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The United States ICF program has focused on three ) i
main approaches to ignition

Indirect X-ray drive

Direct laser drive
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Direct magnetic drive

Ablator, low-density
foam or solid

Solid or
liquid fuel

Gas at vapor
pressure of
solid or
liquid fuel

Focus of today’s talk




Magnetic direct drive is based on the idea that we can ) e,
efficiently use large currents to create high pressures
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Z today couples
0.5 MJ out of 20 MJ
stored to MagLIF
c o , targets, delivering
0.1 MJ to DD fuel.
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The Magnetized Liner Inertial Fusion (MagLIF)* concept is well
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suited to pulsed power drivers and may reduce inertial fusion ) Nmat

requirements

I’ Magnetization

Preheat &
compression

Axial magnetization of fuel/liner (B,, = 10-30 T)

= Inhibits thermal conduction losses, may help stabilize
liner compression, traps charged fusion products
(B: 5~80; wt>200)

Laser preheat (2-10 kJ)

= Reduces amount of radial fuel compression needed
to reach fusion temperatures (R,/R; = 23-35)

Liner compression of fuel (70-100 km/s, ~100 ns)

= “Slow”, quasi-adiabatic compression of fuel

= Low velocity requirements allow use of thick liners
(R/AR~6) that are robust to instabilities and provide
sufficient pR at stagnation to inertially confine fuel

Combination allows fusion at ~100x lower fuel density
than traditional ICF (~5 Gbar vs. 500 Gbar)

DD equivalent of 100 kJ DT yield may be possible on Z
with upgrades from our initial setup
eg.,10T=>30T; 2kl 2 >6kJ; 19 MA 2 >24 MA




Magnetization can be used to reduce thermal conduction i) i,
. Laboratories
losses and pR/pressure requirements

Y o Conduction losses | | = Axial magnetization of fuel/liner (B,, = 10-30 T)
=T l = Inhibits thermal conduction losses, may help
? - stabilize liner compression, traps fusion products
g (B: 5~80; wt>200)
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Magnetization and preheat: dedicated preheat experiments
indicate that the external magnetic field effectively insulates

the preheated plasma

2.5 kJ laser onto
1.5 um foil: Bz=85T Bz=0T
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3.12 keV argon self-emission images
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These data may help constrain models of thermal

conductivities in high magnetic fields




Preheat: Dedicated preheat experiments indicate poor laser
coupling to the fuel (100-300 J from 2-4 kJ)

2.5 kJ laser onto
1.5 um foil:

1% Ar in
60 psi D,

100 um Be wall

Axial (mm)

3.12 keV
self-emission
image
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Radially resolved Ar
emission spectrum
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Spectra and imager data:
~500 eV temperature in “mm?3 volumes 2>
only ~10% of laser energy is coupled to
the fuel — consistent with ~10%2 DD vyields
in integrated experiments




Preheat: Poor beam quality is contributing to poor laser-fuel
coupling; future experiments will use conditioned beam
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Z-Beamlet currently

does not use an e OMEGA-EP
ANy : 750um DPP
beam smoothing :

techniques adopted \

by the laser ! ZBL: No DPP

community ‘ X (representative)
4 ns/3.1 kd, 2 um LEH, no prepulse 4 ns/2.93 kJ, 2 um LEH, no prepulse
with DPP (SNL Omega-EP data) without DPP (SNL Omega-EP data)
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Preheat and implosion: Preheating the fuel allows slower,
more stable implosions and lower convergence ratios than
traditional ICF, but the preheated plasma is sensitive to mix
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Simulations with constant velocity Simulations with uniform mix
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ot

Velocity (cm/us) While magnetization reduces conduction
losses, the long preheat stage is
susceptible to radiative losses from mix,
so we can’t use dopants to diagnose
preheat on integrated experiments.

