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Outline 

 Background: 
 Balancing Domain Decomposition by Constraints (BDDC) 
 Discontinuous Petrov Galerkin (DPG) methods 
 Why the interest? 

 Model Problem: 
 Initial disappointing results 
 A remedy and some connections 

 Modified BDDC Preconditioner: 
 What adaptive constraint algorithms tell us 

 Applications 

 Closing Remarks 
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Iterative Substructuring 

• restrict problem to interface* 
• interface unknowns: 
‒ Lagrange multipliers, FETI-DP 
‒ original unknowns, BDDC 

• precondition interface problem: 
‒ local “subdomain” solves 
‒ global “coarse” solve 

• No need to form Schur complement 

interior Ι shown in blue 
interface Γ shown in red 

3 *see P63 



BDDC Preconditioner (pictures) 
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fully assembled model partially assembled model* 

*see LW06 

Note: solving partially assembled problem equivalent to solving 
independent local subdomain problems and adding coarse solution 

Basic components: decomposition, constraints, weights 

FETI-DP connection 



BDDC Preconditioner (equations) 

5 *see LW06 
Partially assembled Schur complement 



BDDC: A Few More Comments 

 Constraints (Coarse Space): 
 Simple sometimes (2D corners only, 3D maybe edges/faces too) 
 Not always simple 

 Material property jumps, almost incompressible materials, … 
 Active research area (several talks this week) 
 Can work with localized version of BDDC estimate* 

 
 Weights: 

 Cardinality, stiffness, “rho”, deluxe, e-deluxe, … 
 Story not over yet 

 Applications: 
 Elasticity, plates/shells, porous media, Stokes, H(curl), H(div), … 
 Today: Discontinuous Petrov Galerkin Methods 

6 *see, e.g., MDT05 



What is DPG? 

 Discontinuous Petrov Galerkin Method: 
 Introduced by L. Demkowicz and J. Gopalakrishnan*  
 Why discontinuous in name? 

 Test functions for elements completely independent from each other 
 “Field” trial functions in L2, but eliminated at element level 
 “Numerical trace” and “numerical flux” trial functions are continuous 

across element boundaries 
 Why Petrov Galerkin in name? 

 Test functions are different than trial functions 
 Test functions obtained by solving independent optimization 

problem local to each element 
 Test functions from higher dimensional space than trial functions 

 Anything else? 
 works with first-order form of equations 
 derivatives commonly moved from trial to test functions in all 

equations via integration by parts (“ultra-weak formulation”) 
 element matrices are symmetric and positive semidefinite 

7 *see, e.g., DG11 and references therein 



Why the Interest in DPG? 
 Discretization: 

 Continuous trial functions on element boundaries 
 Potential for more flexibility in meshing complex geometries (e.g. 

polyhedral elements) 
 Favorable error estimates 

 Potential for higher accuracy solutions. For example, displacements 
and stresses elasticity with comparable convergence rates 

 Attractive results for wave propagation problems* 
 Good pre-asymptotic stability 
 Reported negligible phase/pollution errors (at least for higher-order) 

 Active research area for many applications 
 Potentially well-suited for next generation computing platforms 

 Solvers: 
 SPSD element matrices (rich DD theory available) 
 Non-symmetric or indefinite systems possibly more accessible 
 New area, potential of adaptive coarse spaces algorithms 
 Q: who could possibly resist? 

8 *see DGMZ12 



A Quick Look Ahead 
 Model Problem: Poisson equation 
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standard element 
DPG element 

Observations: 
• More unknowns for DPG ( ≈ 3x in 2D and ≈ 4x in 3D)  
• Code more complex (6x even when excluding additional functions*) 
• Remaining shape functions only needed on boundary (more flexibility) 
• Not for the faint of heart 
• Is it worth it? Well, it depends 

*codes like Camellia (R14) can reduce complexity, but more worked needed here 

internal “field” 
variables 
eliminated locally 



DPG Formulation* 
 Starting point: 

 
 

 First order form: 
 
 

 Integration by parts: 

10 *see DG11. Goal here: provide quick startup for implementation if interested  



DPG Formulation (continued) 
 Integration by parts: 

 

 

 Ultra-weak formulation: 
 
 
 
 

 Shorthand notation: 
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DPG Formulation (almost there) 
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DPG Formulation (we’re there!) 
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DPG in a Nutshell 
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DPG Element Stiffness Matrix 

15 Note: matrix includes “field” variables initially. Use static condensation to remove. 



Let’s give it a try 
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essential BCs on entire boundary 
4 x 4 subdomains 
corners only coarse space* 
H/h = 8 
unit length 
Iterations = 135 
condition number > 1.5 x 104 

 
What just happened? 

