SAND2015- 5106PE

Asynchronous Many-Task Programming
Models for Next Generation Platforms

Jeremiah Wilke, Ken Franko, David Hollman, Samuel
Knight, Hemanth Kolla, Paul Lin, Greg Sjaardema,
Nicole Slattengren, Keita Teranishi

Janine Bennett (P1), Robert Clay (PM)

=% U.S. DEPARTMENT OF

FainY VYA T =35
“9/ENERGY #VA A4

Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin
Corporation, for the U.S. Department of Energy’s National Nuclear Security Administration under contract DE-AC04-94AL85000. SAND NO. 2011-XXXXP

National _
Laboratories

We expect a lot from our programming models () s

= EXpressive
= Data parallelism: Same computation on different data
= Task parallelism: Different computations on same or different data

= Performant

Scientific Grand Challenges

Architectures and Technology

" Performance portable . .
= Abstractions separate code specification from g
optimization for different architectures

= Future-proof

= How much of the application code needs to be
rewritten when moving to next generation
architectures?

Sandia
Exascale introduces significant complexities L

Overarching abstract machine
model of an exascale node

(Low Capacity, High Bandwidth)

Challenges

= Increases in concurrency spa (High Capacit,
Low Bandwidth)

= Deep memory hierarchies

= Increased fail-stop errors

= Performance heterogeneity
= Accelerators
= Thermal throttling
= General system noise
= Responses to transient
failures

Integrated NIC
for Off-Chip
Communication

COMPUTER
ARCHITECTURE
LABORATORY

Image courtesy of www.cal-design.org O

Bulk synchronous MPI+X does not address all the
challenges posed by the exascale machine model

Challenges

B Increases in concurrency

Deep memory hierarchies

Increased fail-stop errors

Bl Performance heterogeneity
= Accelerators
= Thermal throttling
= General system noise
= Responses to transient
failures

Sandia
|I1 National

Laboratories

Complexity of application code
increases with proposed solutions

Over-decomposition on node can
help but does not solve the problem
Algorithmic research required

Asynchronous many-task (AMT) programming) e,
models show promise against exascale challenges

Laboratories

Images courtesy of Jack Dongarra

= Runtime systems show promise at A7 @
. . . e s =
sustaining performance despite node- : 23

. - aoo‘ooo = g
degradation and failure e 25

® a. ; 3

A < ¢

s - @

so0 +

= Directed Acyclic Graph (DAG) of Tasks ¢

= Active area of research

= Charm++, DAGUE, DHARMA, HPX, Legion,
OCR, STAPL, Uintah, ...

LNV 213S1|OH

Asynchronous many-task (AMT) programming) e,
models show promise against exascale challenges

Laboratories

Images courtesy of Jack Dongarra

= Runtime systems show promise at A7

® o)

. : ¥ 5 £
sustaining performance despite node- : 23
. : sesnce & o
degradation and failure e 25
® a. ; 3

“. g S

soo -

so0 +

= Directed Acyclic Graph (DAG) of Tasks ¢£°

= Active area of research

= Charm++, DAGUE, DHARMA, HPX, Legion,
OCR, STAPL, Uintah, ...

LNV 213S1|OH

7 Expressive 2 Performant 2 Portable 2 Future-Proof

AMT programming models facilitate the) i
expression of task and data parallelism

Laboratories

A
Every program has a
/ T task graph,
. . implicitly or explicitly!
E

D
Task graph \ /
Nodes: Tasks
F

Edges: Precedence constraints

J Expressive 2 Performant 2 Portable 2 Future-Proof

Imperative coding style can be easier conceptually,
but defines strict execution

Sandia
|I1 National

Laboratories

Output sequential() A

{ /’T
Output A = do_AQ);

Output B = do_B(A); B C

Output C = do_C(A); ‘\\\ f

OQutput D = do_D(CA);

Qutput E = do_E(B,C); E D

Qutput F = do_F(D,E);

return F; \ /
¥ F

J Expressive 2 Performant 2 Portable 2 Future-Proof

Declarative coding style describes program,) e,
flexible execution by task runtime

Laboratories

Output declarative()

