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Outline ) it

= Background:
= Balancing Domain Decomposition by Constraints (BDDC)
= Discontinuous Petrov Galerkin (DPG) methods
= Why the interest?

= Model Problem:
= |nitial disappointing results
= A remedy and some connections

= Modified BDDC Preconditioner:
= What adaptive constraint algorithms tell us

= Applications

= Closing Remarks




lterative Substructuring ) e,

interior I shown in blue
interface I' shown in red
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restrict problem to interface*
interface unknowns:

— Lagrange multipliers, FETI-DP

— original unknowns, BDDC
precondition interface problem:

— local “subdomain” solves

— global “coarse” solve

No need to form Schur complement
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*see P63 3




Preconditioner (

nictures)
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fully assembled model

Basic components: decomposition, constraints, weights

FETI-DP connection

Note: solving partially assembled problem equivalent to solving

partially assembled model*

independent local subdomain problems and adding coarse solution

*see LWO06
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BDDC Preconditioner (equations) [Tz,

Recall we want to solve Su = g

Bookkeeping: u; = Rju, R: row concatenation of Ry, ..., Ry

A

Weights: D = diag(Dy....,D,). RTDR =1 (partition of unity)

A

Schur Complement: S = diag(S1,....Sy), S=R’SR

A

Constraints: enforced in subdomain corrections Ml_l. o M,gl.

A

Subdomain Correction: T, = diag(Ml_l, o M]gl)
Coarse Correction: To = W(WTSW)~1W!T W : E-M coarse basis

BDDC Preconditioner:|Mghr = RTDT(Teup + To)DR

Alternative*: Mgppc = ﬁgé_l Rp (nice connection to picture)

T— Partially assembled Schur complement
*see LWO06 .




BDDC: A Few More Comments rh) e,

= Constraints (Coarse Space):
= Simple sometimes (2D corners only, 3D maybe edges/faces to0)
= Not always simple
= Material property jumps, almost incompressible materials, ...

= Active research area (several talks this week)
= Can work with localized version of BDDC estimate*

P
KBDDC < sup [Ppulls
e lulls

= Weights:
= Cardinality, stiffness, “rho”, deluxe, e-deluxe, ...
= Story not over yet

= Applications:
= Elasticity, plates/shells, porous media, Stokes, H(curl), H(div), ...
= Today: Discontinuous Petrov Galerkin Methods

*see, e.g., MDTO5 6




What is DPG? ) i

= Discontinuous Petrov Galerkin Method:

= |ntroduced by L. Demkowicz and J. Gopalakrishnan*
= Why discontinuous in name?
= Test functions for elements completely independent from each other
= “Field” trial functions in L?, but eliminated at element level
= “Numerical trace” and “numerical flux” trial functions are continuous
across element boundaries
= Why Petrov Galerkin in name?
= Test functions are different than trial functions
= Test functions obtained by solving independent optimization
problem local to each element
= Test functions from higher dimensional space than trial functions
= Anything else?
= works with first-order form of equations
= derivatives commonly moved from trial to test functions in all
equations via integration by parts (“ultra-weak formulation”)
= lelement matrices are symmetric and positive semidefinite

*see, e.g., DG11 and references therein .




Why the Interest in DPG? ) e,

= Discretization:

= Continuous trial functions on element boundaries
= Potential for more flexibility in meshing complex geometries (e.g.
polyhedral elements)
Favorable error estimates
= Potential for higher accuracy solutions. For example, displacements
and stresses elasticity with comparable convergence rates

Attractive results for wave propagation problems*

= Good pre-asymptotic stability

= Reported negligible phase/pollution errors (at least for higher-order)
Active research area for many applications

Potentially well-suited for next generation computing platforms
= Solvers:
= SPSD element matrices (rich DD theory available)
= Non-symmetric or indefinite systems possibly more accessible
= New area, potential of adaptive coarse spaces algorithms
= Q: who could possibly resist?

*see DGMZ12 o




A Quick Look Ahead ) fetmat

= Model Problem: Poisson equation

t

® numerical trace (u)

. & ®

internal “field”

<« Vvarables —» numerical flux (6,)
eliminated locally

L) . L) l: )
standard element
DPG element

Observations:
e More unknowns for DPG (=~ 3x in 2D and ~ 4x in 3D)
 Code more complex (6x even when excluding additional functions?*)
* Remaining shape functions only needed on boundary (more flexibility)
* Not for the faint of heart
o |s it worth it? Well, it depends

*codes like Camellia (R14) can reduce complexity, but more worked needed here ¢
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DPG Formulation*

= Starting point:

—V - (aVu) = f on €.
u=>0 on Jf).
= First order form:
a"'F +Vu=0, 7= —aVu
V.5=f

* |ntegration by parts:

(a7, Pk — (u, V-7 + (u,7 - i)ox =0 V7 € H(div, K).

—(3.Vo)g + (0,6 -iox = (f.v)k Yo e HYK).

