

SAND2015-5153C

Brief Announcement: Hypergraph Partitioning for Parallel Sparse Matrix-Matrix Multiplication

Grey Ballard, Alex Druinsky, Nicholas Knight, Oded Schwartz

Symposium on Parallelism in Algorithms and Architectures

June 13, 2015

Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

(SAND2015)

Summary

- Parallel **sparse matrix-matrix multiplication** is an **irregular computation** whose performance is **communication bound**
- **Hypergraph partitioning** can relate parallelization schemes to communication costs
- Using hypergraphs, we obtain theoretical communication **lower bounds** and practical **algorithmic insight** for parallel sparse matrix-matrix multiplication

Sparse matrix-matrix multiplication (SpGEMM)

*	*		*
	*		
		*	
*			*

.

*			
*		*	*
	*		
*			*

=

*		*	*
*		*	*
	*		
*			*

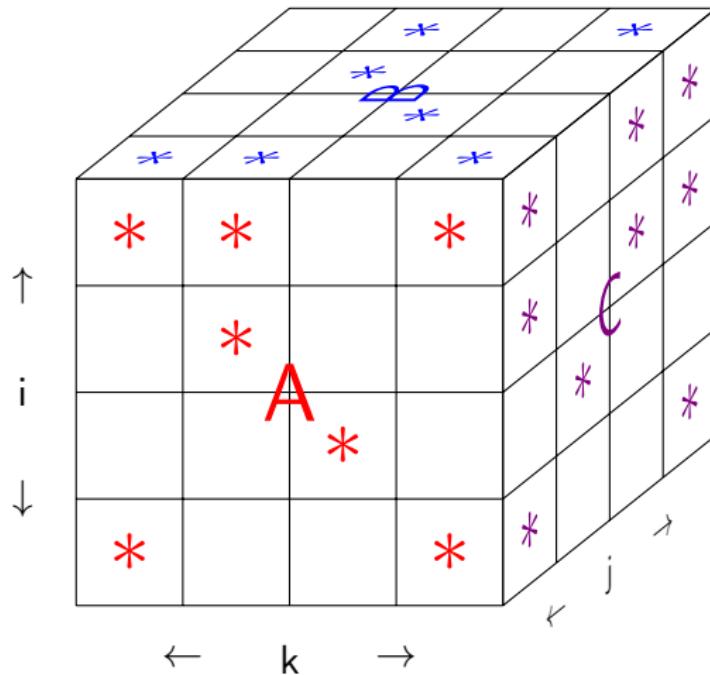
A

B

C

$$C_{ij} = \sum_k A_{ik} \cdot B_{kj}$$

Geometric view of the computation



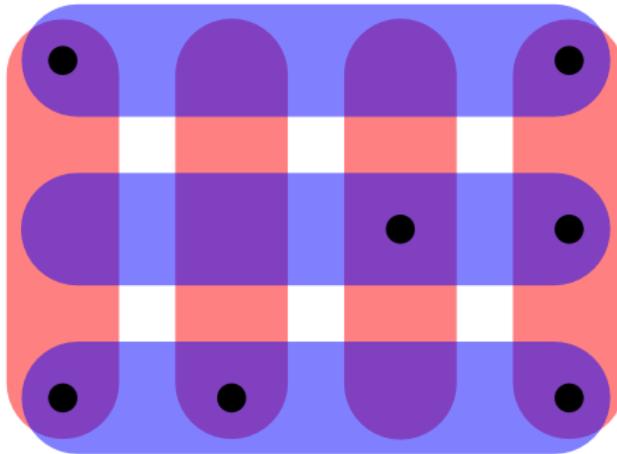
Communication hypergraphs and hypergraph partitioning

Hypergraphs consist of vertices and nets, or sets of vertices (of any size)

- for undirected graphs, nets are sets of exactly two vertices

For our purposes:

- vertices correspond to computation
- nets correspond to data



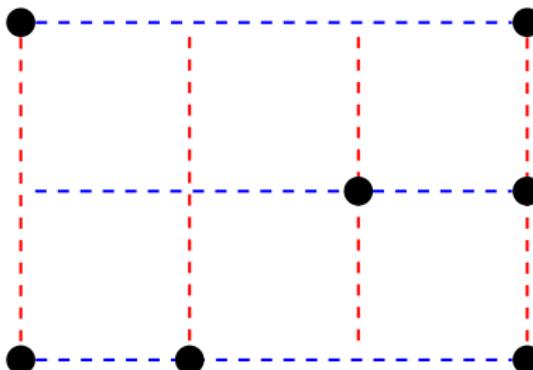
Communication hypergraphs and hypergraph partitioning