: A
TaskDag dag; ////' T
Task A;
dag.add(A); B C
Task BCA), C(A), D(A);
dag.add(B,C,D); \ f
Task E(B,O);
dag.add(E); kb D
Task F(E);
dag.add(F); \ /
dag.run(); E

return dag.result(Q);

}

J Expressive 2 Performant 2 Portable 2 Future-Proof

Declarative coding style describes program,)

National _
Laboratories

flexible execution by task runtime

Output declarative()

{ = Execution is deferred
TaskDag dag; = DAG runtime can
Task A; Detect parallelism
dag.add(A); o
Task BCA), CCA), D I\{Iaanue concurr.enc.y
dag.add(B,C,D): Pipeline communication
Task E(B,O): Load balance/work-steal
dag.add(E); Move work to data
Task F(E); Do transparent fault-tolerance
dag.add(F);
dag.run();
return dag.result(Q); F

}

J Expressive 4 Performant 4 Portable 2 Future-Proof

10

Distinction between programming and execution)
models is important in the context of portability

=" Programming model: APl and
abstractions in application

= Do we code via procedure calls with
pointers and scalar types? Or do we code
via task declarations on logical handles?

= Can be performance portable

= Execution model: APl and abstractions
in runtime system (RTS)

= Does the code run in a sequential, step-by-
step way? Event-driven?

= Performance portable only within very
similar architectures

J Expressive < Performant J/ Portable 2 Future-Proof

11

AMT programing models shield application code (),
from dynamic imablance/faults

Laboratories

int mpi_main{)

{
= Task graph encodes provenance int re;
. . . . rc¢ = MPI_Irecv(AQ);
information for applications if (rc == PARTNER_FAILED){
//do something - but what?
}
rc = MPI_Irecv(E@);
= Logical identification of tasks and I (rc == PARTNER_FAILED){
o ffdo something - but what?
data facilitates data and task }
. . . rc¢ = MPI_Wait(A@_request);
migration, enabling transparent if (rc = PARTNER_FAILED){
. . Ffd thi - but what?
load-balancing and fault-recovery via 77 > T e
runtime when nodes degrade or fail If statements handling dynamic

faults/performance variation can
complicate MPI applications

J Expressive 4 Performant 4 Portable + Future-Proof

12

DHARMA project: Distributed asyncHronous) s,
Adaptive and Resilient Models for Applications

= Project Mission: Assess & address fundamental challenges
imposed by the need for performant, portable, scalable, fault-
tolerant programming models at extreme-scale

= Assess rich feature sets/usability/performance of existing AMT runtimes
in the context of Sandia workloads

= Research in programmability, dynamic load-balancing, and fault-tolerance
of AMT runtimes

[[DHARMA is a fundamental Hindu concept referring to
KEEP * the order and custom which make life and a universe possible
CALM * the behaviors appropriate to the maintenance of that order

PUT
DHARMA The classical Sanskrit noun DHARMA derives from dhr

ON * meaning to hold, maintain, keep

Sandia faces spectrum of choices/risks in)
developing technical roadmap

Laboratories

Sandia builds system Sandia relies completely
from scratch on external
and takes ownership academic partners

Lots of control, Less control,

but lots of extra but less
investment investment

National

Comparative analysis of leading AMT RTS) i,

= We considered many runtimes over the summer of FY14
= Charm++, Legion, Uintah, STAPL, HPX, OCR, Swift/T
= We settled on Charm++, Legion, Uintah as our top three study candidates
= Demonstrated science applications at scale
= Maturity of runtime
= Three very different implementations, APIs, sets of abstractions
= Accessibility of teams

= Coding Boot Camps with each University to develop applications in

conjunction with runtime experts / \
27~
- .

www.sci.utah.edu

= Both Sandia runtime and application
developers are involved in the study

A
PP PARALLEL
e L2 PROGRAMMING
<ZnviDlA. [[UIN(] ABORATORY

15

National

Comparative analysis of leading AMT RTS) i,

= Mini Aero: 3-D, unstructured, finite-volume, computational
fluid dynamics code
= Runge-Kutta fourth-order time marching
= QOptions for first or second order spatial discretization
= |ncludes inviscid Roe and Newtonian viscous fluxes
= Baseline application is approximately 3800 lines of C++ code using
MPI+Kokkos
= Three primary evaluation criteria

= Programmability: largely qualitative feedback from application
developers

= Mutability: characterization of software stack, partnership
strategies,...