*see DG11. Goal here: provide quick startup for implementation if interested 10




DPG Formulation (continued) ) .

* |ntegration by parts:
(a3, Pk — (u, V-7 + (u,7 - i)ox =0 V7 € H(div, K).
—(3,Vu)g + (v.7 - fi)ox = (f,v)Kk Vo € H'(K).

= Ultra-weak formulation:
We now replace the terms (u,7-n)sx and (v.0-n)akx by (u,7-17)q/29x and
(v,6n)1/2,0K respectively, where 4 and &, are new unknowns, and (-, £)1 /2 sx denotes

the action of a functional ¢ in H~Y2(9K). This motivates the following ultra-weak

formulation:

Find (&, u,u,dy) € U such that
(12)

b((F.u, i, 6), (Fov)) =1U(F.v)  Y(F.v) €V,

= Shorthand notation: ,
Find # € U such that

b, v)=1(v) YvelV.

11




DPG Formulation (almost there) ) .

The DPG approximation of v € U 1s denoted by uy. It lies in Uy, a subspace of U.
We define the trial-to-test operator T : U +— V by

(4) (Tw,v)y = b(w,v) Yo € V and Yw € U.
Let Vi, = T'(Up). The DPG approximation %, € Uy, satisfies
(5) b(an,vn) = l(vp) Yop € V.

This i1s a Petrov—Galerkin-type formulation as Up and Vp are not generally identical.

Where we are: Given a trial space Uy, and trial U-norm, it remains
to specify the test space V), and the test V-norm. Here, as before,
the test space is chosen to be two polynomial orders greater than
the trial space. All that then remains is to specify the test norm.

12




DPG Formulation (we're therel) ) i

If we want the DPG solution to coincide with the best
approximation from Uy, in the U-norm, then choose

b(u.v
IVllv = [Vllope.v = sup ( )
UEU;, HU

Unfortunately, the optimal test norm is difficult to compute with,
and a “broken” or “localizable” test space norm is used in its place.
It is shown in DG11 that the simpler test norm

[TV = 1T 0, + IVIF,)
Is equivalent to the optimal test norm for the Poisson equation. We

use this test norm here.

13




DPG in a Nutshell rh) e,

Choose trial space
Choose basis for test space (often enrichment of trial space)

Calculate test functions associated with each trial function
using trial-to-test operator

Trial-Test norm pairs available in literature for variety of
applications

Standard Petrov Galerkin FEM at this point




DPG Element Stiffness Matrix ) =,
Recall V, = T(Uy) with trial-to-test operator T given by

(Tw,v)y =b(w,v) YveV, and we U,

v GTw = vl Bw

TW = G 'Bw
(TW)HBU —w'BHG 1Bu
\_.v.—./
stiffness
matrix

Least squares connection: minimize (Bu — f)?G~}(Bu — f) =

BHG_I(BU —f)=0
BHG'Bu=pB"G1f
— e’ “—

stiffness element
matrix load

Note: matrix includes “field” variables initially. Use static condensation to remove. 15




Let’s give it a try ) .

essential BCs on entire boundary
4 x 4 subdomains

corners only coarse space*
H/h=8

unit length

Iterations = 135

condition number > 1.5 x 104

What just happened?

Flashback (humor): “Whatever you do, do not apply essential and natural BCs to the
same part of boundary”. “Okay dad, can we go play golf now?”
What next?

e Optimized Schwarz, overlapping Schwarz?
 Take a step back

* Adding average flux component to coarse space didn’'t help much 16




A step back (first piece of puzzle) (M.

Same problem, but no subdomains

App A A 0
A — pp pf ] An — [ pp }
[ Ap A ’ 0 Ag

Consider the eigenproblem Apx = AAx for different meshes

1/h

5 0.8724 1.3427
10 0.8662 1.3653
15 0.8651 1.3695
20 0.8647 1.3710
25 0.8646 1.3717

17
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A step back (second piece of puzzle) (@&,

| Kpp Kpf
Kefem — [ Kfp Kf,r :|

0.4170 -0.1067 -0.0836 -0.10667
-0.1l667 0.4170 -0.1l667 -0.0830
-0.0836 -0.1067 0.4170 -0.10667

K= -0.1667 -0.0836 -0.1l667 0.4170

a(u.v) = [, Vu-Vvdx

1.0021 1.0000 0.9996 1.0000
1.0000 1.0021 1.0000 0.9996
0.9996 1.0000 1.0021 1.0000
Ky = 1.0000 0. 9996 1.0000 1.0021
= [, (a (V- v)+ Bu-v)dx
Note: nice BDDC preconditioner for R-T vector fields thanks to Oh & Widlund (OWD13) 18
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Some Connections ) et

= Related BDDC preconditions for porous media:

= Mixed formulation rather than least squares
= TO5, TO7Y
= Tuesday talk in MS5-2

= |Least squares connection:

= Preconditioner strategies based on block diagonal matrices,
see, e.g., BGO9

= |n hindsight, DPG error estimate insightful:
= See following slide




DPG Error Estimate h) o,

THEOREM 4.1 (quasioptimality). Suppose # = (G,u,u,6,) and let 2, =
(Oh, Uh, Un,On,n) be the exact and approximate solutions in U and Uy, respectively,
i.e., they satisfy (2) and (5), respectively. Let the discretization error () and the
best approrimation error (/) be denoted by

P = |G = OnllL2(e) + llv —unll2@@) Rl —Gnllg1/2 50, ) + 100 — Onnllm-1/2(00,);

a = inf _ .
(Ph WhyZhyin,n)EUR Suggestive of block decoupling

|4 — 5?1”;;3”(512,1} +||6n — ﬁn,h”H—lﬁ{ﬁﬂh})‘

(||5 — PrllLzo) + lu — wil|L20) +

Then there is a C(a) > 0 independent of the subspace Uy, and the partition {2, such
that

7 < Cla) .

The value of C(«) is an increasing function of ay and 1/ag.

*see again DG11 20




Modified BDDC Preconditioner ) i

= Takes advantage of matrix properties:

= We already have good BDDC preconditioners for
= Poisson equation
= H(div) problems

= Can we combine the two at once?
= Yes, by basing preconditioner on Ay instead of A

= Sounds pretty easy, but still need to solve original problem

= No problem, just need to apply Schur complement of original
matrix during conjugate gradient iterations

= Will we still have an interface preconditioner?
= Yes, interior unknowns are still eliminated based on A
= Summary:
= Preconditioner based on block diagonal matrix A,

= Matrix A still used for initial elimination of interior unknowns
and for application of Schur complement during iterations

21




What Adaptive Algorithms Tell Us

h

4 x 4 subdomains, H/h = 8, corners only coarse space

0.0135765774353284 -0
0.388737314825761 -0 0.388737314825761
0.390506967341069 -0 0.390506967341079
0.836078457414942 -0 0.836078457414942
0.837844622597111 -0 0.837844622597071
0.973839226246473 -0 0.973839226246473
0.974293796382876 -0 0.974293796382838
0.997253863166729 0.999999999999529 0.997253863166755
0.997295655537257 0.991087737448704 0.997295655537257
0.999805207498448 HUX | 0.986305161600892 0.999805207498448
0.999813223108322 doﬁi 0.984151207739674 0.999813223108331
0.999991915791416 0.984151207747208 0.999991915791456
0.999992314963886 0.986305161599193 0.999992314963886
0.993999847487285 0.991087737444428 0.999999847487285
0.999999859397627 1 0.999999859397631
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Eigenvalues associated
with edge (small is bad)

Edge constraint for
smallest eigenvalue

New edge eigenvalues
after constraint

Including average flux constraint for edges should really help reduce condition #

22
-~ ...



Poisson Equation (constant properties) @ =

N X N subdomains, corners + average flux coarse space

N=4,Hh=28

4 2.10 2.84 3.34 3.72
6 2.18 2.98 3.52 3.93
8 2.20 3.02 3.57 3.99
10 2.20 3.03 3.58 4.01

23
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Poisson Equation (variable properties) @ =

8 x 8 subdomains, corners + average flux coarse space

o =1inredregion,a=c
in other regions, H/h = 8

Much larger sensitivity to material property jumps than what we've
seen for the second order Poisson equation. Based on adaptive
algorithms, difficulties appear associated with flux variables.
Scaling of trial and/or test norms may be able to address problem.

24



Elasticity ) .

= Error estimates*:

Suggestive of decoupling between displacements and
fluxes as for the Poisson equation

Analogous trial/test norms and error estimates to Poisson
More accurate stresses for smooth solutions

Locking-free convergence properties in the case of almost
iIncompressible elasticity (AIE) problems

= Preconditioner:

Need to confirm, but expect only flux constraints on faces in
3D needed for AIE

= Simplification over “standard” approach where edge
constraints must also be considered

*see BDGQ12 25
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Closing Remarks L

= Standard BDDC preconditioner applied to DPG
model problem performed poorly

= Modified BDDC preconditioner performed well
= Based on block diagonal approximation of operator matrix
= Average flux constraint needed for edges in 2D and faces in 3D

= Still an interface preconditioner, but existing theory now only
applies to block matrix

= Many gquestions remain (lots of opportunities here!)

= How to deal with material property jumps, Helmholtz problem
performance, theory development, coarse spaces, ...

= High performance computing future of DPG
= Effective domain decomposition or multigrid solvers a must

= Software tools needed to make DPG much more accessible
26




Extra Slides rh) e,
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Higher Order DPG rh) o

= Greater accuracy but much more demanding on
sparse direct solvers

= Replace direct solvers with more memory efficient
preconditioners (see, e.g., SMPZ2007)

= Replace standard BDDC algorithm with approximate
one (see, e.g., LWO7 and DQ7)
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