Hypergraphs consist of vertices and nets, or sets of vertices (of any size)

- for undirected graphs, nets are sets of exactly two vertices

For our purposes:

- vertices correspond to computation
- nets correspond to data



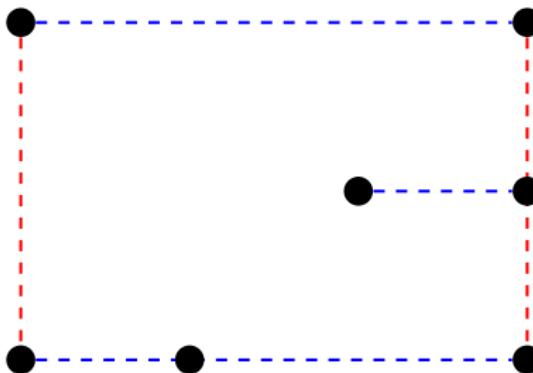
Communication hypergraphs and hypergraph partitioning

Hypergraphs consist of vertices and nets, or sets of vertices (of any size)

- for undirected graphs, nets are sets of exactly two vertices

For our purposes:

- vertices correspond to computation
- nets correspond to data



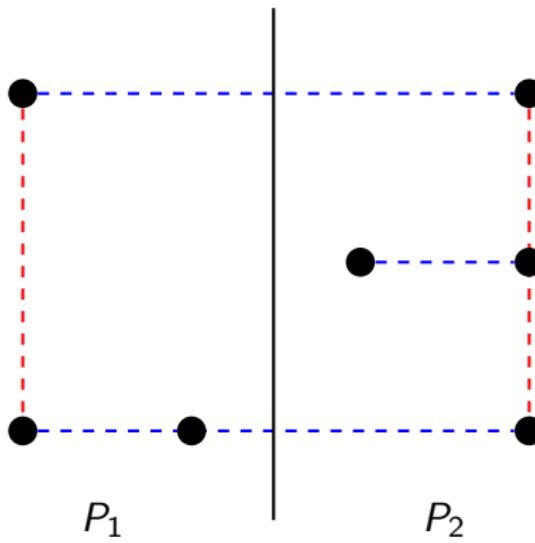
Communication hypergraphs and hypergraph partitioning

Hypergraphs consist of vertices and nets, or sets of vertices (of any size)

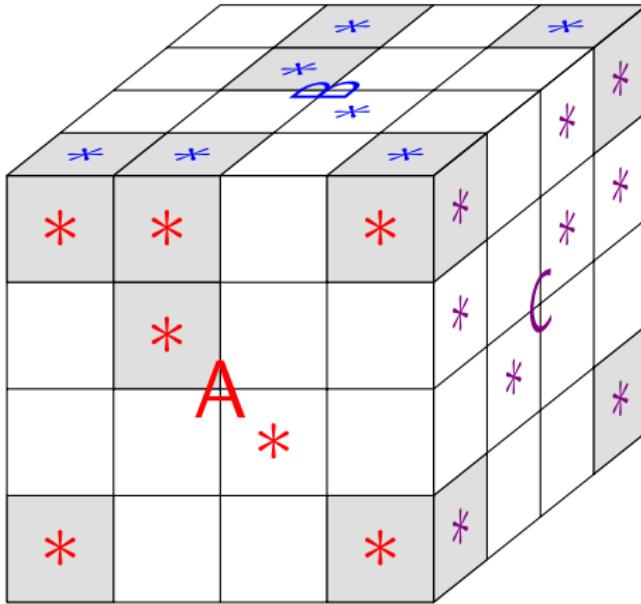
- for undirected graphs, nets are sets of exactly two vertices

For our purposes:

- vertices correspond to computation
- nets correspond to data

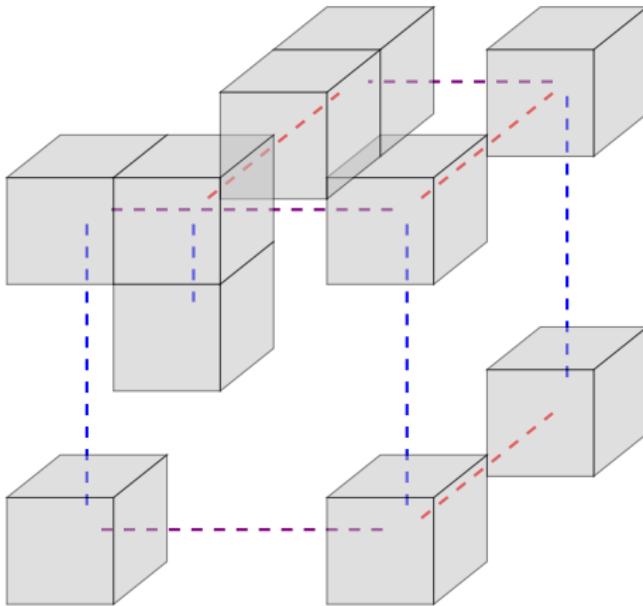


SpGEMM's hypergraph



Vertices correspond to computation (nonzero multiplication)

SpGEMM's hypergraph



Vertices correspond to computation (nonzero multiplication)
Nets correspond to data (nonzero entries)

Main theoretical result

Theorem

The communication cost of SpGEMM using p processors is at least

$$\min_{\{\mathcal{V}_1, \dots, \mathcal{V}_p\} \in \mathcal{P}} \max_{i \in [p]} \{\# \text{ cut nets with vertices in } \mathcal{V}_i\},$$

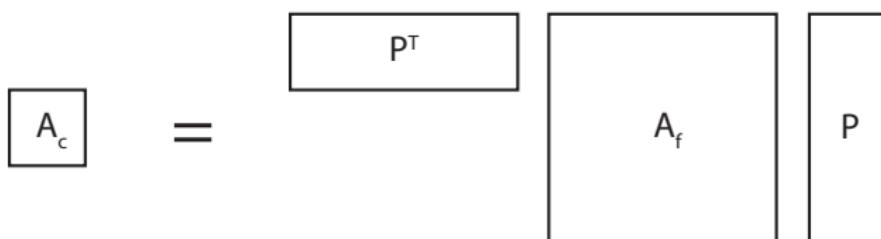
where \mathcal{P} is the set of all sufficiently load-balanced partitions.

Proof.

The hypergraph models communication perfectly. □

Main practical result

- Hypergraph partitioning software can *estimate* lower bound
- Key application of SpGEMM: algebraic multigrid triple product
 - compute $A_c = P^T A_f P$ using two calls to SpGEMM
 - we analyze a model problem (off-line)

$$A_c = P^T A_f P$$


The diagram illustrates the components of the algebraic multigrid triple product. It consists of five rectangular boxes arranged horizontally. From left to right: 1) A box containing the label A_c . 2) A double equals sign ($=$). 3) A box containing the label P^T . 4) A box containing the label A_f . 5) A box containing the label P . The boxes for P^T , A_f , and P are stacked vertically, while the boxes for A_c and the double equals sign are positioned to the left of the stack.

Main practical result

- Hypergraph partitioning software can *estimate* lower bound
- Key application of SpGEMM: algebraic multigrid triple product
 - compute $A_c = P^T A_f P$ using two calls to SpGEMM
 - we analyze a model problem (off-line)

N	p	$A_f \cdot P$		$P^T \cdot (A_f P)$	
		standard	hypergraph	standard	hypergraph
19,683	27	5,528	4,649	10,712	964
91,125	125	5,528	5,823	10,712	1,324
250,047	343	5,528	6,160	10,712	1,444
531,441	729	5,528	6,914	10,712	1,491
970,299	1,331	5,528	6,679	10,712	1,548

Table: Comparison of standard algorithm with best hypergraph partition

Summary

- Parallel **sparse matrix-matrix multiplication** is an **irregular computation** whose performance is **communication bound**
- **Hypergraph partitioning** can relate parallelization schemes to communication costs
- Using hypergraphs, we obtain theoretical communication **lower bounds** and practical **algorithmic insight** for parallel sparse matrix-matrix multiplication