CR,, = Convergence Ratio (R,/R;)
needed to obtain T = 10 keV with no
radiation or thermal conduction losses




Magnetization and implosion: The axial magnetic field and
dielectric coatings can effectively mitigate the growth of
Magneto-Rayleigh-Taylor instabilities
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Axially-polished liner Helically perturbed liner Magnetized liner
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Stagnation: Extensive x-ray and neutron diagnostics resolve
plasma conditions in space, energy, and time
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Measuring MagLIF’s ~ 30 J x-ray yields is challenging
edel  compared to the few-M)J x-ray yields of many Z experiments




Stagnation: neutron data indicate T. . ~ 2 keV and effective )

ion National

confinement of both fuel and 1 MeV tritons labortores
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Neutron time-of-flight data measure D-D from the interaction of 1 MeV tritons
neutrons, indicating T,,, ~ 2 keV and generated by DD reactions
PRiiner > 0.9 cM?/g — and asymmetry in the DT spectra —

indicate BR ~ 0.4 MG-cm.




Stagnation: Combining information from all x-ray
diagnostics constrains T, p;,.» and pRg,
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Stagnation: detailed spectroscopic measurements also
constrain the amount of mix — but not yet its origin
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Stagnation: A closer look at axially-resolved x-ray spectra Sandi
° ° ~ o . . [ m Il\!]aI}lIJorg?tllrles
indicates ~20% axial pressure variations

Gross variations in axial intensities are most likely due to

density variations along the column; under this interpretation, - — -9 keV (with Zn)
densities vary by factors of 2 while pressures are fairly uniform. —_95keV

22613 22591 —12kev
I : —15keV

Tc (keV) p(g/cc) P(Gbar)
3.1 0.32
3.5 0.23

3.2 0.37
3.0 0.34

Axial dimension

3.8 0.22

< «— less liner

7 9 11 13 - Intensities scaled to Try *e/T
X-ray energy (eV)



Stagnation: An isobaric assumption for radial gradients Sandi
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improves agreement with the collection of x-ray and neutron e
data and is consistent with degraded-preheat simulations

Degraded simulation: X-ray analysis with  p_4iq) gradients in isobaric model*
burn averages “cartoon” model |
T = To[1-(r/100um)¥2)3 ——T{keV)
Pp = 0.4 g/cm3 Pp ~0.3 g/cm3 5 ' pT =constant —— density {g/cc)
R=65um R=70um 4
z=4mm 4} z=4mm 3 ni:fa:?.:
tyun=1.6Ns tyum=2nNS 2 1 /
T~3keV T.=3.1keV i
0
prliner =0.9 g/cm2 prliner =0.9 g/sz r (um)
Ypp= 2-4 x 1012 Ypp= 6 x 1012

Synthetic diagnostics:
Neutrons (sample VT, ) <T> = 2.5 keV
X-rays (sample 0j/0€) <T.> = 3.1 keV

Ypp = 2x1012

Measured neutron data:
Ypp= 2 x 1012
T.=2.5keV




Simulations and scaling: Degraded-preheat simulations are ot

consistent with 1012 DD yields; improving the preheat
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(without increasing mix) would increase yields > tenfold

HYDRA Simulations
main pulse main pulse
2ns, 2kl 0.2 ns, 0.2 kJ
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Simulations with 100-200 J preheat
match both yields and the detailed

parameters measured in the experiments

(temperature, shape, BR)




Simulations and scaling: alpha heating and ignition are possible .
on a future facility using a cryogenic DT layer and substantial ) Yoo,
preheat—we are testing the physics of these targets on Z today

Gas Burners
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We are engaging with multiple collaborators to help us
improve our understanding
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U. Rochester: Collaboration on “mini-MagLIF” will examine MHD
modeling of magnetic flux loss; preheat studies are underway

= LLNL: Scaled preheat NIF experiments are planned along with code
workshops and development; extensive collaboration on diagnostics

= NRL: Developing validation tools (Noh, Nernst) and radiation transport
models

= Universities (Cornell, U. Mich, U. Nevada): Implosion validation
experiments are underway along with active development of
extended MHD models

= Private companies: Voss Scientific and Prism Computational Sciences
are developing PIC/Hybrid PIC and experimental design and diagnostic
tools

= [nternational Collaborators: Fundamental work on transport
properties at U. Kiel — more interaction would be welcome!



There is growing international interest in =) e,
Laboratories
pulsed-power ICF

Operating Chinese Facility (PTS)

- 8MA

« 100 ns

« 8MJ(1/3x2)

» Successfully duplicating previous
published work worldwide

« Building a 1 ns, 1 kd laser facility
like Z-Beamlet!