Flashback (humor): “Whatever you do, do not apply essential and natural BCs to the 
same part of boundary”. “Okay dad, can we go play golf now?” 
What next? 

• Optimized Schwarz, overlapping Schwarz? 
• Take a step back 

* Adding average flux component to coarse space didn’t help much 



A step back (first piece of puzzle) 
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1/h λmin λmax 

5 0.8724 1.3427 
10 0.8662 1.3653 
15 0.8651 1.3695 
20 0.8647 1.3710 
25 0.8646 1.3717 



A step back (second piece of puzzle) 
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Kpp =  

Kff =  

Note: nice BDDC preconditioner for R-T vector fields thanks to Oh & Widlund (OWD13) 



 Related BDDC preconditions for porous media: 
 Mixed formulation rather than least squares 

 T05, T07 
 Tuesday talk in MS5-2 

 Least squares connection: 
 Preconditioner strategies based on block diagonal matrices, 

see, e.g., BG09 

 In hindsight, DPG error estimate insightful: 
 See following slide 

Some Connections 

19 



DPG Error Estimate 
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Suggestive of block decoupling 

*see again DG11  



 Takes advantage of matrix properties: 
 We already have good BDDC preconditioners for 

 Poisson equation 
 H(div) problems 

 Can we combine the two at once? 
 Yes, by basing preconditioner on AD instead of A 

 Sounds pretty easy, but still need to solve original problem 
 No problem, just need to apply Schur complement of original 

matrix during conjugate gradient iterations 
 Will we still have an interface preconditioner? 

 Yes, interior unknowns are still eliminated based on A 

 Summary: 
 Preconditioner based on block diagonal matrix AD 

 Matrix A still used for initial elimination of interior unknowns 
and for application of Schur complement during iterations 

 
 

 
 

  

Modified BDDC Preconditioner 
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4 x 4 subdomains, H/h = 8, corners only coarse space 
 
 

 
 

 

What Adaptive Algorithms Tell Us 
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Eigenvalues associated 
with edge (small is bad) 

Edge constraint for 
smallest eigenvalue 

New edge eigenvalues 
after constraint 

Including average flux constraint for edges should really help reduce condition # 

flux 
dofs 



N x N subdomains, corners + average flux coarse space 
 
 

 
 

 

Poisson Equation (constant properties) 
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N H/h = 4 H/h = 8 H/h = 12 H/h = 16 
4 2.10 2.84 3.34 3.72 
6 2.18 2.98 3.52 3.93 
8 2.20 3.02 3.57 3.99 

10 2.20 3.03 3.58 4.01 

N = 4, H/h = 8 



8 x 8 subdomains, corners + average flux coarse space 
 
 

 
 

 

Poisson Equation (variable properties) 
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α = 1 in red region, α = σ 
in other regions, H/h = 8 

Much larger sensitivity to material property jumps than what we’ve 
seen for the second order Poisson equation. Based on adaptive 
algorithms, difficulties appear associated with flux variables. 
Scaling of trial and/or test norms may be able to address problem. 



 Error estimates*: 
 Suggestive of decoupling between displacements and 

fluxes as for the Poisson equation 
 Analogous trial/test norms and error estimates to Poisson 
 More accurate stresses for smooth solutions 
 Locking-free convergence properties in the case of almost 

incompressible elasticity (AIE) problems 
 Preconditioner: 

 Need to confirm, but expect only flux constraints on faces in 
3D needed for AIE 
 Simplification over “standard” approach where edge 

constraints must also be considered 

Elasticity 

25 *see BDGQ12  



Closing Remarks 

 Standard BDDC preconditioner applied to DPG 
model problem performed poorly 

 Modified BDDC preconditioner performed well 
 Based on block diagonal approximation of operator matrix 
 Average flux constraint needed for edges in 2D and faces in 3D 
 Still an interface preconditioner, but existing theory now only 

applies to block matrix 

 Many questions remain (lots of opportunities here!) 
 How to deal with material property jumps, Helmholtz problem 

performance, theory development, coarse spaces, … 

 High performance computing future of DPG 
 Effective domain decomposition or multigrid solvers a must  
 Software tools needed to make DPG much more accessible 

26 



Extra Slides 
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Higher Order DPG 

 Greater accuracy but much more demanding on 
sparse direct solvers 

 Replace direct solvers with more memory efficient 
preconditioners (see, e.g., SMPZ2007) 

 Replace standard BDDC algorithm with approximate 
one (see, e.g., LW07 and D07) 
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