= Performance studies: strong and weak scaling, load-balancing under
system heterogeneity, task- and data-granularity, power/performance

16

Sandia
On-going experiments (summer of FY15)) fouea,
= Strong and weak scaling studies with varying levels of over-decomposition

= Load-balancing in the presence of system performance heterogeneity

= Introduce performance heterogeneity via fine-grained controls on Shepard
(Sandia Advanced Technology Test bed)

= Correlate power measurements to on-node performance counters

= Assessing the role of task-granularity and its implications

= |n-situ (same resources, no copies) vs. In-transit (forced copies to shared
resources) data analysis

= Study the effects of task granularity

= Exploring use of performance analysis tools
= |nsights into performance of runtimes
= Analysis of state of tools themselves

17

Initial qualitative assessment shows key features) o
° ° ° ° Laboratories
missing from leading runtimes

= Uintah
- Limited to structured meshes
+ Framework easy to code to, familiar

= Charm++
- Task-graph not dynamic, specified at compile time
- Templated programming not well supported
+ Load-balancing and fault tolerance are very easy!

= Legion
- Requires use of their data structures
- Overhead of data-driven runtime is a detractor for our dynamic workloads
(Particle in Cell, Contact applications)

+ Data-driven runtime very powerful for other applications, dynamic task-

graphs, good architectural and conceptual design

18
-

Sandia
Initial conclusions from study Lufre

The cons:

- All leading AMT programming models and RTS have been designed or
demonstrated on a limited set of applications

- None of the runtimes are production ready

- None of the runtimes appear to satisfy all requirements of our application
workloads (definition of requirements is still in progress)

The pros:

+ AMT runtimes show tremendous potential for addressing exascale
challenges

+ The collective research being performed by AMT RTS developers is a
critically important precursor to establishing community standards

Where does the AMT programming modeland 5 e
RTS community go from here?

Laboratories

-z
o
(©
i)
()
Q
-
)
o
-
)
o]0]
(©
o]0)
-
Ll

Gather requirements
from a broad set of

HPC applications
20

Where does the AMT programming modeland 5 e
RTS community go from here?

Laboratories

=z
(®)
(48]
]
(0]
Q
-
)
-
S
O
©
Q
o]0]
48]
o]0)
-
L

Engage up the stack

Gather requirements Communicate
from a broad set of requirements to OS
HPC applications software developers

21

Where does the AMT programming modeland 5 e
RTS community go from here?

Laboratories

Engage the community

=z
(®)
(48]
]
(0]
Q
-
)
-
S
O
©
Q
o]0]
48]
o]0)
-
L

Engage up the stack

Gather requirements Communicate Establish common terminology
from a broad set of requirements to OS and best practices with an eye
HPC applications software developers towards eventual standards

22

Sandia
r.h National
Laboratories

Sandia’s ongoing and future efforts

= Finish & share comparative analysis study

= Detailed report establishing terminology
= Based on survey of 15+ parallel frameworks
= Community feedback will be sought before
finalizing
DHARMA programming model research

®= Programming model specification
= expressive enough to support many execution
models (using runtime/compile time switches)
= Build out RTS that meets specification and ASC
ATDM application requirements
= Continued engagement with AMT community
to see where and how existing RTS could meet
DHARMA specification and requirements

Engage the community

Establish common terminology
and best practices with an eye
towards eventual standards