»  Currently evaluating LTD and Marx-

7 based architectures

IR

1 2 3 4 5

Russian Facility (Baikal)

- 50 MA

« 150 ns

« 100 MJ (4 x Z)

« Stated goal: 25 MJ fusion yield

» Scheduled for completion in 2019,
funding is secured and there is activity

« If it works, they will have this capability
before any realistic scenario for Z-300




MagLIF experiments are extensively diagnosed, demonstrating T i

significant promise for Magnetized Inertial Fusion borres
Stagnating plasma Magnetized Liner Inertial Fusion
7 <T>=3 + 0.5keV (MagLIF) has the potential to
T(r) = To[1 - (r/R)?] produce high fusion yields by
ty,n=15xX0.5ns exploiting:
£i.=5 *3%

1) magnetic confinement that
relaxes required pressures 100x
(present experiments trap
~40% of fast fusion products)

z=5=x2mm
R=50 =% 20 um
Pp=0.3 * 0.1 g/cm3

P(z) =1 * 0.2 Gbar _ o _
PR ~ 1.5 mg/cm? 2) a highly efficient driver
BR~ 0.4 MG-cm delivering ~1% of its stored

energy to the fuel
Confining liner
-'i | O | 1 Pliiner = 0.9 g/cmz
Radial (mm)
X-ray image of a MagLIF
plasma that produced
1012 DD neutrons

3) Symmetric drive and slow, low-
convergence implosions that are
robust against instabilities




Many researchers are contributing to the MagLIF effort:
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T.J. Awe, C.J. Bourdon, G.A. Chandler, P.J. Christenson, M.E. Cuneo,

M. Geissel, M.R. Gomez, K.D. Hahn, S.B. Hansen, E.C. Harding,

A.J. Harvey-Thompson, M.H. Hess, C.A. Jennings, B. Jones, M. Jones, R.J. Kaye,
P.F. Knapp, D.C. Lamppa, M.R. Lopez, T. Nagayama, M.R. Martin, R.D. McBride,
L.A. McPherson, J.S. Lash, K.J. Peterson, J.L. Porter, G.A. Rochau, D.C. Rovang,
C.L. Ruiz, S.E. Rosenthal, M.E. Savage, P.F. Schmit, A.B. Sefkow, D.B. Sinars,
S.A. Slutz, I.C. Smith, W.A. Stygar, R.A. Vesey, E.P. Yu

Sandia National Laboratories, Albuguerque, NM

B.E. Blue, D.G. Schroen, K. Tomlinson
General Atomics, San Diego, CA

M.C. Herrmann, D. Ryutov
Lawrence Livermore National Lab, Livermore, CA

R. Betti, E. M. Campbell, J. Davies, M. Wei
Laboratory for Laser Energetics, U. Rochester
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Relative to the primary ICF approach, MagLIF uses a
robust fuel compression method and (largely) untested

magneto-inertial fusion principles

Metric [ X-ray Drive on NIF | 100 kJ MagLIF on Z
26 MAat1 mmis
Pressure ~140-160 Mbar 100 Mbar
Force vs.
Radius Goes as R2 Goes as 1/R"2
Peak
velocity 350-380 km/s 70-100 km/s
13-15 (high foot)
Peak IFAR |to 17-20 (low foot) 8.5
35 (high foot) to 45
Hot spot CR (low foot) 25
Volume [ 43000x to 91000x
Change (high & low foot) 625x
Fuel rho-R >0.3 g/cm”2 ~0.003 g/cmA2
Liner rho-R n/a >0.3 g/cm”2
BR n/a >0.5 MG-cm
Burn time 0.15t00.2 ns lto2ns
T ion >4 keV >4 keV
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IFAR black=Z blue=Z300

~ Plastic-coated,

- magnetized Be liner
tho 15 at CR of 13to0 25
Magnetic drive is fundamentally different

than x-ray or laser-driven ablation

\\\\\\\\\\\\\\\\/ﬁ

By traditional ICF implosion metrics MagLIF is
very conservative, though different physics

Reaching fusion conditions relies on largely
untested MIF principles

= Long stagnation time (2 ns) 2 more
susceptible to high-Z contamination

= Magnetic suppression of heat transport




Late-time emission contributes to )
low-energy spectral region
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The initial experiments used 10T, 2.5 kJ laser energy, and () s

National

19-20 MA current to drive a D, filled (0.7 mg/cc) Be liner o

Magnets
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