet 
DHARMA specification and requirements
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Engage the community

Establish common terminology 
and best practices with an eye 

towards eventual standards



Classify runtime design patterns, establish 
common vocabulary
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e.g. “Hazard” avoidance models for ensuring correct 
parallel execution (correct data-flow, no race conditions)

Engage the community

Establish common terminology 
and best practices with an eye 

towards eventual standards

Framework
Primary Distributed 

Memory Model
Primary Shared 
Memory Model

Supported 
Distributed

Memory Model

Supported Shared 
Memory Model

Legion
Conservative
Disjoint Data

Conservative 
Disjoint Data

Speculative 
Copy-on-read

Speculative 
Atomics

Charm++ Copy-on-read n/a n/a Any

MPI CSPs
Disjoint Data 

(OpenMP)
Explicit Sync 
(One-sided)

Any

UPC
Explicit 

Synchronization
Explicit 

Synchronization
n/a n/a

X10
Conservative 

Forking
Conservative

Forking
n/a n/a

Cilk n/a
Conservative 

Forking
n/a n/a

CnC Idempotency Idempotency n/a Any
Chapel Disjoint Data Disjoint Data Any Any
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HPX Data-Flow Data-Flow
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Synchronization
Explicit 

Synchronization

TASCEL
Idempotent Data 

Store
Idempotent Data 

Store
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OmpSs n/a
Conservative Data-

Flow
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STAPL Disjoint Data Disjoint Data
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Synchronization
Explicit 

Synchronization

PARSEC
Conservative Data-

Flow
Conservative Data-

Flow
n/a n/a



Classify runtime design patterns, establish 
common vocabulary
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Sandia’s ongoing and future efforts 
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 Sandia ASC ATDM program focused on 
gathering requirements for 

 Unstructured, finite element particle-in-cell 

 Reentry application

 Complex workflows (multi-physics, UQ, in 
situ analysis)

 Sandia applications deep-dive workshop in 
July 

 Continued engagement with the tools 
community
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Classify application patterns and workloads and 
how they challenge existing runtime systems
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e.g. Classifying application patterns based on mutually 
shared knowledge between “producer” and 
“consumer”
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Classify application patterns and workloads and 
how they challenge existing runtime systems
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Sandia’s ongoing and future efforts 

29

 DOE AMT RTS Working Group

 POCs: Robert Clay and Ron Brightwell

 Develop pre-standard APIs (not a 
standards committee!) 

 Augment and support community in 
efforts to develop sharable AMT RTS 
components

 Engaging Sandia systems software 
research groups
 Qthreads, Kelpie, Kokkos (facilitates 

statically-defined performance portability)



Extra slides

 Performance analysis slides not ready for prime time –
incorporating changes to baseline miniAero and rerunning 
these
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Initial scaling studies show promise for AMTs
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Initial scaling studies show promise for AMTs
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Edison @ NERSC
2 threads spawned per core
No over-decomposition

Both implementations use Kokkos