23

Classify runtime design patterns, establish)
common vocabulary

Laboratories

Primary Distributed| Primary Shared Sgpported Supported Shared
FREITISYELY Memory Model Memory Model DIz Memory Model
Y Y Memory Model Y
Legion Conservative Conservative Speculative Speculative
& Disjoint Data Disjoint Data Copy-on-read Atomics
Charm++ Copy-on-read n/a n/a Any
Disjoint Data Explicit Sync
MPI CSPs (OpenMP) (One-sided) Any
Explicit Explicit
UpC Synchronization ~ Synchronization i e
Conservative Conservative
X10 Forking Forking i/ i/
. Conservative
Cilk n/a Forking n/a n/a
CnC Idempotency Idempotency n/a Any
Chapel Disjoint Data Disjoint Data Any Any
. Conservative
Uintah CSPs Forking n/a n/a
HPX Data-Flow Data-Flow EXp“FIt . EXp“FIt .
Synchronization Synchronization
s 3 Idempotent Data Idempotent Data
Establish common terminology TASCEL o o n/a n/a
and best practices with an eye Ompss n/a Conservatve Dat g Explicit Atomnics
towa rdS eve ntu d I Sta n d d rd S STAPL Disjoint Data Disjoint Data EXp“FIt . EXp“FIt .
Synchronization ~ Synchronization
PARSEC Conservative Data- Conservative Data- e e

Flow Flow
e.g. “Hazard” avoidance models for ensuring correct

parallel execution (correct data-flow, no race conditions)
24

Classify runtime design patterns, establish)
common vocabulary

Laboratories

Starting point for

discussion and debate
within the community

Establish common terminology
and best practices with an eye
towards eventual standards

e.g. “Hazard” avoidance models for ensuring correct

parallel execution (correct data-flow, no race conditions)

25
-

Sandia
Sandia’s ongoing and future efforts) fouea,

= Sandia ASC ATDM program focused on
gathering requirements for

> = Unstructured, finite element particle-in-cell
% = Reentry application
g = Complex workflows (multi-physics, UQ, in
= . .
- situ analysis)
>
a0
© = Sandia applications deep-dive workshop in
i July

Gather requirements = Continued engagement with the tools

from a broad set of community

HPC applications

26

Classify application patterns and workloads and ;) s,
how they challenge existing runtime systems

Laboratories

Consumer

Adaptive
Subordinate - - mesh -
refinement
Conjugate
Blind - gradient 1t - -
iteration

.8 Structured
wn Oracle mesh, Dense - - -
_?:) o linear algebra
+— 8 Unstructured
3 .
o = Loc_ally i mesh, (;onjug:te Particle in cell Molecu.lar
> O | Dominant gradient 2" dynamics
Q E iteration
o]0]
Q8]
o]0}
c
L

Gather requirements

from a broad set of e.g. Classifying application patterns based on mutually
HPC applications shared knowledge between “producer” and
“consumer”
27

Classify application patterns and workloads and ;) s,
how they challenge existing runtime systems

Laboratories
E

Gather requirements

from a broad set of e.g. Classifying application patterns based on mutually
HPC applications shared knowledge between “producer” and
“consumer”

Starting point for

discussion and debate
within the community

Producer

Sandia
Sandia’s ongoing and future efforts) fouea,

= DOE AMT RTS Working Group
= POCs: Robert Clay and Ron Brightwell

= Develop pre-standard APIs (not a
standards committee!)

= Augment and support community in
efforts to develop sharable AMT RTS
components

Y
(@)
©
o+
(Vp)]
()
-
o+
C
=
O
®)
Q
o]0]
©
o]0]
C
L

= Engaging Sandia systems software
research groups

Communicate = Qthreads, Kelpie, Kokkos (facilitates
requirements to OS statically-defined performance portability)

software developers

29

Extra slides

= Performance analysis slides not ready for prime time —

incorporating changes to baseline miniAero and rerunning
these

Sandia
National _
Laboratories

Sandia
Initial scaling studies show promise for AMTs L

Uintah:MiniAero - Riemann 3D : Titan

-
-
-
—
-

i
-

Mean Time Per Timestep (s)

Runge Kutta: 4
Viscous Terms Includ
Unified Scheduler

32 64 128 256 512 1K 2K 4K 8K 16K 32.7K65.5K 131K
Cores

31

Sandia
Initial scaling studies show promise for AMTs) e,

Edison @ NERSC
2 threads spawned per core
No over-decomposition

1.2 MPI+PTHREAD
W Charm++
1
gos M r
® 7
E '
€06
2
=
.§ 0.4
0.2
0
1 2 4 8 16 32 64 128
of Nodes
Both implementations use Kokkos 32

